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ESTIMATION IN A SPECIAL STRUCTURE

OF THE LINEAR MODEL
GEJZA WIMMER
(Commaunicated by Anatolij Dvureénskij)
ABSTRACT. The paper shows locally best linear-quadratic unbiased estimators
in linear model, where the dispersions depend quadratically on mean value pa-
rameters. Investigated are the cases of full rank design matrix and of design

matrix with one linear dependent row. Determined is also the existence of these
estimators in all investigated cases and situations.

Introduction

If in the well-known regression model (?, iﬂ, i) the dispersion matrix is of
the form

(a+ blei XAI)? o .. 0
2 =o*8(8) = o? 0 (a+bles XA ... 0
0 » (a+ ble}, XBI)

we obtain a linear model of measurement with variances depending on the mean
value parameters. In this model the result of observations is a realization of a
random vector ?n,l with mean value Sg({’) = iﬂ (in,k is a known design
matrix, Bx1 € R is the vector of unknown parameters). The covariance matrix

of the random vector Y is ¥, where a, b and o2 are known positive constants,

e! is the transpose of the i-th unity vector.

The motivation behind the model is based on the fact that a large class of

. . . . . 2
measurement devices has its dispersion characteristic of the form o? (a + b|<p[) ,

AMS Subject Classification (1991): Primary 62J05, 62F10.
Key words: Linear model, Variances depending on the mean value parameters, Locally
best linear-quadratic unbiased estimator (LBLQUE).
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where ¢ is the true measured value (see e.g. [1, p. 28], [6, p. 456,914]) and the
measurements are independent.

Locally best linear unbiased estimators and uniformly best linear unbiased
estimators of linear functionals of parameter B in this model are investigated
in [7].

The aim of the paper is to investigate the 3, -locally best linear-quadratic
unbiased estimators ( 3, -LBLQUE) of the elements of the covariance matrix in
this model.

We investigate the B,-LBLQUE of the elements of the covariance matrix if
the design matrix is of full rank in rows (in Section 2, Corollary 2.2).

Further we investigate this B,-LBLQUE in the case R(i) =n-1 <k
( R()NC) is the rank of the matrix X ). In this case we distinguish three situations:

(i) the linear dependent row is equal to another row multiplied by ~,
where v # 0 and |y| #1 (in Section 3, Theorem 3.10),
(i) the linear dependent row is equal to another row multiplied by v,
where |y| =1 (in Section 4, Theorem 4.10),
(iii) the linear dependent row is a linear combination of two or more other
rows (in Section 5, Theorem 5.4).

The existence of the 3, -LBLQUE of the covariance matrix elements in situ-
ations (i), (i1) and (iii) is determined in Section 6.

With regard to the complicated problem we shall show the methodics of
solution on relative simple cases, which enables us to generalization.

1. Preliminaries

Let us rearrange the rows in the matrix X to obtain the matrix

(X1 _ IR(i),R(i)
X‘(Xz)‘( E )%

where X; is a matrix of order R()~() x k and E = X, X}(X;X})™" is of order
(n — R(X)) x R(X).

In the same way we rearrange the coordinates of Y and the rows of the
matrix 3(3). We obtain the vector Y and the matrix

56)= (Y& sm)
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where
(a + ble} X, 8])? 0 0
0 (a +bley X 82 ... 0
21(8) = .. :
0 (a+b|e'R()~()X1ﬂ|)2
and
(a+blefEX;8])? 0 0
0 (a+bletEX,8|)? ... 0
E2(ﬂ): : .. .
0 (aJ(—bler’l_R()-()EXlﬁ|)2

We get the model
(Y,XB3,%), (1.1)
where ¥ = ¢2¥(8). We assume that in this model Y is normally distributed.
The class of unbiased linear-quadratic estimators of the function

g9(-): R* — {0}
in model (1.1) we denote
O =1{b1,Y+YB,,Y: &DBY+YBY)=0 V{3ecR"}}.
THEOREM 1.1. The random wvariable a'Y + Y'AY s the B,-LBLQUE

(Bo - locally best linear-quadratic unbiased estimator) of its mean value in (1.1)

iof and only of
V{7 € Og} &a, (To(a'Y + Y’AY)) =90.

Proof. Seein [3, Theorem 3.1 and next Corollary].

Let us denote D the class of matrices B, , satisfying the next three condi-
tions

le} X 3| 0 0
0 et X3l ... 0
V{8 € R*} TrB . . . =0, (1.2)
0 lel, X8|
TrB =0, (1.3)
X! (B + o?b? Zeie:Beie:«)X =0. (1.4)

=1

(TrB is the trace of B ie. Y e!Be;.)
=1
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THEOREM 1.2. In model (1.1) the random variable b'Y + Y'BY belongs to
Oy #f and only if b€ Ker X' = {fue R": X'u =0} and Be D.
Proof. In model (1.1) there holds
E('Y+Y'BY)=b'X3 + B'X'BXB + TrBY

=b'X3 + #'X'BXS3 + o2 TrBX(3). (15)
Let b'"Y + Y'BY € Oyy. We see from (1.5) that for 3 = O
o’ TrBX(0) = o2 TrB(a’I) = 0?a’ Tr B = 0,
le.
TrB=0. (1.6)

If we choose B = ae; then for i =1,2,... n we get from (1.5) and (1.6)
ab'Xe; + a’e;X'BXe; + 02a* Tr B

le} Xe;q] 0 0
lesXeia| ... 0
+20%abTr B . .
0 le, Xe;al
(e} Xe;a)? 0 0
R TEB 0 (erXe;a)? ... 0
0 (e, Xe;a)?
le} Xe;| 0 0
, e’ Xe,‘ . 0
= ab'Xe; + o’e;X'BXe; + 2|ajoabTr B | 2. |
0 e [e’nXe,-]
(e} Xe;)? 0 0
0 pXe;)® ...
+a20%8 Tr B _ (ef i) 0 =0 V{aeR}.
0 (ef,ke,-)2
That is why for : = 1,2,... k
lei Xe;| 0 0
, ) lej Xe;| 0
ab’Xe; + 2a0%abTr B : . . =0 V{a > 0}
0 le;, Xe;|
(1.7a)
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and
le} Xe;| 0 . 0
0 letXei| ... 0
ab'Xe; — 2a0%abTrB . . . =0 V{a < 0}
6 ... le!, Xe;|
- (1.7b)
hold.
If for 1 € {1,2,...,k}
le} Xe;| 0 e 0
0 les Xei| ... 0
TrB _ i . #0,
0 lel, Xe;|
then from (1.7a)
le} Xe;| 0 0
X e:
b'Xes = _20%abTeB | 'e2,xe'l 0
0 lel, Xe;|
and from (1.7b)
le} Xe;| 0 0
'Ye.
b'Xe; = 26%abTr B 0 Iez.Xe.I o 0
0 lel, Xe;|
Thus for such 1
b’Xe.- =0
holds.
If for i € {1,2,...,k}
|e} Xe;| 0 e 0
0 e Xe:| ... 0
TrB . . . =0,
0 len Xe;|
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then for such 7 for all a > 0

b’Xe.v = 0,

i.e. for such 1
b'Xe,- =0

1s valid.

We have obtained

b'X =0,

or, equivalently,
b e KerX'. (1.8)

If we take into consideration (1.6) and (1.8), we have for b'Y + Y'BY ¢ Oyq
according to (1.5) the relation

Es(b'Y + Y'BY)
/X8 0 ... 0
: o 0 et X8| ... 0
=b'X8 + B'X'BXB + 2abs? Tr B . _ )
0 lel, X 3|
e'IX['I,B'XeI 0 . 0
0 e, XB808'X'e; ... 0
+ %02 Tr B ? ’éﬂ ’ _
0 e, XB8'X'e,
=X (B+o% )" eie;Beje}) X/
i=1
lef X 3| 0 0
) 0 ey X8| ... 0
+ 2abo® Tr . . ) =0 v{B € R},
0 le), X 3|
or, equivalently,
ﬁ’X’(B +ot? Ze,e;Be,-e;)Xﬂ =0  V{BeR") (1.9)
=1
and
1eX8 0 ... 0
0 et X3 ... 0
Tr : . : =0 V{3eR',. (1.10)
0 . e, X8|
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The relation (1.9) is valid if and only if

X'(B+B'+202b22eie'iBeie'i)X: 0. (1.11)

=1

If bY +Y'BY € Oy, then for B the relations (1.6), (1,10) and (1.11) and
for b the relation (1.8) hold. It is easy to see that conditions (1.6), (1.10), (1.11)
and (1.8) are also sufficient for B and b in order to b'Y + Y'BY belongs to
Ot

Because of the equality

B+ B’

Y'BY=Y Y,

which is valid for any n X n matrix B, we obtain that

leyX8] 0 ... 0
0 et X3 ... 0
b'Y +Y'BY: TrB , _ . =0 VY{BeR*},
0 le!. X 3|

TrB=0, X'(B+B'+20% ) eielBeie})X =0, beKerX'}

=1

lefXpl 0 ... 0
0 |eX8| ... 0
] ! 2 k
={b'Y+Y'DY: TtD _ - . =0 V{BeR"},
o .. e X3

TrD =0, X’(D+202b22e;e;Deie’i)X=O, beKerX'}

=1

={bY+Y'DY: beKerX', DeD}.

