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SEMIGROUPS SONTAINING SOVERED 
TWO-SIDED IDEALS 

IMRICH FABRICI 

In [5], semigroups containing one-sided covered ideals have been investigated. It 
turns out that a semigroup need not have one-sided covered ideals at all. As for 
twosided ideals, the situation is different. The purpose of the paper is to investigate 
the structure of semigroups containing two-sided covered ideals. 

Definition 1. A proper two-sided ideal M of a semigroup S is covered (briefly 
C-ideal) if McS(S-M)S. 

Ia = {xe S/(a)T = auSauaSuSaS = xuSxuxSuSxS = (x)T j " 

is the $ -class of S containing a. 
The 3>-class Ia is maximal, if (a)T is not a proper subset of any principal 

two-sided ideal of S. 
It is known ([1]) that the ^-class I* is maximal iff its complement is a maximal 

ideal of S. 
When dealing with maximal ideals Add, we shall denote the corresponding 

maximal ^-classes by Ma. 

Theorem 1. If S contains two different proper ideals Mt, M2 such that 
MiuM2 = S, then none of them is a C-ideal. 

Proof. If MiuM2 = S, then S-M 2c:Mi, S -Mic :M 2 . If one of them were 
a C-ideal, e.g. Ml9 then MicS(S-Mi)Sc:SM 2 Sc:M 2 . Since MtuM2 = S, it 
implies M2 = S. Hence, we get a contradiction with our assumption that Mi, M2 are 
proper two-sided ideals. 

Corollary. If S contains more than one maximal two-sided ideal, then none of 
them is a C-ideal of S. 

Theorem 2. IfMt andM2 are two C-ideals ofS9 then MiuM2 is a C-ideal ofS. 
Proof. We show that if MlcS(S-Ml)S9 M2cS(S-M2)S> then MiuM 2 c 

S[S-(M!UM2)]S. 
Let xeMl9 then Mxc:S(S-Mi)S implies that there is a e S - M i such that 

xeSaS. There are two possibilities: 
(1) a e S - (MiuM2); then xeS[S- (MiUM2)] S. 
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(2) ae(S- Mi)nM2, then a e M2 c S(S - M2) S. So there is b e S - M2 such 
that a e SbS. The element b does not belong to Mi, since otherwise we would have 
a e SbS a SMtS cMi and it is contradicting with the choice of a. Therefore, 
beS-M2, beS-Mu so be(S-Mi)n(S-M2) = S-(MiuM2) . We have 
xeSaSc:S(SbS)Sc:SbSc:S[S-(MluM2)]S. Hence MicS[S-(MiuM 2 ) ]S . 
And in the same way we can prove that M 2 cS[S-(MiuM 2 ) ]S . 

Theorem 3. If Mi, M2 are two C-ideals of S, then MtnM2 is a C-ideal of S. 
Proof. It is well known ([7]) that MinM2=£0. It is enough to show that 

MinM2crS[S-(MinM2)]S. 

From the ralation M i c S ( S - M i ) S we have 

MinM 2 c=MicS(S-Mi)ScS[S-(MinM 2 ) ]S . 

If we consider both Theorem 2 and Theorem 3 we get: 

Corollary. The set of all C-ideals of S is a sublattice of the lattice of all ideals of 
S. 

We have seen that if S contains more than one maximal ideal, then none of them 
can be a C-ideal of S. 

Now we shall consider the case that S contains only one maximal two-sided ideal. 

Definition 2. A two-sided ideal M of a semigroup S is said to be the greatest 
ideal of S, if any proper two-sided ideal of S is contained in M. 

If such an ideal in S exists, then we shall denote it by M*. 

Theorem 4. Let a semigroup S contain only one maximal two-sided ideal M. If 
M is a C-ideal9 then M = M*. 

Proof. It is sufficient to show that any proper ideal of S is contained in M. If T is 
any proper two-sided ideal of S, then with regard to Theorem 1 we get that TczM. 
It means that M = M*. 

