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ASYMPTOTIC BEHAVIOUR AND OSCILLATION 
OF SOLUTIONS OF NEUTRAL DELAY 

DIFFERENCE EQUATIONS OF ARBITRARY ORDER 
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J O H N R. G R A E F * * — PAUL W. SPIKES** 

(Communicated by Milan Medved!) 

ABSTRACT. The authors obtain results on the asymptotic properties of solu­
tions of a higher order nonlinear neutral delay difference equation. Examples 
illustrating the results are included and some suggestions for further research are 
indicated. 

1. Introduction 

Consider the neutral difference equation 

A m [ j / n _ m + 1 +Pn-m+1yn_m+1-k] + SF(n,yn_l) = 0 , (E) 

where m > 1, 6 = ± 1 , A denotes the forward difference operator Ayn = 
y n + i - 2 ! n . Aiyn = A(Ai~1yn), 1 < i < m , k,l e N = { 0 , 1 , 2 , . . . } , {pj is a 
sequence of real numbers, F: N x R —» R is continuous with uF(n,u) > 0 for 
u 7-- 0 and n > 1V0, and F(n,u) z£ 0 for u G R \ {0} and n > Nx for every 
^ i ^ -%) * By a solution of (E), we mean a sequence {yn} of real numbers which 
is defined for n > N0 — M where M = max{fc, /} + m — 1 and which satisfies 
(E) for n > JV0. A solution {yn} of (E) is said to be nonoscillatory if the terms 
yn are either eventually all positive or eventually all negative. Otherwise, the 
solution is called oscillatory. 

Here we examine the oscillatory and asymptotic behavior of solutions of (E). 
If pn = 0, equation (E) becomes an rath order difference equation with a delay, 
and a good deal is known about the asymptotic and oscillatory properties of 
solutions of equations of this type especially when m = 1 or 2 and the equation 
is linear; for recent contributions see, for example, the papers of C h e n g et 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 39A10, 39A11. 
Key words : difference equation, nonlinear, asymptotic behaviour, oscillation. 
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al. [5], E r b e and Z h a n g [7], J a r o s and S t a v r o u l a k i s [13], L a d a s 

et al. [6], [14]-[16], and P a t u l a [21]-[22] for linear equations, and B y k o v 

et al. [2]-[4], E r b e and Z h a n g [8], H e [11], H o o k e r and P a t u l a [12], 

S z m a n d a [23], and W a n g and Y u [29] for nonlinear equations, as well as the 

monographs by A g a r w a 1 [1] and L a k s h m i k a n t h a m and T r i g i a n t e 

[17]. When pn ^ 0, considerably fewer results of this type are known, and 

many of these are for linear equations with m = 1 or 2 (see G e o r g i o u et 

al. [9]-[10], L a l l i et al. [18]-[20], T h a n d a p a n i et al. [24]-[28], Z a f e r 

and D a h i y a [30], and the references contained therein). The results here are 

partially motivated by the papers [9], [10], [18], [20], [24], and [27], and in fact we 

generalize some of the results in those papers. Examples illustrating our results 

are included. The final section of the paper contains some suggestions for further 

research. 

2. Oscillatory and asymptotic behavior 

Many of our results will require the condition that if {un} is a sequence with 

un > 0 (un < 0) and liminf \un\ > 0, then 

Y,F(i,Ui) = °o (-oo). (1) 
i=No 

We will begin with a lemma that will facilitate proving the main results in this 
paper. In some parts of the lemma, we assume that there exist constants Px and 
P2 such that either 

P1<Pn<0, (2) 

~ l < P n < 0 . ( 3 ) 

OГ 

P2<PП<-1. (4) 

For notational purposes, we let 

Zn=yn+Pnyn-k' 

We give proofs only for the case when a nonoscillatory solution is eventually posi­
tive since the proofs for an eventually negative solution are similar. In addition, 
when the proof for 6 = — 1 is completely analogous to the proof for 6 = + 1 , 
only the latter will be given. 
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LEMMA 1. Suppose that condition (1) holds and {yn} is an eventually positive 
(negative) solution of (E) with 8 = + 1 [6 = - 1 / . Then: 

(a) {£-m~~lzn} is an eventually decreasing (increasing) [increasing (decreas­
ing)] sequence and 

A m - 1 z n —> 6L < oo (> —oo) as n —• oo. 