(We only remark that here D need not be a symmetric matric.) The theorem
is proved.

THEOREM 1.3. In model (1.1) the random variable a'Y + Y'AY is the
Bo -LBLQUE of its mean value (in the class of linear-quadratic estimators) if
and only if there ezists a vector z € R™ such that

a = ‘—(A. + AI)Xﬁo + (X,);(z(ﬂo))x'z (1-12)
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and
v{D € D}

TH(D + D'){0?S(Bo)(A + A)E(Bo) + 2XBuz X [(X') o] E(Be)} = 0.
(1.13)
(X" m(x(8.)) 8 an arbitrary but fized minimum X(B.) -norm g-inverse of the

matriz X', i.e., a matriz satisfying the relations X'(X') 5, X' = X' and
- ] -
((X,)m(E(ﬂo))Xl) E(B.) = 2(f’o)(X')m(z(,s,))x' )-

Proof. According to Theorem 1.1 a'Y + Y'AY is the 3,-LBLQUE of

its mean value if and only if

v{b'Y + Y'DY € 0}
£, {(P'Y + Y'DY)(@'Y + Y'AY)}

=o*{Te(D + D') [ £(8.)(A + A)JE(Be) + XBo((A + A)XBs + ) S(8.)]

+((A+A"XB, + a)’z(ﬂo)b} —0.

(1.14)
By Theorem 1.2, for all b € Ker X' and D =0 € D, b'Y + Y'DY belongs to
Oy and we have by (1.14) that

V{ibeKerX'}  ((A+A")XB.+a)'=(8.)b =0,
or, equivalently,

V{€€R"} ((A+A"NXB +a)'S(B.)(I—(X), xp)X)E=0, (1.15)

where (X')/ (5 (g,)) is an arbitrary but fixed minimum ¥(8,)-norm g-inverse
of the matrix X'.
By (1.15) it follows that

! I~ '
(A+A)XB. +a) (I-(X), gp.)X) =0
and therefore
((A+A")XB, +a) € Ker (I-(X'),x8.)X') = (X ) m(zg.X') > (1.16)
where p(Zp k) ={Zu: ue Rk}.
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The relation (1.16) holds if and only if there exists a vectorz € R™ that
a=—(A+A")XB: +(X'),xp.) X2

The necessity of (1.12) is proved.

If in (1.14) we choose b = O € Ker X', then according to Theorem 1.2 and
(1.12) we obtain (1.13). The necessary condition of the theorem is proved.

The sufficiency of (1.12) and (1.13) is easily obtained from (1.14). The theo-

rem is proved.
For our investigations we still need the following lemma.

LEMMA 1.4. For arbitrary matrices A, X and vector B, there holds

3{z e R"} — (A +A)XBo + (X') (s(p,) X'z € Ker X'
< 3zeR"} (I-(X)uzeE)X)(-(A+A)XE,)
=—(A+A"NX3, + (X');(E(ﬁo))X'z.
Proof.
3{z e R"} — (A +ANXBo + (X') (5(s,)) X'z € Ker X'
e 3{zeR")  X'(-(A+A)XBo + (X)j(mp.)X'2) = O
= HzeR"}  (X)ux@.)X (A +A)XB =(X'), (5. X'z
< 3{z € R"} - (A +A)X8, + (X’);(E(ﬂc))X'z
= (I-X)m@e.nX)(—(A+A)XE.).
The lemma is proved.
2. Case R(X) =n £ &k

LEMMA 2.1. If in model (1.1) R(X) = n < k, then the random wvariable
a'Y 4+ Y'AY is an unbiased estimator of the functional o?(a + ble’jXﬂ|)2 of
parameter B (j € {1,2,...,n}) if and only if

a€ KerX', (2.1)
elAei=0 forall i€{{1,2,...,n} - {j}}, ejAe; =1, (2.2)
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and

X'(A+AYX =0. (2.3)

Proof. The random variable a'Y + Y'AY is an unbiased estimator of
o?(a+ b|e;-Xﬂ|)2 if and only if

V{8 € R*}
, (24)
('Y + Y'AY) = a'XB + B'X'AXB + TrAX = o?(a + ble;Xa|)".
It means that for all 3 € R¥
a'Xp + B'X'AXB + TrAX(B)
—a'X8 + B'X'AXS + 02 Tr A + 2abo? f: e/ Ae;le! X/
i=1
+ b*o? 2": elAe;(e!Xp)?
i=1
=o%a® + 2abo’ | X8| + b*o? (e[ XB)?,
which is equivalent to the next three relations
TrA=1, (2.5)
V{BeR*}  a'Xp + 2abo? 2": e;Ae;le; X8| = 2abo*|e; X 3| (2.6)

=1

and

V{BER"}  BXAXB+107 ) elAei(elXB)’ = bPo?(e;XB):. (2.7)

i=1

From (2.6) we obtain that for all 3 € R*

a'XPB + 2abo’ ) eiAe;le}XB| = 2abo’ |e} XA,

=1

but also
n

—a'Xp3 + 2abo? Z e'Ae;le;X3| = 2ab02|e'jXﬂ|

=1
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is valid. Thus
V{BeRF} a'X@=0, (2.8)

which is the relation (2.1).
With respect to (2.8) it follows from (2.6) that

V{BER'} e AeeiXB|+ - +ej_Aej_1le)_,XM|

+ (ejAe; — 1)e;XB| + e}, Aeji lei X8|+ -+ e Ae,le, XB| =0.
(2.9)
As X is of full rank in rows, the last relation is equivalent to the next:

V{u = (uy,uz,... ,uR(x))I € RR(X)}
elAefur| +---+e_ Aej1|uj1|+ (ejAe; — 1)|uj| +--- + e, Aey|un| =0,

which is again equivalent to (2.2).
From (2.7) considering (2.2) we have that

v{BeRY} B'X'AXB=0,

which is equivalent to (2.3). The lemma is proved.

COROLLARY 2.2. If in model (1.1) is R(X)=n < k, then the 3, -LBLQUE
of 0?(a= ble;-X[‘)l)2 for any j € {1,2,...,n} does not exist.

Proof. If a'¥ + Y'AY is the 8,-LBLQUE of o2(a + ble,X][)”, then
it is obviously an unbiased estimator of o%(a = ble;X3|)? and according to
Lemma 2.1 A satisfies conditions (2.2) and (2.3). As R(X) = n < k, there

exists a right inverse X3! of the matrix X and a left inverse X'Zl of the
matrix X' (see e.g. in [5, p. 19]).

From (2.3) we obtain
O0=X['"X'(A+A)XX;' =A+A
which is a contradiction to (2.2). So the 8, -LBLQUE (even any unbiased linear-
quadratic estimator) of o%(a + be']~X,3|)2 for any j € {1,2,....n} does not

exist.
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3.Case E = ve5 v #0, 7| # 1

LEMMA 3.1. If in model (1.1) E = ~ve),, v #0, |y| # 1 and s € {1,
...,n — 1}, then B € D (see (1.2)-(1.4)) if and only if eBe; =
t=1,2,...,n and X'BX = O hold.

2,
0

Proof.
V{8 € R"}
le} X8| 0 0
0 et X3 ... 0
TrB . . . =0
0 .. lel, X8|
<« Y{B e R¥}
n—1
)" eiBeileiX18| + e,Be, e, X1 8| + €/, Be,|ye.X1 8] = 0
=]
— V{ll = (ul,u;),...,u,,_l)' € R"—l}
n-—1
Z e;Be;|u;| + (¢, Be, + |v|e,,Ben)|u,| =0
7
<> e;Be; for i€ {{1,2,...,n} - {s,n}}
and
e,Be, + |7le,Be, = 0.
Relations
lef X8| 0 0
0 es X8| ... 0
V{BeRY} TB| . : - =0
0 len XA
and

TTB=0

imply (with respect to conditions of the lemma) that
eﬁBe;:O i=1,2,...,n.
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That is why the condition
n
X' (B + o?p? z eie;Beie:)X =0
=1
is of the form
X'BX =0

and the lemma is proved.

