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SEMIGROUPS SONTAINING SOVERED
TWO-SIDED IDEALS

IMRICH FABRICI

In [5], semigroups containing one-sided covered ideals have been investigated. It
turns out that a semigroup need not have one-sided covered ideals at all. As for
twosided ideals, the situation is different. The purpose of the paper is to investigate
the structure of semigroups containing two-sided covered ideals.

Definition 1. A proper two-sided ideal M of a semigroup S is covered (briefly
C-ideal) if Mc S(S—M)S.

I*={xeS/(a)r=auSauaSuSaS = xUSxUxSUSxS = (x)r } )

is the $-class of S containing a.

The $-class I° is maximal, if (a)r is not a proper subset of any principal
two-sided ideal of S.

It is known ([1]) that the $-class I° is maximal iff its complement is a maximal
ideal of S.

When dealing with maximal ideals M,, we shall denote the corresponding
maximal $-classes by M*.

Theorem 1. If S contains two different proper ideals M, M, such that
M,uUM, =S, then none of them is a C-ideal.

Proof. If MyuM, =S, then S—M,cM,, S—M,cM,. If one of them were
a C-ideal, e.g. M;, then M, cS(S —M,;)S = SM,S =M,. Since MiuM,=S§, it
implies M, = S. Hence, we get a contradiction with our assumption that M,, M, are
proper two-sided ideals.

Corollary. If S contains more than one maximal two-sided ideal, then none of
them is a C-ideal of S.

Theorem 2. If M, and M, are two C-ideals of S, then M;UM, is a C-ideal of S.

Proof. We show that if M;=S(S—M,;)S, M, = S(S — M;)S then MuM, c

Let x e M,, then M, cS(S—M,)S implies that there is a € S — M, such that
x € SaS. There are two possibilities:

(1) aeS—(M;UM,), then x e S[S — (M,UM,)]S.
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(2) ae(S—M,)nM;, then ae M, =S(S—M;)S. So there is be S — M, such
that a € SbS. The element b does not belong to M, since otherwise we would have
a € SbS =SM,S =M, and it is contradicting with the choice of a. Therefore,
beS—-M, beS—M, so be(S—M)n(S—M,;)=S—-(M;uM,). We have
x € SaS = S(SbS) S = SbS = S[S — (M;UM,)]S. Hence M,cS[S—(M;UM,)]S.
And in the same way we can prove that M, S[S — (M;UM,)]S.

Theorem 3. If M,, M, are two C-ideals of S, then MinM, is a C-ideal of S.
Proof. It is well known ([7]) that M;nM, #@. It is enough to show that

M,nM,c S[S — (MinM,)]S.
From the ralation M; = S(S—M;)S we have
MinM;cM;=S(S—M;)S = S[S —(MinM,)]S.
If we consider both Theorem 2 and Theorem 3 we get:

Corollary. The set of all C-ideals of S is a sublattice of the Iattice of all ideals of

S.
We have seen that if S contains more than one maximal ideal, then none of them

can be a C-ideal of S.
Now we shall consider the case that S contains only one maximal two-sided ideal.

Definition 2. A two-sided ideal M of a semigroup S is said to be the greatest
ideal of S, if any proper two-sided ideal of S is contained in M.
If such an ideal in S exists, then we shall denote it by M*.

Theorem 4. Let a semigroup S contain only one maximal two-sided ideal M. If
M is a C-ideal, then M = M*.

Proof. Itis sufficient to show that any proper ideal of S is contained in M. If T is
any proper two-sided ideal of S, then with regard to Theorem 1 we get that T = M.

It means that M = M*.
For one-sided ideals the converse statement holds too. The next example

illustrates that for two-sided ideals it need not hold.
Example 1. Let S={a, b, ¢, d} be the semigroup with the multiplication
table : '

a b ¢ d
ala b a b
bl|b a b a
cla b a b
d]b a b c
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M={a, b, ¢} is the only maximal two-sided ideal of S. Any proper ideal of S is
contained in M, so M=M*, S—M*={d}. SdS={a, b}, so M*& S(S—M*)S,
hence M* is not a C-ideal of S.

Theorem 5. The ideal M* of a semigroup S is a C-ideal iff S?=S>.

Proof. (a) Let M* be a C-ideal, so M* <= S(S — M*)S. Since M* is at the same
time a maximal ideal, then S — M*=1I" is the unique maximal $-class in S. Then
either S’c S, or §?=S. If $?=8§, then §°=§>

If S’ S, then either §°=S?, or S S>.

If S° = S?, then M* < S(S — M*) S < §?, hence S — M* would contain at least two
different $-classes, one in S2— S and another in S — S2. But this is a contradiction,
since S — M* contains just one maximal $-class. So, we have S$?=S>.