(b) If 6L > - o o ( < oo), then liminf \y \ = 0 . 
n — • o o 

(c) If zn --> 0 as n —> oo, /7ien {A2zn} is monotonic and 

L\{zn —> 0 as n - ^ o o and A*.znA*+1zn < 0 (5) 

for i = 0, l , . . . , m — 1. 

(d) LeZ zn —> 0 as n —> oo. If m is even [odd], then zn < 0 (z n > 0 ) . J/ m 
is odd [even], then zn > 0 (z n < 0) . 

(e) 7/ (2) holds, then either {A l z n } is decreasing (increasing) [increasing 
(decreasing)] with 

A 2z n —• — oo (oo) /oo (—oo)] as n —> oo (6) 

/or i = 0 , 1 , . . . , m — 1, or {A l z n } is monotonic and (5) /iotas. 
(f) 7/(2) /iotas and m is even, then zn < 0 (z n > 0) / > 0 ( < 0)/ . If (5) 

/io/ds and m is odd, then zn > 0 (z n < 0) / < 0 ( > 0)/ . 
(g) If (3) [(2)] holds, then (5) holds [either (5) /iotas or |yn | —• oo as 

n —• oo/. 
(h) If (4) /iotas and m is odd [even], then (6) holds. 

P r o o f . Suppose that {yn} is an eventually positive solution of (E). Then 
there exists an integer JVX > NQ such that yn_rn+1_k > 0 and yn_l > 0 for 
n > JVj. From (E), we have <SAmzn_m + 1 = -F(n,yn_l) < 0, so clearly part (a) 
holds. Summing (E) from Nx to n and then letting n —• oo, we have 

oo 

From condition (1), we see that (b) holds. 
In order to prove (c), suppose that 6 = +1 and zn —> 0 as n —» oo. By (a), 

{ A m - 1 z n } is eventually decreasing. If A m _ 1 z n - ^ L < 0 as n ^ o o , then there 
exists Lx < 0 and an integer N2 > Nx such that ATn"~lzn < Lx for n > N2. 
This contradicts zn —> 0 as n —• oo. If A m - 1 z n —» L > 0 as n —+ oo, then 
A m _ 1 z n > L for n > Nx again contradicting zn —» 0 as n —* oo. Therefore, 
A m _ 1 z n —» 0 as n —• oo. Since { A m _ 1 z n } is decreasing and F(n^yn_l) ^ 0, we 
have ATn~1zn > 0 for n > Nx. Hence, if m > 2, then { A m ^ 2 z n } is increasing, 
and so Am""2zn -> L2 > - o o as n -> oo. If L2 < 0, then A m " 2 ^ n < L2 for 
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n > Nx , which contradicts zn —> 0 as n —> oo. Now assume L2 > 0; then there 
is an L 3 > 0 and an integer N3 > Nx such that A m - 2 z n > L2 for n > 1V3. 
Again this contradicts zn —> 0 as n —> 00. Thus, Am~~2zn —> 0 as n —• 00, and 
since { A m ~ 2 z n } is increasing, we have A m ~ 2 z n < 0 for n > n1. Continuing in 
this fashion we see that (5) holds. 

