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ON k-PLY DOMATIC NUMBERS OF GRAPHS
BOHDAN ZELINKA

In the paper we shall generalize the domatic number of a graph introduced by
E.J. Cockayne and S. T. Hedetniemi [1].

Let G be an undirected graph without loops and multiple edges, let k be
a positive integer. A k-ply dominating set in G is a subset D of the vertex set V(G)
of G with the property that to each vertex x € V(G)— D there exist pairwise
distinct vertices yi, ..., y« of D which are all adjacent to x. A k-ply domatic
partition of G is a partition of V(G), all of whose classes are k-ply dominating sets
in G. The maximum number of classes of a k-ply domatic partition of G is called
the k-ply domatic number of G and denoted by d*(G).

The k-ply domatic number is defined for every graph G and every positive
integer k, because in every graph there exists at least one k-ply domatic partition
for every k, namely the partition consisting of one class.

The k-ply domatic number d*(G) of G is to be distinguished from the k-domatic
number di(G) of G introduced in [3].

For k=1 the concepts of a k-ply dominating set, a k-ply domatic partition and
a k-ply domatic number are the usual concepts of a dominating set, a domatic
partition and a domatic number, as they are used in [1].

We shall describe some properties of k-ply domatic numbers of graphs.

Proposition 1. Let G be an undirected graph, let k, | be two positive integers. Let
!
D,, ..., D, be pairwise disjoint k-ply dominating sets in G. Then |J D is a kl-ply
i=1
dominating set in G.
1
Proof. Denote D =|JD.. Let xe V(G)— D. As the sets Dy, ..., D, are k-ply
i=1
dominating, for each i =1, ..., | there exist pairwise distinct vertices yi, ..., yi« of
D; which are adjacent to x. As the sets D;, ..., D, are pairwise disjoint, the vertices
y;fori=1,...,land j=1, ..., k are pairwise distinct and D is a kl-ply dominating
set in G.
The converse assertion is not true. In the circuit C, of the length 4 each pair of

non-adjacent vertices is a k-ply dominating set for k =2, but no proper subset of it
is a k-ply dominating set for k=1.
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Proposition 2. Let G be an undirected graph, let k, m be positive integers, k = m.
Then each m-ply dominating set in G is also a k-ply dominating set in G.

Proof is straightforward.

For every real number a the symbol [a] will denote the greatest integer which is
less than or equal to a and the symbol Ja[ will denote the least integer which is
greater than or equal to a.

Proposition 3. Let G be an undirected graph, let k, m be two positive integers.
Then

d"'(G)z[MJ.

Jil

Proof. Denote d*(G)=a, |m/k[=b.Let P={D,, ..., D,} be a k-ply domatic
partition of G with a classes. The number set {1, ..., a} can be partitioned into
[a/b] classes Ci, ..., Cjus) such that one of them has a + b —[a/b]b elements and
all other classes have b elements each. Now let D*= | J D;. Each D* is the union

jeC
of at least b pairwise disjoint k-ply dominating sets in G, therefore it is bk-ply
dominating and #* = {D*, ..., Df.»} is a bk-ply domatic partition of G. We have
bk = klm/k[Z m, thus P* is an m-ply domatic partition of G (see the proof of

k
Proposition 2). The m-ply domatic number of G is at least [a/b] =[#J .
Jil
Proposition 4. Let G be an undirected graph, let k be a positive integer. Let
6(G) be the minimum degree of a vertex of G. Then

d“*(G)=[86(G)/k]+1.

Proof. Let u be a vertex of G of degree 8(G). Let d*(G)=d and let
{Dy, ..., Dy} be a k-ply domatic partition of G with d classes. Without loss of
generality let ue D,. For each i=1,..., d—1 there exist vertices x., ..., y«
adjacent to u and contained in D;. The vertices x; for i=1,..., d—1 and
j=1, ..., k are pairwise distinct, therefore there are at least k(d —1) vertices
adjacent to u and k(d — 1) = 8(G). This implies d = 8(G)/k + 1; as d is an integer,
we have d =d*(G)=[6(G)/k]+1.

Similarly as in [1] a graph G for which 8(G) = k(d*(G) — 1) holds will be called
k-ply domatically full.

Proposition 5. Let K, be a complete graph with n vertices, let k be a positive
integer. Then

d“(K,)=[n/k].
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Proof. Let P be a partition of the vertex set of K,, into [n/k] classes such that
one of them has k + n — k[n/k] vertices and all the others have k vertices each.
Then 2 is evidently a k-ply domatic partition of K, and d*(K,)=[n/k]. On the
other hand, no k-ply dominating set can have less than k vertices, therefore d*(K,)
cannot be greater than [n/k] and we have d*(K,)=[n/k].