(b) Suppose that S contains M* and S*=S° We show that M* is a C-ideal.

Let x e M* be any element. Then for any element a € I°=S— M*, (a)r=S,
therefore x €(a)r. However, xe M* and ael°=S—M*, hence x#a. Then
x € (aSuSau Sa8).

If xeaS or xeSa, then xeS>. If xe SaS, then x € S°. But according to the
assumption S*>=§°, therefore x € S°.

Then there is ¢ € S such that x € ScS. Since (a)r =S, we have ce(a)r. If c=a,
then x € SaS. If ¢+ a then c ¢ (aSuSauSaS). If ¢ € aS, then ScS = SaS. The same
relation can be obtained if ¢ € Sa, or ce SaS. Hence, x€ ScScSaS, ael*=
S —M* in all three cases. This implies: for any xe M*, xe SaS and ael’°=
S — M*, therefore M*<= S(S — M*)S i.e. M* is a C-ideal of S.

It was already mentioned that S need not have one-sided covered ideals at all.
For two-sided ideals we have:

Theorem 6. If S is not a simple semigroup, then S contains at least one C-ideal
of S.

Proof. Let T be any proper two-sided ideal of S. Consider S(S—T)S.
S(S—T)S is an ideal of S, and it is known [7] that the intersection of two
two-sided ideals is non-empty. Therefore, TnS(S — T) S#@. If we denote M =
TnS(S—T)S, then M is an ideal of S and for M we get McS(S—T)S. Since
S —Tc<S—M, then the relation M < S(S — T)S implies

McS(S-T)S<S(S—M)S,

hence M is a C-ideal of S. »
We now investigate the case that S contains more than one maximal ideal.

Definition 3. A two-sided ideal M of S will be called the greatest covered ideal
of S if any covered ideal of S is contained in M.

If S contains the greatest covered ideal of S, this ideal will be denoted by M*.

Remark. Let a semigroup S contain maximal two-sided ideals. If M,, a € A are
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all maximal two-sided ideals of S, then [} M.#@ ([7]). Denote M=) M,. If S
ael

ael

contains M?, then necessarily M? = M holds. For if there is at least one M, such
that M?& M, , then by Theorem 1 M? is not a C-ideal and it is a contradiction.

However, we can show that if S contains maximal two-sided ideals, it does not
mean that S must contaim M.

Example 2. Let N={0,1,2,...,n,...}. Let S=Nu{z;}U{z,}. Define the
binary operation - in S as follows:

min {a, b} if a,beN
acb=%2—0if (1) aeN, be{z, 2}, 2) a=u,b=12
z if a=b=z,, i=1,2.
It can be easily verified that S with the operation . is a semigroup.
(z)r={0, 21}, (2)r={0,2}. Mi=S—{z}, M=S—{z}

are all maximal ideals of S. M=M,;nM,=N. The subset T={0, 1, ..., k} is an
ideal of S and moreover S(S—T)S={0,1,2,...,k,k+1,...}2{0, 1, 2, ..., k},s0
T is a C-ideal of S. But S does not contain M?.

For one-sided covered ideals the following statement holds: If L = M L.#0,

aei
where L., a € A are all maximal left ideals, then L is the greatest covered left ideal
of S.
The following example illustrates that for two-sided ideals this need not be true.
Example 3. Let S={a, b, c, d} with the multiplication table:

a b ¢ d
ala a a a
bla a a a
cla a a a
d]l]a a b b

S contains two maximal ideals: M;={a, b, ¢}, M,={a, b, d}. M=MnM,=
{a, b}. Then S—M={c, d}. But S(S—M)S=S{c,d}S={a}¢{a, b}. There-
fore, M is not a C-ideal of S.

If we want to describe conditions for existence of M? we need the notion of
a two-sided base of a semigroup.

Definition 4. A non-empty subset A of S is a two-sided base of S if

(1) (A)r=AUSAUASUSAS=S
(2) There is no proper subset B< A such that (B)r=S.
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The condition (2) implies that a two-sided base A of S does not contain two
different elements of $-class I°. Hence, for a, be A, a# b, I’'nI*=4.
Further, we shall denote maximal .#-class as a complement of a maximal two-sided
ideal M, by M°.

Theorem 7. If a semigroup S, which is not simple, contains a two-sided base

A of S, then S contains the ideal M?. Moreover, M® = S’ M, where M= [ M,.

aei

Proof. The existence of a two-sided base A implies the existence of maximal
ideals ([3]) and M, =S—M* where M* is a maximal $-class. Since §#M=
N M.=(S—M*)=S—-J M?, then M is an ideal of S ([7]). And S?is an
a€k ael

ael

ideal of S too. Denote by M = M S* # . We shall show that M is a C-ideal of S.