Part (d) follows immediately from (5) since 6 A m z n _ m + 1 < 0. To prove (e) 
for 8 = + 1 , first note that from (a) and (b), we have {Am~1zn} is decreasing, 
A m _ 1 z —> L > —00 as n —• 00, and liminf y = 0 if L > —00. If L = —00, 

n — • o o 

then clearly (6) holds. 
If —00 < L < 0, then eventually zn < Lx for some Lx < 0, and so -p

1yn_^. < 
Vnyn-k

 < zn contradicting liminfy = 0. Hence, L > 0. If L > 0, then 
n—^00 

eventually yn > z > L2 > 0, which contradicts liminf yn = 0. Thus, we have 
Arn~1zn -+ 0 as n —• 00. Moreover, A m _ 1 z n > 0 since { A m _ 1 z n } is decreasing 
and F(n,yn_l) 9.= 0. Hence, { A m ~ 2 z n } is increasing. In addition, Am~"2zn < 0 
for otherwise {Am~~2zn} is eventually positive and increasing, which in turn 
implies {zn} has a positive lower bound contradicting liminfyn = 0. Now if 

n—>oo 

A m ~ 2 z n — > L 3 < 0 a s n — > o o , then it is easy to see that zn < L4 < 0 
eventually. This again contradicts liminf yn = 0. Thus, { A m _ 2 z n } is increasing 

n—^00 

and tends to zero as n —* 00. Continuing in this way we see that (6) holds. 
The proof of (f) follows from the fact that either (5) or (6) implies zn < 0 

[ zn > 0] if m is even, and (5) implies zn > 0 [ zn < 0] when m is odd. 
To prove (g) when 6 = + 1 , suppose (5) does not hold. Then, by part (e), (6) 

holds, so zn < 0 for n > N2 for some N2> Nt. Since pn > — 1, we have 

yn < -pnyn-k < Vn-k • 

This implies that {yn} is bounded contradicting (6). If 8 = — 1, and (5) does 
not hold, then part (e) implies that (6) holds, and so zn —> 00 as n —> 00. By 
(2), we have zn < yn —> 00 as n —> 00. 

Finally, to prove (h), if (6) does not hold, then (5) holds. This implies that 
liminf y = 0. Part (f) implies z > 0 for n > IV2 for some N2 > Nx. Hence, 

n—•oo 

Vn > ~Pnyn-k -̂  Vn-k ' which contradicts liminf yn = 0. • 

Our first theorem places very mild restrictions on the sequence {Pn}, and as 
a consequence, the conclusions in the theorem are not very strong. However, it 
does give us the flavour of the results to be obtained in the subsequent theorems. 

THEOREM 2. Suppose that condition (1) holds, m is either even or odd, and 
{yn} is a nonoscillatory solution o / (E) . 

(i) If 8 = +1 and there exists a constant P3 such that 

P3<Pn, 
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then either \yn\ —> oo as n —> oo or liminf|y | = 0. Moreover, if 
n — • o o 

— 1 < P3, then the second conclusion holds. 
(ii) If 6 = — 1 and there exists P4 such that 

then either l imsup |y n | = oo or liminf \yn\ = 0. In addition, if P4 < 0, 
n — • o o n~>OQ 

then either \yn\ —> oo as n —> oo or liminf |yn | = 0. 

P r o o f . Let {yn} be an eventually positive solution of (E), say, yn_rn+1_k 

> 0 and yn_z > 0 for n > Nx for some IVj > JV0. Part (a) of Lemma 1 implies 
Am~1zn —>(5L<ooasn—>oo , and part (b) of Lemma 1 implies liminf yn = 0 

if 6L > —oo. If 6L = —oo, then <5zn —> —oo as n —> oo. If (i) holds, zn —> —oo 
as n —> oo, and so 

P3yn-k < Vn+PnVn-k = Zn "> ~°° 

as n —> oo. Hence, pn < 0 eventually and yn —> oo as n —> oo. If P3 > — 1, 
then either l iminfyn = 0 or yn + pnyn_k = zn < 0 for all large n . Thus, 

n — • o o 

yn < —pnyn_k < yn-k, which implies {yn} is bounded and this contradicts 
L = —oo. If (ii) holds, zn —> oo as n —> oo, so we have zn < yn + P4yn-k -* co 
as n —> oo. This implies l imsupy n = oo. If P4 < 0, then zn < yn —> oo as 

n—^00 

n —> oo. ----

Remark . Theorem 2 generalizes Theorem 2.3 in [18]. 