LEMMA 3.2. If in model (1.1) E = ve!,, v #0, |y| # 1 and s € {1,2,
.o.,n—1}, then

O, ={bY+YDY: X'DX =0, beKerX', e;De; =0, :=1,2...,n}.

Proof. The lemma is easy to proof according to Theorem 1.2 and
Lemma 2.1.

LEMMA 3.3. In model (1.1) with E = ve,, v # 0, |v| # 1, s € {1,2,
...,n—1} 1s 'Y + Y'AY the B, -LBLQUE of its mean value if and only if

3{z € R*} 3y € {R¥*"} that
a=—(A+A)XB: +(X'), 55Xz (3.1)

and

(B(B.) ® (Bo)) vec(A + A') = X, (3.2)

where (X'),(x(s.)) '8 on arbitrary but fized minimum X(B.)-norm g-inverse
of the matriz X', ® means the Kronecker product (see e.g. [5, p. 11]),

_ 1
VeCAn,m = (allaa’2la~--yan11a12,a22,~-~aan23-~-1alm7a2m,'--yanm)

and
Xn’,k'z—f»n = (x X X7e] ® e;,...,e, ® en)-

Proof. According to Theorem 1.3 a'Y + Y'AY is the B,-LBLQUE of its
mean value if and only if (1.12) and (1.13) hold. From Lemma 3.1 we have that
fE=~e,, v#0, |y|#1 and s € {1,2,...,n — 1}, then

D={Bn,: e;Be;=0,:=1,2,...,n, X'BX = O}.

Using the formula
Tr AB = (vecB') vec A
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and the equivalency

ABC =0 <= vecABC = (C'®A)vecB =0

we obtain that

{(Dpn: DeED} ={D, ,: vecD € Ker X'} .
Thus we have the next equivalences:
V{D € D}
Tr(D+D’){a""E(ﬁo)(A+A’)E(ﬂo)+2Xﬂoz’X[(X’);(E(ﬁo))]'E(ﬂo)} =0
<~ V{D e D} Tr(D + D")(0?E(B.)(A + A)E(B,))
+2Te(D + D')(XBoz' X [(X' )1 5(5.y)) B(85)
=Tr(D + D')(*=(8.)(A + A')E(B.)) =0

(because of X'DX = X'D'X = 0)
<~ V{D e D}

o’ TrDE(B,)(A + A)E(B.) + o> Tt D'E(B,)(A + A')E(B.)
=20 TrDE(B.)(A + A")E(B,) =0

< V{DeD} o*TrDX(B.)(A+A)E(B,)=0

— V{DeD} [vecE(B.)(A +A)E(B.)] vecD =0

= Iy e (Rt} (B(8.)® B(B)) vec(A + A') = X.

We see that (3.1) and (3.2) are equivalent to (1.12) and (1.13). The lemma
is proved.

LEMMA 3.4. In model (1.1) with E = e, v #0, |y| # 1, s € {1,2,....

n—1} a'Y+Y'AY is an unbiased estimator of the functional o?(a + ble’gxﬁ”z
if and only of

a € Ker X', (3.3)
elAe; =0 forall i€ {{1,2,....7’1}—{5}}, e Ae, =1 (3.4)

and
X(A+A''X =0 13,51
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hold.

Proof. If we follow the proof of Lemma 2.1, we obtain that a'Y + Y'AY
is an unbiased estimator of o%(a + b|e’sXﬂ|)2 if and only if

TTA =1 (3.6)
(see (2.5)),
a € Ker X', (3.7)

V{BEeR*}  ejAele]XB|+ - +e,_Ae,_ile,_ XM
+ (e} Ae, — 1)[e,XB| + €\ Aeytilel XB| + - + e, Aey|e,XB| =0 (3.8)

(see (2.9)) and

V{BeR*} [B'X'AX3 + b0’ zn: e/Ae;(e.XB)* = b*0?(e,XB)* (3.9)

=1

(see (2.7)) hold.

In the same way as in the proof of Lemma 3.1 we obtain that (3.8) is equi-
valent to the next two conditions:

e'Ae; =0 1=1,2,....,s—1,s+1,...,n—-1 (3.10)

and

(e,Aes, — 1) + |y|le,Ae, =0. (3.11)

Condition (3.6) together with (3.10) and (3.11) under the conditions of lemma
are equivalent to (3.4).

Relation (3.9) is now of the form
V{BeRY} AB'X'AXB=0,

which is equivalent to (3.5). The lemma is proved.

LEMMA 3.5. In model (1.1) with E =€/, v #0, |v| #1, s € {1,2,...,
n—1} is a'Y+Y'AY an unbiased estimator of the functional o(a + b]e;X,B|)2,
where j € {{1,2,...,n} — {s}}, if and only if

a € KerX', (3.12)
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ejAe; =0 forall i€ {{1,2,...,n}—{j}}, ejAe; =1 (3.13)
and
X'(A+A)X =0 (3.14)
hold.
Proof.

(i) Let j € {{1,2,...,n—1} — {s}}
Following the proof of Lemma 2.1 we obtain that a’Y +Y'AY is an unbiased
estimator of o%(a + b[e;‘XﬁI)2 if and only if

TTA=1, (3.15)
a € Ker X/, (3.16)
n—1
V{8 € R¥} > eiAeileiXiB| + (ejAe; —1)|e; X1
1=1
i¢{s,j}

+ (e, Ae, + |ylenAe,)le, X 8| =0 (3.17)

and

V{BER'}  BX'AXB+10?) eiAei(eiXB)’ = b0 (ejXB)"  (3.18)
=1
hold.

In the same way as in the proof of Lemma 3.1 we obtain that (3.17) is
equivalent to the next three conditions: :

eiAe; =0 i€ {{1,2,...,n} - {s,5,n}}, (3.19)
e;Ae; =0 (3.20)

and
e Ae, + |yle,Ae, = 0. (3.21)

These three conditions together with (3.15) are cquivalent to

eiAe; =0 i€ {{1,2,...,n} — {s,5,n}},
e,Ae, +ejAe; + e, Ae, =1,
eiAe; =1,e,Ae, + [7]e, Ae, =0,
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which is again equivalent to the next two conditions

eiAe; =0 i€ {{1,2,...,n} - {j}}, (3.22)
eiAe; =1. (3.23)

That is why relation (3.18) is now of the form
v{BeRF} B'X'AXB =0,

which is equivalent to (3.14). Case (i) is proved.
(11) Let j =n.
Instead of (3.17) we have

n—1
V{BERY} ) elAeileiXiB|+ (e Ae, — 7|+ |vlerAen) e, X18] =0,

=1

1#s
which is equivalent to
ejAe; =0 i€ {{1,2,...,n} —{s,n}}

and
e Ae, — 7| + [7]e,Ae, = 0.

The last equations together with (3.15) are equivalent to
e;Ae; =0 i€ {1,2,...,n—1}

and
e Ae, =1.
The lemma is proved.

Let us now investigate the problem of determining the 3,-LBLQUE of the
functional o?(a + b|e',X,5|)2 of B.

The random variable a'Y + Y'AY is the 3,-LBLQUE of its mean value if
and only if (3.1) and (3.2) are valid (Lemma 3.3) and is an unbiased estimator
of the functional o?(a + ble’SX,3|)2 if and only if (3.3), (3.4) and (3.5) hold
(Lemma 3.4).

According to Lemma 1.4, relations (3.1), (3.3) and (3.5) are equivalent to
a=—(A+ A")X8, and (3.5).
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Similarly we investigate the problem of determining the 3, -LBLQUE of the
functional o2 (a + b|e;~Xﬁ3|)2 for j € {{1,2,....,n} — {s}}.

The random variable a'Y + Y'AY is the 8,-LBLQUE of its mean value if
and only if (3.1) and (3.2) are valid (Lemma 3.3) and is an unbiased estimator
of the functional o%(a + b]e'ijJD2 for j € {{1,2,...,n} — {s}} if an only if
(3.12), (3.13) and (3.14) hold (Lemma 3.5).

According to Lemma 1.4, relations (3.1), (3.3) and (3.14) are equivalent to
a=—(A+A")XSB, and (3.14).

We have outlined the proof of the next lemma.