Let x € M be any element. Hence, x € S* and therefore there is c € S such that
x€8cS. If cé A, then there is b € A such that c € (b)r, hence c € (SbubSUSbHS)
and c is at least in one of the subsets: Sb, bS, SbS. Then ScS < SbS and
x € ScS = SbS implies x € SbS for b € A. We have got that for any x € M, there is
beA such that xeShbScSAScS(S—M)ScS(S—M)S, therefore Mc
S(S —M)S. It remains to show that M is the greatest C-ideal of S.

We shall show that any C-ideal of S is contained in M = SN M, i.e. that M is the
greatest covered ideal of S. ’

Let T be any C-ideal of S. Then T< S(S — T) S = S°, therefore T < S>. Since T
is a C-ideal of S, then T cannot contain any maximal $-class. It means, T < S — M®

for every aeA. Hence we have Tc () (S—M?)=[) M,=M. The relations
aei .

aei
T<S? and T<M imply T = S’ M = M, therefore, any C-ideal T is contained in
M, ie. M=M".

Lemma 1. Let S contain M° and M° &£ S°. Then every $-class in §*— M? is
a maximal one and for any a € S*— M° (a)r=SaS.

Proof. Let S~ M?#@. Since both M° and S* are ideals in S, then S*— M’
consists of some F-classes of S. Let M” be any one of them. Since M"c S? it
implies that any a € M” is of the form: a =xby for x, y, b € S. Then a € SbS. Next
we show that b e M. If b e M®, 6+ v, then a € SbS would imply (a)r S (b)r. The
element b does not belong to (a)r (otherwise b € (a)r would imply (b)r = (a)r and
we get (a)r =(b)r which is contradicting with 8+ y). Therefore (a)r is a C-ideal
and M°u(a)r is a C-ideal too, properly containing M?, what is impossible.

So we have got: for any a € M” there is b € M” such that a € SbS. This implies
(a)r=SbS =(b)r=(a)r, hence (a)r=SbS. We show that (a)r=SaS. Since
(a)r=8bS=(b)r, from there we get: if a=b, (a)r=SaS. If a#b, then
b e(SavuaSuSaS). If b € Sa, then SbS = SaS. If beaS or be SaS we get again
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SbS = SaS. The relation (a)r = (b)r = SbS = SaS = (a)r implies (a)r = SaS. This is
true for any $-class M from S*>— M°.

If we suppose that for ae M*=S*—M?*, (a)r=SaSc(c)r for ceS, then
a € (ScucSuScS) and a is contained in at least one of the sets: Sc, ¢S, ScS. Then

SaScScS and (a)r = ScS. But c&(a)r, i.e. (a)r is a C-ideal and M°u(a)r is
~ a C-ideal too, properly containing M? and we have a contradiction.

We have proved that any $-class in S>— M? is maximal.

Theorem 8. If a semigroup S contains the ideal M?, then S contains a two-sided
base.
Proof.
M?cS(S—M°)ScS’cS*cS.
Denote by M* $-classes from S — S?, by M? $-classes from S?>— S* and by M”
F-classes from S*— M?. Construct a subset A in the following way: from each
F-class M* and M” choose just one element into A. Denote by

(A)r=AUSAUASUSAS.

F-classes M* =S — S? are of the form: M®={a}, where a is undecomposable
element, so any M* < S — S? is a maximal $-class.

Equally, any $-class M” = §*>— M? is a maximal $-class (by Lemma 1).

. We wish to show that for any x e M* = §> — §° there is some u € M*® = § — S? such

that x e ()7 Note that S?— S° # implies S — S*# . Since x € M? = §? - S, then

x = uv, where u, v € S — S§?, it means that both u and v are undecomposable. Now
x =uv implies x € (u)r, ueS—S? ie. ue M.

Till now we have got: M? < S(S—M?)S, it means for any y e M° there is
z€ 8 — M? such that y € (z)r. Since z € S — M?, then z is from M*, or M?, or M". If
z € M* or z € M, then in both cases we can choose z € A. If z € M?, then there is
u € M* such that z € (u)r, hence, y € (z)r<(u)r, and ue A.

We have shown that for any y e M? there is a € A such that y e(a)r, hence
M? = (A)r. And with regard to the construction of A we have: $*—M°<=(A)r,
S$?—~85%2c(A)r and S — S?’<(A)r so together we have S =(A)r, therefore

(A)T = S ’
hence, the subset A generates S.
To prove that A is a two-sided base of S, it remains to show that there is no
proper subset Bg A with the property

(B)r=BUSBUBSUSBS =S.