For our next theorem, we ask that there exists a positive constant P 5 such 
that 

0 < p n < P 5 < l . (7) 

THEOREM 3 . Suppose that conditions (1) and (7) hold. 

(i) If m is even and 6 = + 1 . £/ien a// solutions of (E) are oscillatory, while 
if 6 = — 1, any solution {yn} of (E) is either oscillatory, yn —» 0 as 
n —> oo, or |yn | —> oo as n —> oo. 

(ii) 7/ m is odd and 6 = + 1 , £/ien either {yn} is oscillatory or yn —> 0 as 
n —> oo, iv/ii/e if 6 = —I, then either {yn} is oscillatory or \yn\ —> oo 
as n —> oo. 

P r o o f . Let {yn} be an eventually positive solution of (E), say y n_m + 1_*. 
> 0 and yn_z > 0 for n > Nx > jV0. By part (a) of Lemma 1, we have 
{6ATn~1zn} is decreasing and {6Am^1zn} converges to 6L > — oo as n —* oo. 
If 6L = — oo, then zn is eventually negative if 6 = + 1 , and z —> oo if 6 = — 1 . 
Moreover, since p n > 0, the first possibility is excluded. If zn —> oo, then {zn} is 
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increasing since {8Am~1zn} has fixed sign. Hence, we have zn = yn +Pnyn-k --. 

yn+PnZn-k <yn+
 P5Zn> S O Zn\l ~ Ps\ < Vn ~+ ° ° *» n ~> ° ° • 

If 8L > —oo, liminf yn = 0. Since {z } is monotonic, zn —> / as n —> oo. 
n—>oo 

Observe that I > 0 since I < 0 implies yn < 0. Assume / > 0. If {zn} is 
increasing, we again obtain zn[l - P5] < yn, which contradicts liminf yn = 0. If 
{zn} is decreasing, let 1 - P 5 = e > 0. Then zn < yn + P5zn_ f c , and since I is 
finite, 

yn i D _̂  _H 
f 

< ____ + p < ÍÍIL + p ^ , 

^n-k 

oiiice r§ T* TT *< ±, tiicrt; eAiato JV 2 / -<*i _>_i-,ii _!__,_ __. -- 5 i o AWi '* — i T 2* 
- n—k 

Hence, y^ > - ^ for n > _V9 contradicting l iminfyn = 0. Thus, zn —> 0 as 
71 ~ 2 ~" n—>oo 

n —-> oo. 
To complete the proof, just observe that part (d) of Lemma 1 implies that 

for m even zn < 0 if 8 = + 1 , and zn > 0 if 8 = — 1. But zn < 0 contradicts 
yn > 0, and zn > 0 implies y n < z n — > 0 a s n — > o o . Hence (i) holds. If m is 
odd, Lemma 1(d) implies zn > 0 if 8 = + 1 , and zn < 0 if 8 = — 1; part (ii) 
then follows. • 
EXAMPLES. The equation 

i ( - l ) m + 1 ( l + P e ) ( e - l ) m e ^ - 1 ) n -, 
A m [yn -m + l +Pyn-m\ + — " ^ ' ^ - 1 = 0 , n > 1 , 

(Ex)" 
where 0 < p < 1, and 7 > 1 is the quotient of odd positive integers, satisfies 
the hypotheses of part (i) of Theorem 3 with 8 = — 1 and part (ii) with 8 = + 1 . 
Here, {yn} = {e~ n} is a nonoscillatory solution which converges to 0 as n —> 00. 
Equation (Ex) also satisfies the hypotheses of part (i) of Theorem 2 provided 
p > — 1/e and m is odd, or p < — 1/e and m is even. The equation 

- - m k - m + i + PVn-m] ~ ( f + l ) ( e ~ l ) m e ( 1 ^ > " e - H " 1 " ™ y ^ = 0 , n > 1, 