LEMMA 3.6. In model (1.1) with E=~el,, vy #0, |y|#1, s € {1,2,...,

n—1} is a'Y + Y'AY the Bo-LBLQUE of the functional o*(a + ble;XA|)”,
where j € {1,2,...,n} if and only if

a=—(A+A")Xg,, (3.25)
ejAe; =0 i€ {{1,2,...,n}—{j}}, ejAej =1, (3.26)
X'(A+AYX =0 (3.27)
and s
I e{RM*"}  (B(Bo) @ B(Bo)) vec(A +A') =Xy (3.28)
hold.

Let us denote I* the nonsingular matrix of order n% x n? for which the next
assertion is valid:
V{An .} I*vec A = vec A'.

For our further investigations we need the next three lemmas.

LEMMA 3.7.
pI*X) = p(X).

Proof. It is obvious that Ker X' = Ker X'I* and (I*)' = I*. It is equiva-
lent to the statement of the lemma.

LEMMA 3.8.
I*(Z7(B:)  T71(Bo)) = (Z71(Bs) @ B71(B))T*.
Proof. It is obvious that
I'(e;®e;) = (e; @ ei).
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That is why for 7,7,k and [ belonging to {1,2,...,n} thereis

(e} © €I (S (B2) © 57 (8a) (ex @ )
1
(a+ ble,XBal)2(a + b;e;xm)’(
= ! (e: ®e’)(e; ®ex)
(o + HelXB.)) (at belXBal)?
0i1jk
(a + bletXBo])*(a + blejX o)’
= 1 (e} ®e’)(e; ®ex)
(a+bleXBo|)* (a + be}XBu))* * e
1

= s(e; ®ej)*(er ® e)

(a+ bleiXBo)* (a + ble; X Ba|)
= (e} ®e)(Z7(B.) @ =7 (B,))I"(ex ® €r).

e;®e;)"(exrQer)

(We note that 6;; =0 for : #1 and é;; =1 for i =[.) The lemma is proved.

LEMMA 3.9. Let j € {1,2,...,n}. There exists an n X n matriz A with the

next four properties

ejAe; =0 forall i€ {{1,2,...,n}—{j}},

! —
e]'A.ej =1 ,

X'(A+A)X =0,
Fv e R4} (2(B.) ® =(B.)) vec(A + A') = Xy
if and only if 36 € {Rk2+"}

X' @X)I+T)(ET(B.)®E(B.)) X6 =0,

(3.29)

(3.30)
(3.31)

(3.32)

(3.33)

(e;@e)(T7'(Be) X' (Bo)) X6 =0  forall i€ {{1,2,...,n} - {j}},

(e ®e})(B7(B.) ® B7(B,)) X6 = 2.

Proof. From (3.32) we obtain

vec(A +A') = (Z7(B.) @ T71(B,)) X,

(3.34)
(3.35)
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but that implies
(I+T*)vec(A+A') = 2vec(A+A") = (I+1*)(Z7(B)RE 7 (Bo)) Xv. (3.37)
Relations (3.31) and (3.37) imply
0 =(X'®X')2vec(A+A')=(X'®X)I+TI*)(Z7'(B) ® T7'(Bo)) X,

i.e. (3.33).
From (3.29) and (3.36) we have for i € {{1,2,...,n} — {j}}

(e} ® €l vec(A + A') = (e} ® €}) (B (8.) ® B} (8)) Xy = 0,

which is (3.34).
From (3.30) and (3.36) we obtain

2=(ej@ej)vec(A+A") = (e ®e})(Z7(B.) @ Z7'(B,)) X,

which is (3.35).
Now let us denote

vecA = (S71(8.) ® 71 (8.)) X S (3.38)
From (3.35) and (3.38) we have
1= () ®€))(E7(8:) @ B7(8.)) X S = (€] ® €} vec A = € Ae;,
which is (3.30).
Relations (3.34) and (3.38) imply for i € {{1,2,...,n} — {j}}
0= (e @) (Z7(B) ®E(Bo) X S = (e} ® €l) vec A = el A,

which is (3.29).
From (3.33) and (3.38) we have
0 =(X'@X)I+I*) (=7 (B.) ® B7'(B.)) X6
=(X'@X")I+T")2vecA = (X' ® X')2vec(A + A'),
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which implies

O0=X"®X')vec(A+A"),

X'(A+A)X =0,
(relation (3.31)).
Finally, according to Lemma 3.7 there exists ¥ € R¥*+" that

I*X—g— = X9,

Using (3.38) and Lemma 3.8 we obtain that

Ay=5+verR] (S(8.) ® B(8.) veo(A + A)
= (2(8.) ® (8.)) I+ T*)(Z7'(8.) © E74(8.)) xS

= (2(8) ® B(B,)) (Z7(Bo) ® 7' (Be)) (I + 1*)xg = X,

which is the relation (3.32). The lemma is proved.
We finish our considerations in this section with the next theorem.

THEOREM 3.10. In model (1.1) with E = ve!,, v #0, |y| #1, s € {1,2,
...,n=1} is @'Y +Y'AY the B, -LBLQUE of the functional o*(a + ble;XA|)’,
where j € {1,2,...,n} if and only if 36 € {R*'+"}

(X' @X)I+I)(Z"B.) @ E7Y(B,)) X6 = O

(ei®e)(Z7(B)®E 7 (Bo))X6 =0  forall i€ {{1,2,...,n}—{j}},
(3.39)

(e} ® e})(Z71(Be) ® B71(B)) X6 = 2.
If (3.39) is consistent, then
vec A = %—(E_I(BO) ® E*I(ﬂo))xa

and

a=—(A+A"NXg,.
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Proof. The assertion of the theorem is a consequence of Lemma 3.6 and
Lemma 3.9 and is omitted.

We have shown that the existence of the B,-LBLQUE of the functional
a?(a+ ble}Xﬂ!)2 , where j € {1,2,....n} inmodel (1.1) with E = ve!, v #0,
vl # 1, s € {1,2,...,n—1} is equivalent to the consistency of the linear system
{3.39).

Remark 3.11. Equations (3.39) are consistent for j € {s,n} and are not
consistent for j € {{1,2,...,n — 1} — {s}}. That is why in model (1.1) with
E =~7el, vy #0, |y| # 1, s € {1.2,...,n — 1} the B,-LBLQUE of the
functional ¢?(a + b]e}Xﬁ[)2 for j € {s,n} exists and the B,-LBLQUE of the
functional o?(a + b]e’jXﬂI)2 for j € {{1,2,...,n — 1} — {s}} does not exist.
The proof of this fact will be contained in Sectior: 6.1.

4. Case E = ~e!,, |y| =1

LEMMA 4.1. If in model (1.1) E =~e!,, |y|=1, s€ {1,2,...,n— 1}, then
B € D (see (1.2)-(1.4)) if and only if

eBe;=0  for i¢ {s,n},
e'Be, + e/ Be, =0

and
X'BX=0
hold.
Proof.
lef X 3| 0 0
0 et X8| ... 0
v{B € R¥) TrB , _ _ =0
0 lel, X 3|
n—1
> V{BEeRY Y elBeilelXi] + ¢,Bele,X1 ] + ¢} Bea|ye, X1 8] = 0
i |
= V{u=(up,uy,...,uny) €R"'}
n—1
Z e.Be;|u;| + (e ,Be, + e, Be,)|us| =0
i=1
i#£s

<= e.Be, =0 for iE{{1,2,...,n}——{s,n}}
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and

e'Be, + ¢/, Be, =0.

Relations
let X3 0 .. 0
‘ 0 et X8l ... 0
V{B € RL} B . . .
0 . lel, X 3|
and
TrB =0

imply (with respect to conditions of the lemma) that
e;Be; =0 for i€ {{1,2,...,n}— {s,n}}

and
! !
e,Be, +e,Be, = 0.

The third condition for B to belong to D is now of the form
X'(B + o?b*(e e’ Be,e! + en.e,Be,e,))X =0.
Because of the equations

X'e, =7X'e,,
7t =1
and
e, Be, = —e'Be,,

we can write

X'(B + 0%b*(e e, Be,e, + e e, Beyel))X

= X'BX + o?0*X'e e’ Be,e' X — 02b?y*X'e e’ Be,e' X = X'BX .
S S 7 L] S

The lemma is proved.
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LEMMA 4.2. Ifin model (1.1) E=+~e!,, |y|=1, s € {1,2,...,n— 1}, then
a'Y + Y'AY s the B, -LBLQUE of its mean value if and only if
HzeR"}  Iye (R
that
a=—(A+ANXB: + (X)) xp.)X'2 (4.1)

and

(2(B) @ (Bo)) vec(A + A') = X1, (4.2)

where (X'),,(x(p.)) 8 on arbitrary but fized minimum ¥(Bs) -norm g-inverse
of the matriz X' and

X1 =(X®X,eiQey,...,e,_10€;,_1,e,110€541,...,€,_10er_1,eRe,+e,Re,).