Now we shall prove a lemma.

Lemma. Let G be a bipartite graph on the vertex sets A, B, let k be a positive
integer. Let D be a k-ply dominating set in G. Then either A < D, or B D, or
|AnD|Zk and |BND|Zk.

Proof. Suppose that |[AnD|<k and B— D#@. Let x e B— D. The vertex x is
adjacent only to the vertices of A. The vertices of D adjacent to x are only those of
ANnD; but there are less than k such vertices, therefore D is not a k-ply
dominating set in G, which is a contradiction. Therefore |AnD|<k implies
B-D=0,i.e. Bc D. Analogously |[BnD|<k implies A c D and this proves the
assertion.

~With the help of this lemma we shall prove a theorem.

Theorem 1. Let K., . be a complete bipartite graph on the vertex sets A, B such
that |A|=m,:|B|=n, let k be a positive integer. Then

d*(Km..)=1 for min(m,n)<k,
d*(Kn,»)=2 for k=min(m, n)<2k,
d*(K..,.)=[min (m, n)/k] for min (m, n)=2k.

Proof. Without loss of generality let m =n, i.e. min(m, n)=n. Let n<k and
suppose that d*(Kum,») = 2. Then there exists a k-ply domatic partition { D,, D} of
K..... We have |BNnD,|=|B|=n<k; according to Lemma either A < D, or
B c D,. Analogously also either A c D,, or B = D,. Without loss of generality let
A c D,. As DinD, =0, we have B c D; and this implies A = D,, B = D,. But then
|D,| = n<k and D, is not a k-ply dominating set in K, ., which is a contradiction.
We have d*(K,.,,)=1. Now let k=n<2k. Then |A|2k, |B|Zk and {A, B} is
a k-ply domatic partition of K., ., which implies d*(K, .)=2. Suppose that it is
greater. Then there exists a k-ply domatic partition {D;, D;, D3} of K, .. As
n <2k, at most one of the sets D,, D,, D; may have its intersection with B of the
cardinality at least k. Thus without loss of generality we may suppose that
|BAD,| <k, |BnD;|< k. This implies that either A c D,, or B c D, and similarly
for D,. Without loss of generality let A < D,, B = D,. But then Dj; is disjoint with
AUB = V(K...), which is a contradiction. We have proved that d*(K..,.) =2. Now
let n=2k. Let I=[n/k]. Then there exists a partition {Di, ..., Di} of A and
a partition {Dj, ..., D7} of B such that |D{|=|D%|=k for i=1, ..., I—1 and
IDi|=m+k—kl, |Di|=n+k—kl. Put Di=D/uD’ for i=1,...,1. Then
{D,, ..., D} is a k-ply domatic partition of K, , and d*(Kp, .)=!=[n/k]. Any
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partition of Au B with more than [n/k] classes has the property that at least one of
its classes has its intersection with B of the cardinality less than k and analogously
to the preceding cases we can prove that it cannot be a k-ply domatic partition of
K. Thus d*(K..)=[n/k].

Theorem 2. Let C, be a circuit of the length n. Then d*(C,)=2 for n even and
d*(C,)=1 for n odd.

Proof. Let the vertices of C, be uy, ..., u, and the edges wu,, for i=1, ..,
n—1 and u,u;. Suppose that n is even. Put D, = {u|i odd}, D,={u]|i even}.
Evidently {D,, D:} is a doubly domatic (i.e. k-ply domatic for k =2) partition of
C. and d*(C,)=2. According to Proposition 4 it cannot be greater, therefore
d*(C,)=2. Now suppose that n is odd. Then C, is not bipartite and in each
partition # of V(C,) with two classes at least one class D contains a pair of
adjacent vertices u, v. Any of the vertices u, v is adjacent to at most one vertex not
belonging to D, thus no class of & distinct from D is a doubly dominating set in C,
and 2 is not a doubly domatic partition of C,. We have d*(C,)=1.

Analogously to [2] we shall study k-ply domatically critical graphs.

A graph G is called k-ply domatically critical (for a given positive integer k) if
d*(G")< d*(G) for each proper spanning subgraph G’ of G.