For one-sided ideals the converse statement holds too. The next example 
illustrates that for two-sided ideals it need not hold. 

Example 1. Let S = {a, b, c, d) be the semigroup with the multiplication 
table: 

a b c d 

a a b a b 
b b a b a 
c a b a b 
d b a b c 
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M={a, b, c} is the only maximal two-sided ideal of S. Any proper ideal of S is 
contained in M, so M = M*. S-M* = {d}. SdS = {a, b}, so M*kS(S-M*)S, 
hence M* is not a C-ideal of S. 

Theorem 5. The ideal M* of a semigroup S is a C-ideal iff S2 = S3. 

Proof, (a) Let M* be a C-ideal, so M* c S(S - M * ) S . Since M* is at the same 
time a maximal ideal, then S — M* = Ifl is the unique maximal 3-class in S. Then 
either S2^S, or S2 = S. If S2 = S, then S3 = S2. 

If S 2 pS, then either S3 = S2, or S 3^S 2 . 
If S3 p S2, then M* c S(S - M*) S c S3, hence S - M* would contain at least two 

different 3-classes, one in S2 - S3 and another in S - S2. But this is a contradiction, 
since S - M * contains just one maximal */-class. So, we have S2 = S3. 

(b) Suppose that S contains M* and S2 = S3. We show that M* is a C-ideal. 
Let x e M* be any element. Then for any element aeIa = S — M*, (a)T = S, 

therefore xe(a)T. However, xeM* and aeIa = S — M*, hence jc^a. Then 
xe(aSuSauSaS). 

It xeaS or xe Sa, then xeS2. If JC € SaS, then x e S3. But according to the 
assumption S2 = S3, therefore JC G S3. 

Then there is c G S such that x e ScS. Since (a)T = S, we have c e (a)T. If c = a, 
then JC G SaS. If c=£ a then c £ (aSuSauSaS), lice aS, then ScS c: SaS. The same 
relation can be obtained if ceSa, or ceSaS. Hence, xeScSczSaS, aela = 
S-M* in all three cases. This implies: for any JCGM*, xeSaS and aela = 
S-M*, therefore M*cS(S-M*)S i.e. M* is a C-ideal of S. 

It was already mentioned that S need not have one-sided covered ideals at all. 
For two-sided ideals we have: 

Theorem 6. If S is not a simple semigroup, then S contains at least one C-ideal 
ofS. 

Proof. Let T be any proper two-sided ideal of S. Consider S(S-T)S. 
S(S-T)S is an ideal of S, and it is known [7] that the intersection of two 
two-sided ideals is non-empty. Therefore, TnS(S-T)S£0. If we denote M = 
TnS(S - T) S, then M is an ideal of S and for M we get McS(S- T) S. Since 
S - T c r S - M , then the relation McS(S-T)S implies 

McS(S-T)SciS(S-M)S, 

hence M is a C-ideal of S. 
We now investigate the case that S contains more than one maximal ideal. 

Definition 3. A two-sided ideal MofS will be called the greatest covered ideal 
of S if any covered ideal of S is contained in M. 

If S contains the greatest covered ideal of S, this ideal will be denoted by M°. 
Remark. Let a semigroup S contain maximal two-sided ideals. If Ma, a G A are 
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all maximal two-sided ideals of S, then f] Ma£0 ([7]). Denote M = H 1H*. If S 

contains Mfl, then necessarily Mfl cr hi holds. For if there is at least one My such 
that M° <fc MY, then by Theorem 1 Mfl is not a C-ideal and it is a contradiction. 

However, we can show that if S contains maximal two-sided ideals, it does not 
mean that S must contaim M°. 

Example 2. Let N={0, 1, 2, . . . , n9...}. Let S = Nu{zi}u{z2}. Define the 
binary operation o in S as follows: 

.min {a9 b} if a9 beN 

aob=£-Q if (1) aeN9 be{zi,z2}, (2) a = zi, b = z2 

^z, if a = b = zi, i = l ,2 . 

It can be easily verified that S with the operation o is a semigroup. 