Proof. The proof follows in the same way as the proof of Lemma 3.3 (with
X instead of X’) and is omitted.
LEMMA 4.3. If in model (1.1) E=~v€!,, |y|=1, s € {1,2,...,n =1}, then

a'Y + Y'AY is an unbiased estimator of the functional o?(a + b|e’3Xﬁ|)2 of
and only if

a € Ker X', (4.3)
ejAe; =0 forall i€ {{1,2,...,n} - {s,n}}, e Ae, +e,Ae, =1
(4.4)
and ’
X'(A+AYX =0 (4.5)
hold.

Proof. Let us again follow the proof of Lemma 2.1. We obtain that
a'Y + Y'AY is an unbiased estimator of o%(a + b|e’3X[3|)2 if and only if

TrTA=1 (4.6)

(see (2.5)),
a€ KerX', (4.7)

V{B e R}  e\Aele|\XB|+ - +e,_Ae, ile,_ X3
+ (e;Aes - 1)|e'8Xﬂ| + e'3+1Ae3+1|e'3+1Xﬂ| +-+ e'nAe,,|e'3Xﬂ| =0
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(see (2.9)) and

V{BER*}  B'X'AXB+10" ) ejAei(elXB) =P (e,XB)  (4.9)

=1

(see (2.7)) hold.

In the same way as in the proof of Lemma 4.1 we obtain that (4.8) is equi-
valent to the condition (4.4).

Because of the equality
e, XBB'X'e, = y’e, XBB'X'e,,
condition (4.9) is now of the form
v{BeRF} B'X'AXB=0,

which is equivalent to (4.5). The lemma is proved.
Similarly we can prove the next lemma.

LEMMA 4.4. If in model (1.1) E=~ve€!,, |y|=1, s € {1,2,...,n— 1}, then
a'Y + Y'AY is an unbiased estimator of the functional o?(a + b|e'nXﬁl|)2 if
and only if

a € Ker X/, (4.10)
e;Ae; =0 forall i€ {{1,2,...,n} - {s,n}}, e Ae, + e, Ae, =1
(4.11)
and
X'(A+A)NX =0 (4.12)
hold.

LEMMA 4.5. If in model (1.1) E=~e),, |y|=1, s €{1,2,...,n—1}, then
the random variable a'Y + Y'AY is an unbiased estimator of the functional

02(a+b|e’jXﬂ|)2, where j € {{1,2,...,n =1} — {s}}, if and only if

a€ Ker X', (4.13)
e;Ae; =0 for all i€ {{1,2,...,n} — {j,s,n}},
eAej =1, e,Ae, + e, Ae, =0 (4.14)
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and
X'(A+ANVX =0 (4050
hold.

Proof. Asin the proof i previous lemmas. The eructal point of the proot
is the condition

V{B R elAee\XB|+ - +e_ Ae, e X3
+iejAe, — 1)e' X3 +e\ Ae,le XB| + - + e Ae,

e X3 =0.

which is equivalent here to the condition (4.14). Now it is casy to finish rthe
proof.

Let us now again investigate the problem of determining the 3,-LBLQUE
of the functional o*(a + b|e;X,B|)J of B for j € {s,n}.

The random variable a'Y + Y'AY is the 8, -LBLQUE of its mcan value if
and ounly if (4.1) and (4.2) are valid (Lemina 4.2) and i1s an unbiased estimator
of the functional o? (a + l)|e_'7XH|)z for j € {s,n} if and only if (4.3}, (4.4) and
(4.5) (i.e. (4.10). (4.11) and (4.12)) hold (Lemma 4.3 and Lemma 4.4).

According to Lemma 1.4, relations (4.1), (4.3) and (4.5) are equivalent to
a=—(A+ A"YXG3, and (4.5).

We have outlined the proof of the next lemina.

LEMMA 4.6. If in model (1.1) =~e,, |7| =1, s € {1.2.....n — 1}.
then the random variable a'Y + Y'AY s the Bo -LBLQUE of the functionel

o (a+ b|e;Xﬂ|)Q of B, where j € {s,n} if and only if

a=—(A+A")XS,.
e;Ae; =0 forall 1€ {{1,2,....n}—{s,n}}, e Ae, +e Ae, = 1.
X'(A+ANX =0
and
Iy € (RMF"71Y (B(B,) © B(B.)) vee(A + A') = Xy~
hold.
Similarly we investigate the problem of determination of the 3,-LBLQUE
of the functional o2 (a + ble}Xg])" of B for j € {{1,2,...,n} — {s,n}}.
The random variable a'Y + Y'AY is the 3,-LBLQUE of its mean value if

and only if (4.1) and (4.2) are valid (Lemma 4.2) and is an unbiased estimator
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of the functional u + ble’ \B') for j € {{12 TR {s,n}} if an ouly if
(4.13), (4.14) and (4.15) lmld (Lemma 4.5).

According to Lemma 1.4, relations (4.1), (4.13) and (4.15) are equivalent to
a=—(A+ A"NXG, and (4.15).

We have outlined the proof of the next I mma.

LEMMA 4.7. If in model (1.1) E = ~e!,, Iy| =1, s € {1,2,...,n — 1},
then the random wvariable a'Y + Y'AY s the B, -LBLQUE of the functional

o (a+ b|e’J~Xﬂ|)2 of B, where j € {{1,2,...,n} — {s,n}} if and only if

~ (A +A")XB.,
eAe; =0 forall i¢ {{1,2,...,71} - {s,n}} , e Ae, +e Ae, =1,
X'(A+A)X =0
and
Iy e (RFF"Y (B(Bo) @ B(Bo)) vee(A + A') = Xy
hold.

To obtain our final result in this section we still need the next two lemmas.
Their proofs are like the proof of Lemmma 3.9 and are omitted.

LEMMA 4.8. Let j € {s,n}. There exists an n X n matriz A with the next
four properties
e;Ae;, =0 for all i€ {{1,2,...,n} — {s,n}},
e, Ae, + el Ae, =1,
X'(A+A)X =0,
3y € {RF4™ 1) (B(B,) © £(B,)) vec(A + A') = X,y

if and only if 36 € {Rk2+n—1}

(X' @ XNI+T)(ET(B) ®E(B)) X186 =0
(€] e (T7HB) W ET(Bo))X16 =0 forall i€ {{1,2,...,n} - {s, n}t,
(e, e, +e, e, )X TBe) @ B! (ﬁo)).l’lé =2.

o
~
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LEMMA 4.9. Let j € {{1,2,...,n} —{s,n}} There ezists an nxn matriz A
with the next five properties

e;jAe; =0  forall i€ {{1,2,...,n}—{j,s,n}},
ejAe; =1,
e Ae, +e,Ae, =0,
X'(A+A)X =0,
Fy e (R¥+"71} (B(B,) ® B(B.)) vee(A + A') = X1y
if and only if 36 € {R¥'+n=1}

(X' @XNI+TI)(EB)RE(B.))X16 =0,
(ei®e)(T(B.) T (Bo)) 16 =0 for all i€{{1,2,...,n} —{j,s,n}},
(e ®e)(Z7(Be) ® 271 (Bo)) Xy 6 = 2
(ef®e,+e,®e,) (7 (B) ®E7(B,))X16 =0.

We finish our considerations in this section with the next theorem.

THEOREM 4.10. If in model (1.1) E=~e!, |y|=1, s€ {1,2,...,n -1},
then the random variable a'Y + Y'AY is the B, -LBLQUE of the functional
o*(a+ble'XPB|)* of B if and only if
(1) case j € {s,n}
36 € {R¥'+71)
X'@X)I+T)(E(B.) @ =7(B,))X16 = O
(e} ® e:)(E_l(ﬂo) ® E_I(ﬂo))/\ﬁ& =0 for all i€ {{1,2,... ,n} — {s,n}}
(e, e, +e, ®e,) (7 (B) T (Bo)) X168 = 2.
(4.16)
(i) case j € {{1,2,...,n} — {s,n}}
36 € {R¥*+n-1}

(X' & XYI+T)(E(Be) @ E(B)) 16 = O
(e;®e))(Z7(Bo) @B (Bo)) X186 =0 for all i€ {{1,2,...,n} — {j,s,n}}
(e ®ej)(E7(Be) @ 7 (o)) X16 =2
(eh®e, +e,0e,) (7 (B.) ®E7(B.)) X168 =0.