Theorem 3. Let G be a k-ply domatically critical graph for a positive integer k.,
let d*(G)=d. Then the vertex set V(G) of G is the union of pairwise disjoint sets
Vi, ..., Va such that for any i, j from the numbers 1, ..., d such that i+ | the
subgraph G;; of G induced by the set V;uUV; is a bipartite graph on the sets V,, V,
with the property that each vertex of G; has degree at least k in it and each edge of
G; is incident with at least one vertex of degree k in G,.

Proof. Let {V,, ..., Vi} be a k-ply domatic partition of G. Any V, (for
i=1,..., d)is an independent set in G ; otherwise by deleting an edge joining two
vertices of V, the k-ply domatic number of G would not be diminished and G
would not be a k-ply domatically critical graph. Let G; be the subgraph of G
induced by V,u 'V, for some i and j, i# j. As V;, V; are independent sets, the graph
G; is a bipartite graph on the sets V;, V;. Any vertex of V; must be adjacent to at
least k vertices of V}, therefore its degree in Gj is at least k ; analogously for each
vertex of V;. Let e be an edge of Gy, let v; (or v;) be its end vertex in V; (or V,
respectively). If the degrees of v; and v; were both greater than k, then the graph
G’ obtained from G by deleting e would have also the k-ply domatic number equal
to d and G would not be k-ply domatically critical; this proves the assertion.

Theorem 4. A regular graph with n vertices which is k-ply domatically full (for
a positive integer k) with the k-ply domatic number d exists if and only if d divides
n and kd = n. The vertex set of such a graph G is the union of pairwise disjoint scts
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Vi, ..., Vysuch that |Vi|=n/dfori=1, ..., d and the subgraph G; of G induced by
the set V,u'V; for any i, j such that i+ j is a regular bipartite graph of degree k on
the sets V;, V.

Proof. Let G be a regular graph of degree r with n vertices which is k-ply
domatically full with the k-ply domatic number d. Then r=6(G)=k(d —1). Let
{Vi, ..., V4} be a k-ply domatic partition of G with d classes. Let ie {1, ..., d},
u € V. Then the vertex u is adjacent exactly to k vertices of any V; for j# i and to
no vertex of V;. As i and u were chosen arbitrarily, the subgraph G; of G induced
by ViuV; for any i and j, i# j is a regular bipartite graph of degree k. The number
of its edges is k|Vi|=k|V;|, which implies |Vi|=]|V;|. As i and j were chosen
arbitrarily, all the sets Vi, ..., V, have equal cardinalities, thus | V;| = n/d for each i
and d must divide n. The condition kd = n is evident. On the other hand, suppose
that d divides n and kd = n ; we shall construct the graph G. We take the vertex set
V(G) with n vertices and a partition { Vi, ..., V,} of V(G) with d classes, each of
which has the cardinality n/d. For any i and j, i # j, we construct a regular bipartite
graph G; of degree k on the sets V;, V;; this is always possible. The graph with the
vertex set V(G) and with the edge set equal to the union of edge sets of all G; is the
required graph G. Evidently { Vi, ..., Vu} is a k-ply domatic partition of this graph.
According to Proposition 4 the k-ply domatic number of G cannot exceed d, hence
it is equal to d. The graph G is a regular graph of degree k(d —1).

Note that this graph G is also k-ply domatically critical. For any proper spanning
subgraph G’ of G we have 8(G')=k(d—1)—1, thus d*(G")=S[(k(d—1)—-1)/
/kl+1=d-1<d*(G).
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O k-KPATHO JOMATHUYECKHUX YUCIIAX TPA®POB
Bohdan Zelinka
Pe3ome

IMogmHoXecTBo D MHOXecTBa Bepuin V(G) rpacha G HasbiBaeTcss k-KpaTHO JOMHHAHTHbBIM, €CITH
aast kaxnou Bepuunbl x € V(G)— D cyumectByetT k momapHo pa3auyHbIX BepluuH MHOXecTtBa D,
cMexHbIx ¢ x. Pa3zbuenne muHoxectBa V(G), Bce Kiacchl KOTOPOTO ABASIOTCS k-KPaTHO JOMUHAHT-
HbIMM MHOXecTBamK B G, Ha3biBaeTcs k-KpaTHO JOMaTHYeCKUM pa3bueHueM rpada G. MakcuManb-
HO€ YHMCIIO KiaccoB k-KpaTHO gomaTudeckoro pa3buenus rpacda G HasbiBaeTcs k-KpaTHO JoMaTHyec-
kuM uucioMm rpaca G u o6o3Havaetcss yepe3d d“(G). OnucaHbl HekoTOpble cBoiicTBa uyucna d*(G).
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