(ZI)T = {0 ,ZI} , (Z2)T = { 0 , Z 2 } . MI = S - { Z I } , M2 = S-{Z2} 

are all maximal ideals of S. M = MiC\M2 = N. The subset T= {0,1, ..., k} is an 
ideal of S and moreover S(S-T)S = {0,1, 2, ...,k, k + 1, ...}-o{0, 1,2, ...,k},so 
T is a C-ideal of S. But S does not contain Mfl. 

For one-sided covered ideals the following statement holds: If L = f] La =£ 0, 
aeX 

where La , a 6 A are all maximal left ideals, then L is the greatest covered left ideal 
of S. 

The following example illustrates that for two-sided ideals this need not be true. 
Example 3. Let S = {a, b9 c9 d} with the multiplication table: 

a b c d 

a a a a a 
b a a a a 
c a a a a 
d a a b b 

S contains two maximal ideals: Mt = {a9 b9 c}9 M2 = {a9 b9 d}. A4T = MinM2 = 
{a9 b}. Then S-M={c9 d}. But S(S-M)S = S{c9 d}S = {a}ct{a9 b}. There­
fore, M is not a CMdeal of S. 

If we want to describe conditions for existence of M° we need the notion of 
a two-sided base of a semigroup. 

Definition 4. A non-empty subset A of S is a two-sided base of S if 

(1) (A)T = AuSAuASuSAS = S 
(2) There is no proper subset B^A such that (B)T = S. 
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The condition (2) implies that a two-sided base A of S does not contain two 
different elements of ^-class Ia. Hence, for a, be A, a£b, lanlb = 0. 
Further, we shall denote maximal 3 -class as a complement of a maximal two-sided 
ideal Ma by Ma. 

Theorem 7. If a semigroup S, which is not simple, contains a two-sided base 

A ofS, then S contains the ideal M9. Moreover, M9 = S3n til, where til= f) Ma. 
aek 

Proof. The existence of a two-sided base A implies the existence of maximal 
ideals ([3]) and Ma = S-Ma where Ma is a maximal ^-class. Since 0=^M = 

f| Ma = f l (S - Ma) = S - U Ma, then til is an ideal of S ([7]). And S3 is an 
aek aek aek 

ideal of S too. Denote by M = tiln S3 * 0. We shall show that M is a C-ideal of S. 
Let x e M be any element. Hence, xeS3 and therefore there is c e S such that 

x e ScS. If c 6 A, then there is be A such that c 6 (b)T, hence c e (SbubSuSbS) 
and c is at least in one of the subsets: Sb, bS, SbS. Then ScS c SbS and 
x e ScS c SbS implies x e SbS lor be A. We have got that for any xeM, there is 
be A such that xeSbSc SAS aS(S-til)Sc:S(S-M)S, therefore M c 
S(S-M)S. It remains to show that M is the greatest C-ideal of S. 

We shall show that any C-ideal of S is contained in M = S3ntil, i.e. that M is the 
greatest covered ideal of S. 

Let T be any C-ideal of S. Then TcS(S-T)Sc S3, therefore fez S3. Since T 
is a C-ideal of S, then T cannot contain any maximal ^-class. It means, TcS- Ma 

for every aek. Hence we have Tczpj ( S - M a ) = n Ma-til. The relations 
aek aek 

TcS3 and T c M imply TcS3ntil=M, therefore, any C-ideal Tis contained in 
M, i.e. M = M9. 

Lemma 1. Let S contain M9 and M°^S3. Then every #-class in S3 — M9 is 
a maximal one and for any aeS3 — M9 (a)T = SaS. 

Proof. Let S3-M9±0. Since both M9 and S3 are ideals in S, then S3-M9 

consists of some ^-classes of S. Let MY be any one of them. Since MYcS3 it 
implies that any a e MY is of the form: a = xby for x, y, b e S. Then a e SbS. Next 
we show that b eMY. If beM6, d*y, then a eSbS would imply (a)TQ(b)T. The 
element b does not belong to (a)T (otherwise b e (a)T would imply (b)T a (a)T and 
we get (a)T = (b)T which is contradicting with 6J=Y)- Therefore (a)T is a C-ideal 
and M9u(a)T is a C-ideal too, properly containing M9, what is impossible. 