(4.17)
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If (4.16) or (4.17) are consistent, then

vec A = +(S71(8.) ® B7(8.)) 46

and

a=—(A+A)XS,.

Proof. The assertions of the theorem are consequences of Lemma 4.6 and
Lemma 4.8 (in case (1)) and of Lemma 4.7 and Lemma 4.9 (in case (ii)). They
are omitted.

We have shown that the existence of the B,-LBLQUE of the functional
02(a+b|e9Xﬁ|)2, where j € {s,n} in model (1.1) with E = e/, |y} = 1,

s € {1,2,...,n—1} is equivalent to the consistency of the linear system (4.16).
The existence of the 3, -LBLQUE of the functional o2 (a + ble; X,BI)2 , where
i € {{1,2,...,n} = {s,n}} in model (1.1) with E = ~e,, |y| = 1,

s €{1,2,...,n—1} is equivalent to the consistency of the linear system (4.17).

Remark 4.11. Equations (4.16) are consistent and (4.17) are not consis-
tent. That is why in model (1.1) with E = ve),, |y| =1, s € {1,2,...,n -1}
the B.-LBLQUE of the functional o*(a + b|e;~Xﬁ|)2 for j € {s,n} exists and
for j € {{1,2,...,n} — {s,n}} does not exist. The proof of this fact will be in
Section 6.2.

t
5. Case E = }_ ~e|,
=1

t
LEMMA 5.1. Ifin model (1.1) E =-)" vie},, v #0, s; € {1,2,...,n—1} for
=1
1,2,...,t, t 22, then B € D (see (1.2)-(1.4)) if and only if e.Be; =0
1,2,...,n and X'BX = O are valid.

I

Proof. First let us analyse the condition

lel X 3| 0 0
0 leyXa| ... 0
V{BeRF} TrB ' _ _ =0. (5.1)
0 er. X3

If we denote A the class
A={s;i: i=12,...,t},
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then condition (5.1) (similarly see in the proof of Lemma 3.1) is equivalent to

V{ll = (ul7u27'--1un—1)' € Rn—l}

n—1 t t
Z eBe;|u;| + Ze',i Be,; |u,;| + e;Bean vius;| =0,
=1 =1 j=1
igA
which is again equivalent to conditions
eﬁBe,-, ) ¢ A (5.2)

and

V{(tsy, Usyy--- us) ER': s55€ A i=1,2,...,¢}

t

! !
E e,; Be,; |u,;| + e, Be,
J=1

t
ZW“’:" =0. (5.3)
j=1

If we choose uy, = ugy =+ = us, = 0, we get from (5.3)

V{ual € R} elalBe-!l |u81| + e’nBeﬂhll”u-’lI = 0

ie.
e, Be, = —e; Ben|n|.
In the same way we obtain
e,,Be,, = —e;Be,|y;|  j=1,2,...,t. (5.4)
Because of t 2 2, we can in (5.3) take usy, = us, = -+ = us, = 0 and we obtain

V{us; ER: i=1,2}

/ ’ / (5'5)
€, Be31 |u81| + esgBeaz Iuszl + enBe"hlusl + 72u82| =0.
According to (5.4) the last condition is of the form
V{us; ER: i =1,2}
' ' ' (5.6)
- enBe"|71 Hu81| - enBenh/?HuSzl + enBen|71u31 + 72“32' =0.
Condition (5.6) yields
e, Be, =0, (5.7)
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because for u,, #0 and u,, = —z—zu,l #0 is
1

= Irallus, | = =2|72|lus,| # 0.

— |22
nl|- 2.,
If (5.7) is valid, we easily obtain from (5.4) that

e'sjBe,j=0, 1=12,...,¢t. (5.8)

Conditions (5.2), (5.7) and (5.8) are necessary for (5.1) to be true. It is easily to
see that they are also sufficient.

We have proved that (5.1) is equivalent to
eBe;=0,i=1,2,...,n. (5.9)
According to (1.2), (1.3) and (1.4) we can easily finish the proof.

t
LEMMA 5.2. If in model (1.1) E = 3 yiel,, vi #0, si € {1,2,...,n -1}
i=1

for i+ = 1,2,...,t, t 2 2, then the random variable a'Y + Y'AY is the
Bo -LBLQUE of its mean value if and only if 3{z € R*} Iy € {Rk2+"} that

a=—(A+ANXB: + (X)) (xs.) X'z

and

(B(8) ® £(B.)) vec(A + A') = X7,

where (X'),,(gp,)) 8 on erbitrary but fized minimum X(B,)-norm g-inverse
of the matriz X'.

Proof. The proof is the same as the proof of Lemma 3.3 and is omitted.

t
LEMMA 5.3. If in model (1.1) E= ) ve|, , v #0, s; € {1,2,...,n -1}
=1

for i=1,2,...,t, t 22, then the random variable a'Y +Y'AY 1is an unbiased
estimator of the functional o?(a + b|e;-Xﬁ|)2, where j € {1,2,...,n}, if and
only if

a€ KerX', (5.10)
eiAe; =0 forall i€ {{L,2,...,n}-{j}}, ejAej =1 (5.11)
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and
X'(A+A")YX =0 (5.12)
hold.

Proof. The proof follows in the same way as the proof of Lemma 2.1. The
crucial point is the relation

v{B € R*} ejAei|e| X8|+ +ej_Ae;_ilej_ XP|
+ (ejAe; — 1)|e}XB| + e}, Aejale , XB|+ - + e, Ae,le;, XB| =0,

which according to the proof of Lemma 5.1 is under our conditions equivalent
to the relation (5.11) (because (5.1) is equivalent to (5.9)).

Let us now investigate the problem of the determination of the 3,-LBLQUE
of o?(a+ b|e’J-Xﬂl)2. In the same way as in Section 3 or Section 4 we obtain
the next theorem:

t
THEOREM 5.4. Ifin model (1.1) E= Y yie|, , v #0, s; € {1,2,...,n—1}
=1

for i = 1,2,...,t, t = 2, then the random wariable a'Y + Y'AY s the
Bo-LBLQUE of the functional 02(a+b|e;-X,B|)2, where j € {1,2,...,n}, if
and only if

36 € {RF*+n}

(X' @ X)I+I*) (27 (Bs) ® £7'(8,)) X6 = O
(! ® e:)(E_l(ﬂo) ® E_I(ﬂo))/\’é =0 for all i€ {{1,2, oany={j}},

(e ®e) (B (Bo) ® LT (Bo)) X6 = 2.
(5.13)
If (5.13) 18 consistent, then

vec A = %(2“(@,) ® 271(8,)) X6
and
a=—(A+A)Xg,.
We have shown that the existence of the B,-LBLQUE of the functional
t
o?(a+ b|e9Xﬁ|)2 , where j € {1,2,...,n} in model (1.1) with E = 3 e/, .
=1

vi #0, s; € {1,2,...,n—1} for ¢ =1,2,...,t, t 2 2, is equivalent to the
consistency of the linear system (5.13).
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Remark 5.5. Equations (5.13) are consistent for j € {s1,s2,...,5¢} and
are not consistent for j ¢ {si,s2,...,8¢}. That is why in model (1.1) with

E= 3% vye,,v#0, si € {1,2,...,n—1} for i = 1,2,...,t, t 2 2, the
i=1

1

8o -LBLQUE of the functional o2 (a + ble;Xﬂ|)2 for j € {s1,s2,...,5:} exists
and for j ¢ {s1,s2,...,5;} does not exist. The proof of this fact will be in
Section 6.3.

6. Existence of the 3,-LBLQUE of o%(a + ble;XA|)"

It is shown in Section 2 that in the case R(X) =n < k the 3,-LBLQUE
of o%(a+ b|e9Xﬁ|)2 does not exist for any j € {1,2,...,n} (Corollary 2.2). In

other investigated cases is the existence of the 8, -LBLQUE of o2 (a + b|e’jXﬁ|)2

equivalent to the consistency of linear systems (3.39), (4.16), (4.17) and (5.13)
(see Theorem 3.10, Theorem 4.10 and Theorem 5.4). Let us now investigate the
consistency of the above mentioned systems in each case separately. First let us
write some lemmas needed in the sequel.