But this is evident, because A has been constructed by means of elements of
maximal $-classes of S, and from each maximal $-class just one element was
chosen into A. Therefore, A is a two-sided base of S.

Theorem 7 and Theorem 8 imply: :

360




Corollary. If S is not simple, then S contains the ideal M? iff S has a two-sided
base. ’

The question arises, whether the relation M? =S* does not mean M?=S§>
always. Next example illustrates that it need not be so.

Example 4. T is the multiplicative semigroup of real numbers: T={x-
/0<x <%}, G an arbitrary commutative group. Define in'S = TUG an associative
binary operation  as follows: xoy =0 if x € T, y € G and the products in T and G
remain old ones. Then § is a semigroup. T is a maximal ideal in S. However, there
is an infinite number of further maximal ideals of the form: M, =S — {a}, where
1 .

1
Z< as< < . The intersection of all maximal ideals in S is:

M= M,nT=<O, %>

For S, S+ 5, s3=<o, %>UG. Then M? =S3nM=<O, %) Hence, M*<°.

- Theorem 9. Let any proper two-sided ideal of a semigroup S be covered Then
just one of the following conditions holds:

(1) S contains the ideal M*.

(2) .S=S8? and for any proper two-sided ideal M and for any principal
two-sided ideal (a)r = M, there is a prmapal proper two-sided ideal (b)r such that
(a)rE(b)rand be S—M.

Proof. First we show that if.any proper two-sided ideal of S is covered, then S
cannot contain even two different maximal $-classes.

If M®, M? were maximal $-classes, M®# MP?, then as we know M, =S — M,
M, =S — M? would be maximal proper twosided ideals of S and none of them is
a C-ideal of S. :

Let S contain just one maximal $-class M®. Then M,=8—-M* is again
a maximal proper two-sided ideal of S and moreover it 1s a C-ideal. By Theorem 4
we have that M, = M*.

Suppose that S does not contain maximal $-classes. First we show that §*=S. If
S?¢S, then for yeS—S* (y)r#S, because if (y)r=S, then S would contain
a maximal $-class. So (y)r &S, and since any proper two-sided ideal is covered,
then (y)r<=S[S—(y)r]S, hence ye SzS for z€S—(y)r, therefore yeS*. But
$*cS?, it means y e S? which is a contradiction with the fact that ye S — sz
Therefore, S =S>

Let M be any proper two-sided ideal of S. Then M= S(S—M)S. Let ae M be
any element. Then there is b € S — M such that a € SbS. This implies (a)r = SbS <
(b)r. The ideal (b)r# S, since S does not contain maximal $-classes. Moreover
(a)r# (b)r, because a e M, b € S — M. Therefore, (b)r& M.
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Theorem 10. Let a semigroup S satisfy just one of the following conditions:

(1) S contains M* and it is a C-ideal.

(2) S=S8? and for any proper two-sided ideal M and for every principal
two-sided ideal (a)r = M, there is a principal two-sided proper ideal (b)r, whose
generator be S—M and (a)r<(b)r.

Then any two-sided proper ideal is covered.

Proof. Let M be any proper two-sided ideal of S. If (1) holds, then M = M*,
and S—M*cS—M. Then McM*cS(S—M*)S<=S(S—M)S. Hence, M is
a C-ideal.

Let (2) be satisfied. If x € M, then (x)r = M. Then there is b € S — M such that
(x)rce(b)rcS. It is evident that (x)r#(b)r. Since S=S? then S=S§° and
beSdS for some deS. We show that deM. If deM, then SdScM, and
beSdS<=M, hence, be M, which is a contradiction with the fact be S — M.
Therefore, for arbitrary x € M, there is d € S — M such that x € SdS. This means
that

McS(S—-M)S,
Hence, M is a C-ideal.
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TMONYTPYIIIBI, COONEPXAIME 3AKPBITBIE IBYCTOPOHHUE HIEAJIBI
Imrich Fabrici
Pesiome

IBycTopoHHMit upean M nonyrpynnel S Ha3bIBaeTcst 3aKphIThIM, eciu M < S(S — M)S.

B pa6oTe n0Ka3aHO, YTO MHOXECTBO BCEX ABYCTOPOHHHMX 3aKPBITHIX HAEATIOB MONYrpynmbl S
SIBJISIETCA NMOACTPYKTYPOil CTPYKTYpPhI BCEX MIEaioB B S.

IIpuBefeHO HEOGXOAUMOE M JOCTATOYHOE YCJIOBHE WIS TOTO, YTOGHI:

(1) nonyrpynna S copgepxana HanuGoNbLIMI 3aKPLITHIA UAEa.

(2) xaxapIit ugean nonyrpynnsl S GbUT 3aKPBITHIM.
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