So we have got: for any a e MY there is b e MY such that a € SbS. This implies 
(a)TczSbSc(b)T = (a)T, hence (a)T = SbS. We show that (a)T = SaS. Since 
(a)T = SbS = (b)T, from there we get: if a = 6, (a)T = SaS. If a±b, then 
be(SauaSuSaS). If beSa, then SbS c SaS. It beaS or b e SaS we get again 
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SbS c SaS. The relation (a)T = (b)T = SbS c SaS c (a)T implies (a)T = SaS. This is 
true for any ^-class My from S3 — M9. 

If we suppose that for aeMyczS3-M°, (a)T = SaScz(c)T for ceS, then 
a 6 (ScucSuScS) and a is contained in at least one of the sets: Sc, cS, ScS. Then 
SaSczScS and (a)TczScS. But ce(a)T, i.e. (a)T is a C-ideal and M9u(a)T is 
a C-ideal too, properly containing M9 and we have a contradiction. 

We have proved that any ^-class in S3 - M9 is maximal. 

Theorem 8. If a semigroup S contains the ideal M°, then S contains a two-sided 
base. 

Proof. 
M*cS(S-M f l)ScS 3<=S 2c:S. 

Denote by Ma ^-classes from S-S2, by Mp ^-classes from S2-S3 and by My 

^-classes from S3 — M9. Construct a subset A in the following way: from each 
3-class Ma and My choose just one element into A. Denote by 

(A)T = AuSAuASuSAS. 

^-classes MaczS — S2 are of the form: Ma = {a}, where a is undecomposable 
element, so any Ma c S - S2 is a maximal ^-class. 

Equally, any 3-class MYczS3-M9 is a maximal 3-class (by Lemma 1). 
We wish to show that for any x e Mp czS2 — S3 there is some u e Ma c S — S2 such 

t h a i | % 0 ^ . Note that S2-S3±0implies S-S2£0. Since J C 6 M P C S 2 - S 3 , then 
x = uv, where w, u e S - S2, it means that both u and v are undecomposable. Now 
x = uv implies xe(u)T, ueS-S2, i.e. ueMa. 

Till now we have got: MaczS(S — M9)S, it means for any yeM9 there is 
zeS-M9 such that y e (z)T. Since z e S - M*, then z is from Ma , or M*, or My. If 
z 6 Ma or z e My, then in both cases we can choose z e A. If z e Mp, then there is 
ueMa such that ze(u)T, hence, y e(z)Tcz(u)T, and ueA. 

We have shown that for any yeM9 there is aeA such that ye(a)T, hence 
M0 cz(A)T. And with regard to the construction of A we have: S3 — M* cz (A)T , 
S2-S3cz(A)T and S - S 2 c ( A ) T so together we have Scz(A)T, therefore 

(A)T = S, 
hence, the subset A generates S. 

To prove that A is a two-sided base of S, it remains to show that there is no 
proper subset U p A with the property 

(B)T = BuSBuBSuSBS = S. 

But this is evident, because A has been constructed by means of elements of 
maximal ^-classes of S, and from each maximal 3-class just one element was 
chosen into A. Therefore, A is a two-sided base of S. 

Theorem 7 and Theorem 8 imply: 
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Corollary. If S is not simple, then S contains the ideal M° iff S has a two-sided 
base. 

The question arises, whether the relation M° c S3 does not mean M9 = S3 

always. Next example illustrates that it need not be so. 
Example 4. T is the multiplicative semigroup of real numbers: T={JC-' 

/O^JC *$§}, G an arbitrary commutative group. Define in S = T u G an associative 
binary operation o as follows : Jtoy = 0 if xe T, yeG and the products in T and G 
remain old ones. Then S is a semigroup. T is a maximal ideal in S. However, there 
is an infinite number of further maximal ideals of the form: Ma = S-{a}, where 

7 < a ^ - . The intersection of all maximal ideals in S is: 4 2 

M = n - M a n T = ^ 0 , i y 

For S, S±S2, S3 = / o , | \ u G . Then M* = S3nM = / o , ~ \ . Hence, Mg^S3. 