LEMMA 6.1. Let us denote

(a+ ble, XB,])™" 0 0
2 -1
5-4(8.) = (,) (a+ b]e.ZXﬂol) o
0 n (a+ ble! XB|)""

For 1 =1,2,...,n there hold

4(e; ® €)(Z7H(B.) ® 71 (Bo))

= (e; ®€)(E73(B.) @ E73(Bo)) (L +IN)I+1*)(Z73(B,) @ z—%w(o)) |
6.1

2L+ I)(Z71(B.) ® 71(B,))
= (Z7HBe) @ B73(B.)) (1 + NI+ T*) (73 (8.) ® 7% (B.)) . (6.2)

Proof. The proof is based on similar considerations as in Lemma 3.8 with
(E—%(ﬂo) ® E’%(ﬁo)) instead of (E"l (B)XE! (,30)) . It is easy and 1s omit-
ted.
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LEMMA 6.1.2.1. The vector do € R™ with components
42 = 4(a + ble/XB.])’,
dy* = = (a + blel, XBo) (a + HelXBo])
dg? =0,  for (p,q)#(s,s) and (p,q)# (n,s)

8 a solution to (6.14), (6.15) and (6.16) for j=s.

Proof. Using (6.5) it is easy to see that d, satisfies (6.15) and (6.16).

U p=1,2,....,s—1,s+1,....,.n—-1,¢=1,2,...,s—1,s4+1,... n—1
and p # q, then according to (6.6) '

(e;, ® e;)((In~1,n—lv7e3) X (In—l,n—l,'yes))BdO
(dg? +diP) =0,

= (e, ® e/ )Bd, = (a + ble,XB.]) (a + ble, XB.)

)ifp=1,2,...,s—1,s+1,...,n—1, ¢ =p, then

(e;, ® e;)((In—-l,n—la 7e,) ® (In—l,n—la"/es))Bdo

2
(a+ ble, X 3. |)

I

= (e, ® e,)Bd, =

(i)if p=1,2,...,s—1,s+1,...,n—1, ¢ =s, then
(e; ® e;)((ln—l,n—la')’es) ® (In—l,rt—la7es))8do = (e; ® (e, + 7en)l)8do

1
- dP® 4 d°P
(a+ ey Xpu) (ot o) )

Y
+ , dP™ 4 dP) =0,
(at e, XA.]) (a + HeLXB.]) )

(ivyif p=s,¢=1,2,...,s—1,5+1,...,n—1, then

(e; (g) e;)((In_l‘n_],’)’es) ® (In_]yn_—],‘/eg))Bdo = ((ea + 7971)' ® e;)Bdo
1

- d%7 + 49
(a+ble',Xﬁol)(a+b|e;Xﬂ°|)( o +d57)

Y
+ dg? +di") =0,
(a+b|e;,xm|)(a+ble;Xﬂol)( )=0

256



ESTIMATION IN A SPECIAL STRUCTURE OF THE LINEAR MODEL
(v)if p=s, ¢g=s, then

(e;®e;)((ln—l,n—l37es) ® (In—l,n—l’7es))8do = ((es +7en),®(e3+7en),)3d0

2 2y
= dz" + d;n + d:s
(a+ ble,XB.])? (a+ ble,XB.]) (a + ble!, XB,|) ( )
2
2y " =8_-8=0.

+
(a +bletXB.))" °
We see that d, is also a solution to (6.14). The lemma is proved.

LEMMA 6.1.2.2. The vectord, € R® with components

dy" = 4(a+ble, XBal),
dy* = ~4y(a + ble, XBa|) (a + ble, XA ,
&=0,  for (p,q)#(n,n) and (p,q) # (n,s)

18 a solution to (6.14), (6.15) and (6.16) for j =n.
Proof. Proof is the same as the proof of Lemma 6.1.2.1 and is omitted.

It is evident now that equations (6.14), (6.15) and (6.16) are for j € {s,n} sol-
uble and (6.13) is satisfied. That is why equations (3.39) are for
J € {s,n} consistent and in the case E = vel; v # 0, |y| # 1, s € {1,2,
...,n — 1} there exists the B,-LBLQUE of a"’(a-{—ble’,XﬂD2 and of
o?(a+ b|e'nXﬁ|)2 .

6.2. Case E =~ve!,, |y|=1.

6.2.1. Estimability of o%(a + b|e3~'Xﬂ|)2 for j € {{1,2,...,n— 1} — {s}}.
According to Theorem 4.10 in model (1.1) with E = ~e!, v # 0,

Wl #1, s € {1,2,...,n — 1} the B,-LBLQUE of o2(a+ ble;XA|)*, where

j€{{1,2,...,n—1} —{s}} exists if and only if equations (4.17) are consistent.
It is easy to see that these equations are equivalent to

XIBB'X,6 =1, (6.17)

where Mg24n_1, = (O;zyl,f]{)', f; = (fl(j), 2(1),..., ((,‘:)_1))' is a vector with
components fJ(-j) =1 and f,ﬁj) =0for ke {{1,2,...,n-1}—{j}}if1Sj<s

or f =1and f =0 ke {{1,2,....n-1} - {j-1}} if s<j<n—1.
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Similarly as in Section 6.1 we have that (6.17) is consistent if and only if
3{d, eR™'}  X!Bd, =1. (6.18)

We can write equations (6.18) as

(X' ® X")Bd, = Oz, (6.19)
¢loel |
¢ @ e,

€1 ée,—l
: s Bd, =f;. (6.20)

! ]
€51 Oegpy

! '
€n-1 ® €n—1
! ! ! !
€, ® €, + €, ® €,

In the same way as in Section 6.1 we can write equations (6.19) as
(Xll ® X;)((In—],n—ly')’es) ® (In—l,n—177es))8do =0 y

which is again satisfied if and only if
((In—l,n—la"/es) ® (In—-l,n—]»'yes))Bdo =0. (6.21)
But for p € {{1,2,...,n — 1} — {s}} according to (6.5)

(e; ® e;)((In—l,n—la'Yes) ® (In—],n—l ) ’783))Bd0
2
= (e, ®e,)Bd, = ————————dPP = 0
(a+ ble!, XA.])

N

which is a contradiction to (6.20). That is why (6.18) and backward (6.17) are
not consistent. The B,-LBLQUE of ¢*(a+ b|e'jXﬁ|)'2 in the case E = ve/,.
|7l =1 does not exist for every j € {{1,2,...,71 -1} = {s}}.

6.2.2. Estimability of o2(a + ble/,X3|)" for j € {s.n}.
According to Theorem 4.10 in model (1.1) with E = ye!,, 4 #0. |5| # 1.
s€{1,2,...,n—1} the B,-LBLQUE of o (a + ble’ XB|)" for j € {s.n} oxists
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if and only if equations (4.16) are consistent. As formerly these equations are
consistent if and only if

3{d, € R™"}
(Xll ® X’] )((Iﬂ—l,n—lv7es) ® (In——l,n—h'Yes))Bda = O y (622)
(ej®@e)Bd, =0  for i€ {{1,2,...,n}—{s,n}}, (6.23)

(el ®e, +e, ®e,)Bd, =8. (6.24)

The matrix (X} ® X) is of full rank in columns and that is why (6.22) is
satisfied if and only if

(Taz1,n=1,7€s) ® (In_1,n-1,7€s))Bd, = O. (6.25)
LEMMA 6.2.2.1. The vector d, € R™ with components

d3* = 4(a + ble',XBa])%,
o = —%(a +ble!XB.)7,
d?1 =0, for (p,q) # (s,s) and (p,q) # (s,n)

is a solution to (6.25), (6.23) and (6.24).

Proof. The proof is the same as the proof of Lemma 6.1.2.1 and is omitted.
We only note that case (v) of the proof holds because of the equalities

lenXBs| = [EXB,| = [ye, X1 8] = [v]|e,X180| = [€,XBs].

Equations (6.22), (6.23), (6.24) and backward (4.16) are consistent and so
exists the B,-LBLQUE of ar"(a+b|e'jXﬁ|)2 for j € {s,n} in (1.1) in the

considered case E = ve!,, |y|=1.

t
6.3. Case E = ) e, .

1=1

¢
According to Theorem 5.4 in the case E = ) vie,, v # 0, s; € {1,2,

1=1
coon—1} for i = 1,2,...,t, t 2 2, the B,-LBLQUE of o2(a+ ble;XB|)”,
where j € {1,2,...,n}, exists if and only if equations (5.13) are consistent. As
formerly these equations are consistent if and only if
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3{d, e R™"}

(Xll ® XI])((L»—],n—l,Xt:’Yies;) ® (In—l,n~1,i’yies‘.))3do =0,
=1 1=1

! 1

e ®e;

! !

e ®e,
Bdo = 86_7' .