(E2) 
with m odd, 0 < p < 1, and 7 < 1 the ratio of odd positive integers, satisfies 
the hypotheses of Theorem 3 (ii) for 8 = — 1 and has the nonoscillatory solution 
{yn} = {en} satisfying e n —* 00 as n —> 00. If p < — e, then Theorem 2(i) 
holds, and if — e < p < 0, then Theorem 2 (ii) holds. In each case, {yn} = {en} 
is an unbounded nonoscillatory solution. As an example of an equation satisfying 
the hypotheses of Theorem 3 and having an oscillatory solution, consider 

A m [ y n _ m + 1 + Wn-rn-x] + « ( - + P^Vn-a = 0 , n > 1 , ( E 3 ) 

where 0 < p < l . I f < 5 = + l and a is even, or 8 = — 1 and a is odd, then 
{yn} = {(—l)n} is an oscillatory solution of (E 3 ) . If p < 0, then equation (E3) 
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can also be used to construct examples of equations satisfying Theorem 2 and 
having oscillatory solutions. 

R e m a r k . Theorem 3(i) generalizes Theorem 5 in [24], and Theorem 8 in [27], 
and Theorem 3(H) generalizes part of Corollary 1(b) in [10]. 

For our next result, we will need a stronger version of condition (3), namely, 
that there exists a constant P 6 < 0 such that 

- K P 6 < P „ < 0 . (8). 

THEOREM 4. Suppose that conditions (1) and (8) hold, and m is either even 
or odd. If 8 = + 1 , then any solution {yn} of (E) is either oscillatory or satisfies 
yn —• 0 as n —• oo, while if 8 = — 1, then either {yn} is oscillatory, yn —> 0, 
or \yn\ ~~* °° as n —> oo. 

P r o o f . Suppose that {yn} is a nonoscillatory solution of (E) such that 
yn_m+i_jt > 0 and yn_l > 0 for n > Nx > N0 > 0. Lemma 1(g) implies 
that (5) holds if 8 = + 1 and either (5) holds or |yn | —» oo as n —> oo if 
8 = — 1. Suppose (5) holds. If either m is even and 8 = + 1 or m is odd and 
8 = — 1, (8) and Lemma 1(d) imply that zn < 0 eventually. It then follows that 
yn < -P6yn-k

 f o r n>N2 for some N2 > Nt. Hence, yn+Jfc < ( -P 6 ) 2 y n _ f c , and 
by induction, we have that yn+jk < (—P6y+ 1yn_k for every positive integer j . 
Since 0 < - P 6 < 1, this implies that yn -+ 0 as n —• oo. 

If m is even and 8 = —1 or m is odd and (5 = + 1 , then (8) and Lemma 1(d) 
imply 0 < zn < Ax for some constant Ax > 0 and sufficiently large n , and so 
0 < yn < —P6yn-k + Ax. If {yn} is unbounded, then there exists an increasing 
sequence {a.} such that ya. —> oo as i —> oo, and y a . = max{j/n : Nx < n 
<at}. For each i, ya< < -P6yai__k + Ax < -P6yai + A[ , or (P6 + l )y a i < ^ . ' 
In view of (8), this is impossible. Therefore, {yn} is bounded, and there exists 
a constant A2 > 0 such that l imsupy n = A2. Thus, there is an increasing 

n — • o o 

sequence {fi-} such that y^. —• A2 as j —> oo. From (8), we have 

-P6y^k>y^-z^. 

Since A2 > 0, there exists e > 0 such that (1 — P6)e < (1 + P6)A2, and so 
0 < — P6{A2 + e) < A2 — e. But for all sufficiently large j , yg._k < A2 + £, so 
we have 

A2-e>-P6yp._k>yp.-zPj 

for all such j . As j —> oo, this contradicts y^ —• A2 as j —> oo since zn. —> 0 
as j —-• oo . D 