Theorem 9. Let any proper two-sided ideal of a semigroup S be covered. Then 
just one of the following conditions holds: 

(1) S contains the ideal M*. 
(2) .S^S2 and for any proper two-sided ideal M and for any principal 

two-sided ideal (a)T c: M, there is a principal proper two-sided ideal (b)T such that 
(a)T^(b)T and beS-M. 

Proof. First we show that if-any proper two-sided ideal of S is covered, then S 
cannot contain even two different maximal ^-classes. 

If Ma , Mp were maximal ^-classes, Ma£Mp, then as we know Ma ^S-M**, 
Mp = S- Mp would be maximal proper twosided ideals of S and none of them is 
a C-ideal of S. 

Let S contain just one maximal $ -class Ma. Then Ma = S — Ma is again 
a maximal proper two-sided ideal of S and moreover it is a C-ideal. By Theorem 4 
we have that Ma = M*. 

Suppose that S does not contain maximal ^-classes. First we show that S2 = S. If 
S2c£S, then for y e S - S 2 (y)T^S, because if (y)T = S, then S would contain 
a maximal ^-class. So (y)T |pS, and since any proper two-sided ideal is covered, 
then (y)Tc= S[S-(y)T]S, hence yeSzS for zeS-(y)T, therefore yeS3. But 
S3cS2, it means yeS2, which is a contradiction with the fact that yeS-S2. 
Therefore, S = S2. 

Let M be any proper two-sided ideal of S. Then Mcz S(S - M) S. Let a e M be 
any element. Then there is beS — Msuch that aeSbS. This implies (a)TaSbScz 
(b)T. The ideal (b)T^S, since S does not contain maximal ^-classes. Moreover 
(a)T£(b)T, because aeM, beS-M. Therefore, (b)TkM. 
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Theorem 10. Let a semigroup S satisfy just one of the following conditions: 
(1) S contains M* and it is a C-ideal. 
(2) S = S2 and for any proper two-sided ideal M and for every principal 

two-sided ideal (a)TczM, there is a principal two-sided proper ideal (b)T, whose 
generator beS-M and (a)T g (b)T. 
Then any two-sided proper ideal is covered. 

Proof. Let M be any proper two-sided ideal of S. If (1) holds, then MczM*, 
and S-M*cS-M. Then MczM*c:S(S-M*)SczS(S-M)S. Hence, M is 
a C-ideal. 

Let (2) be satisfied. If x e M, then (JC)T cz M. Then there is b e S - M such that 
(x)Tcz(b)TczS. It is evident that (x)T±(b)T. Since S = S2, then S = S3, and 
beSdS for some deS. We show that deM. If deM, then SdScM, and 
beSdScM, hence, beM, wjiich is a contradiction with the fact beS — M. 
Therefore, for arbitrary xeM, there is deS — M such that x e SdS. This means 
that 

MczS(S-M)S, 

hence, M is a C-ideal. 
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ПОЛУГРУППЫ, СОДЕРЖАЩИЕ ЗАКРЫТЫЕ ДВУСТОРОННИЕ ИДЕАЛЫ 

1тпсЬ РаЪпс1 

Резюме 

Двусторонний идеал М полугруппы 5 называется закрытым, если М с 5 ( 5 - М ) 5 . 
В работе доказано, что множество всех двусторонних закрытых идеалов полугруппы 5 

является подструктурой структуры всех идеалов в 5. 
Приведено необходимое и достаточное условие для того, чтобы: 
(1) полугруппа 5 содержала наибольший закрытый идеал. 
(2) каждый идеал полугруппы 5 был закрытым. 
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