! !
€, ®en

As X ® X} is of full rank in columns, we have that (6.26) is satisfied if and

only if

((In—l,n—l,i‘ries,—) ® (In—],nmlai'%es;))[;do =0.
i=1 i=1

6.3.1. Estimability of o%(a + ble;XA|)" for j ¢ {s1,52,---,5¢} -
If j ¢ {s1,52,...,5¢}, then according to (6.5) and (6.28) there is

(e'j ® elj)((ln—l,n—la i: 7ie3.‘) ® (In—lv"—]’ i 7iesi))8do
i=1 =1

(Cl + b‘e;xﬂol)
which is a contradiction to (6.27). That is why (5.13) is for j ¢ {s1,s2,
not consistent and the 3, -LBLQUE of o2 (a + b|e'jX,[3|)2 for j ¢ {s1, s2,

does not exist.

= (ej ®e})Bd, =

6.3.2. Estimability of o%(a + ble.X8|)" for j € {s1,s2,-- 5}

2 .
LEMMA 6.3.2.1. For j € {s1,82,...,5:} the vector do € R" with
nents

d7 = 4(a + blejXB.|)",

(6.28)

co St}
Co St}

compo-

v = QM(a + b|e;X,3°|) (a+ ble}),XBs|) for we {{S],SZ,H-»SI} - {J}}.
3]
i = —;2——(a + ble! X Bol) (a + ble), XB|) = d})7 .
4]
d =21 (1 ble, XBo|) (a + ble[XBo])  for s € {{s1.s2-ors} = LY
Ul
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and the other components are zero, 13 a solution to (6.27) and (6.28). (Here Yw]
¢

means the term belonging to index w € {s1,2,...,5¢} in the sum 3 viel )
i=1 '

Proof. Using (6.5) it is easy to see that d, satisfies (6.27).
(HIfpe {{1,27---3" -1} - {31,323-'-,&}}, q€ {51752,-..,.9;}, then

(¢, @) ((Tnctnors 37000 © (Tncrmors 3 ) )5,
i=1 i=1

= (e, @ (eq + Vg &n)')Bd,
1
= dp? + dg?
(a+ ble,XB,]) (a + ble) XBo]) ( :
+ al
(a + ble, XBo]) (a + ble, XBo|)

(d5" +dy?) =0,
(2)if pe {{1,2,...,71-—1} - {81,82,~--,S:}}» q ¢ {s1,52,...,5:}, then

(e;@oe;)((ln_l,n_],fj vies) @ (In_l,n_l,iwes;))sdo = (¢} @e})Bd, = 0
1=1 1=1

in both cases p=g¢q and p # ¢,
3)if pe {{31,52,...,3z}—{j}}, q€ {{31»32a”'73t}_ {j}}, P # ¢, then

(e @) (Tnorer Y vvee) @ (Tucsors Y e, ) ) B
=1 =1

= ((ep + 7[p]en)’ ® (eq + 7'[q]en)’)8d0
1 .
= dP? 4 d7P)
(a + ble,XBo) (a + ble} XBs|) (

7[7’] n
+ d™ 4 qam
(a ¥ ble,XB.]) (a + Hle X)) > T 4"
n a)
(a+ b[e;Xﬂol) (a+ ble!,X3])
2
7[1’]’7[‘1] S d;ln =0
(a + bler, XB.|)

(5" + dg7)
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(4)if p € {{s1,82,...,8¢} —{7}}, ¢ & {s1,52,...,8¢},1e also ¢ #j and
q # p is valid, then

(e;, ® e;)((ln—l,n—la i 7ies;) %Y (In—l,n—h i 7ies,'))3do
i=1 i=1

= ((ep +p1en) ® €g)Bd,
1
- db? + dip
(a+ ble,XBo]) (a + ble, XBs) ( :

Ypl n n
+ dy? +di") =0,
(T 0o XA (a + b, KB ]) !

(5)if pe {{sl,sz,...,st}—{j}}, qg=p, then

(e;, ® e;)((ln—l,n—l,i‘ﬁes;) ® (Iﬂ-l-“‘l’ Zt:%e“))Bdo
i=1 =1

=((ep +vp1en) ® (ep + Ypp1en)’) Bd,
2 29p)
= & + 4 (&7 +d27)
(a + ble,XBo|)" (a+ blerXBol) (a + ble, XBo])
2'7[21’]

(a+blepXBal)"

nn __

(6) if pE {{51,32,...,81}-{j}}, q:]a then

(e, ® e;)((In-—l,n—la Zt: 'ne,.-) ® (I"—l’"—l’ Zt: 7ie"))8d”
i=1 i=1

= ((e,, + 'y[p]e,,)' ® (e; + 'yme,,)')Bdo

1 . .
— P 4 P
(a + Ve XP.]) (a + b, XBo]) )
’Y[P] nj n
+ (dg? +d2")
(a+ ble}, XBo|)(a + ble; X, |)
9 2
7[]] n n H’y[l’] nn
+ (45" +dg%) + o
(a+ble), XBo|) (a + blel,X,|) (a+ ble!, XB.])°
Vipl 4
= _j__ ~ M- =0,
1 )
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(7) lfp:]? q€ {{513523"'731}_{j}},then

(e;, ® e;)((ln-—l,n—lai'yiesi) ® (I"—’»"“l’ i 7ie"))8d°
i=1 =1

= ((e; +1p51n)" @ (g + Yig€n)") Bd,
1 ) .
= (d79 + d¥
(a+ 0e,XAu) (a + U, XBo]) :

) n n
+ dy? +dj
(a+ ble},XA.|)(a+ ble, XB.]) ( :
+ V4l
(a+ ble;XBs|) (a+ ble, XB,|)

. . 271 5
(d(])n + d:]) + 7[]]7(‘11 5 d:n
(a + blep, XB.])"

Vgl
=4 — Vg — = 0’
P

8)if p=y, q ¢ {s1,52,...,5t}, then

(e & ) ((Tntess 3 3000) @ (Tncrnoss 3 iea) Bl
=1 =1

= (e +p78n) @ €;) Bd,
. | ,

_ d’9 d¥y’
(a+ ble/XB.]) (a+ b|e;Xg°|)( 19 4 q¥)
)

(a + ble}, X o) (a + ble; XB.])

+

(d5® +d3") =0,

(9)if p=j, g=7, then

(e;, ® e;)((ln—l,n—lv i%‘esa) ® (In‘l’"—l’ j_:%e""))Bdo
i=1 =1

= ((e]- + 'y[j]e,,)' ® (ej + 7[]-]e,,)')l3d,,
2 iy 2715)
(a+bleXBa))" * " (at bletXBel) (a + blejXBo)
2
27 _
(a + ble!, XB,)"

(d37 + ")

Y9— = 0.
)

Il
o0
I
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We see that for p=1,2,...,n—-1, ¢=1,2,...,n -1,

(e, ® e;)((ln—l,n—l’i"/ies;) ® (Ilz~1,n—1ai7ies.‘>>8do =0,
i=1

1=1

i.e. the vector d, is also a solution to (6.28). The lemma is proved.

For j € {s1,s82,...,5¢} equations (6.26) and (6.27) are consistent, that

means also (5.13) is soluble and in this case there exists the B3,-LBLQUE of
o?(a+ b|e§-Xﬂ|)2 .

(1]
(2]

(3]
(4]

REFERENCES

FAJT, V.: Electrical Measurements. (Czech), SNTL/ALFA, Praha, 1978.

HUMAK, K. M. S.: Statistische Methoden der Modellbildung I1I, Akademie Verlag, Berlin,
1984.

KUE"ACEK, L.: Foundations of Estimation Theory, Elsevier, Amsterdam, 1988.

RAO, C. R.: Linear Statistical Inference and Its Applications, J.Wiley, New York, 1965.

[5] RAC, C. R.,—MITRA, S. K.: Generalized Inverse of Matrices and Its Applications,
J.Wiley, New York, 1971.

[6] RINNER, K.—BENZF.: Jordan/Eggert/Kneissl Handbuch der Vermessungskunde, Band
VI, Stuttgart, 1966.

[71 WIMMER, G.: Linear model with variances depending on the mean value, Math. Slovaca
42 (1992), 223-238.

Received August 13, 1990 Mathematical Institute

Slovak Academy of Sciences
Stefdnikova 49

814 73 Bratislava

Slovakia

264



		webmaster@dml.cz
	2012-08-01T08:20:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