R e m a r k . Notice that if 8 = + 1 , Theorem 4 implies that unbounded solutions 
must be oscillatory. Theorem 4 generalizes Corollary 2.1 (v) in [18], Theorem 3.4 
in [20], Theorem 4 in [24], Theorems 2 and 4 in [27], and a part of Corollary 1(b) 
in [10]. 
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EXAMPLE. Equation (Ex) provides examples of all the different cases in Theo­
rem 4 depending on whether —1/e < p < 0 or — 1 < p < —1/e. For — 1 < p < 0, 
equation (E2) satisfies the hypotheses of Theorem 4 with 8 = — 1 and has an 
unbounded nonoscillatory solution. Similarly, for — l < p < 0 , i f ( 5 = + l and a 
is even, or 8 = — 1 and a is odd, (E3) yields equations satisfying Theorem 4 
and having oscillatory solutions. 

THEOREM 5. Suppose that (1) and (4) hold. If 

(i) m is even and 8 = — ly 

or 

(ii) m is odd and 8 = + 1 ; 

then any solution {yn} of (E) is either oscillatory or \yn\ —• oo as n —> oo. 

P r o o f . Let {yn} be a nonoscillatory solution of (E) such that yn__m+1_k 

> 0 and yn_l > 0 for n > Nx > N0. Part (h) of Lemma 1 implies (6) holds, so 
8zn —> — oo as n —> oo. Now for sufficiently large n , (4) implies that P2yn-k — 
zn < yn , and hence yn —> oo as n —> oo. • 

EXAMPLE. If m is even and - e < p < - 1 or m is odd and p < — e, then 
equation (E2) satisfies the hypotheses of Theorem 5 and has the unbounded 
nonoscillatory solution {yn} = {en} with en —> oo as n —-> oo. 

Remark . Theorem 5 generalizes Corollary 1(a) in [10], Theorem 4.3 in [20], 
and Theorems 2 and 7 in [24]. 

Next, we obtain a result on the behavior of the bounded solutions of (E) for 
the case when p is bounded above away from — 1 . Assume that there exists a 
constant P7 such that 

P2<Pn<P7<-l. (9) 

THEOREM 6. Suppose conditions (1) and (9) hold. If m is even and 8 = + 1 , 
or if m is odd and 8 = — 1, then any bounded solution {yn} of (E) is either 
oscillatory or satisfies yn —• 0 as n —> oo. 

P r o o f . Assume that {yn} is a bounded nonoscillatory solution of (E) with 
2/n_m+1_fc > 0 and yn__i > 0 for n > Nx > NQ. Lemma 1(e) implies that 
either (5) or (6) holds. If (6) holds, then the argument used in the proof of 
Theorem 4 shows that yn —> oo as n —> oo contradicting {yn} being bounded. 
Therefore (5) holds. Now Lemma 1(c) implies that if m even and 8 = + 1 or m 
is odd and 8 = — 1, then 8zn < 0 and {8zn} is increasing to zero as n —> oo. 
Since {yn} is bounded, l imsupy n = / is nonnegative and finite. If I > 0, then 

n - n • o o 

there exists an increasing sequence {n } such that nx > N1, and Uj —> oo and 
yn-k -^ / as j -> oo. Let c = P 7 + 1 < 0, e = - d / 8 > 0, d = cZ/8P7 > 0 
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and A = - 3 c / / 4 > 0. Then, there exists N2 > Nx such that 8zn. > -e and 
yn._fc > ' ~ ^ > 0 for j > N2. Hence, for j > N2 we have 

-e<8znj <ynj+P7(l-d). 

It follows that 

-y < P7l -P7d + e = (c- 1)1 - cl/4 = -X - I, 

so I + A < ynm for j > N2. This contradicts l imsupy n = / > 0. Thus, 
3 n—>oo 

lim sup yn = 0, and so yn —> 0 as n —+ oo. D 
n—>oo 

Remark . Theorem 6 generalizes Theorem 2.3 in [18] and Theorem 9 in [27]. 

EXAMPLE. If p < —1 and m is either even or odd, then equation (Ex) satisfies 
the hypotheses of Theorem 6 and has the solution {yn} = { e ~ n } . Also, if — e < 
p < — 1 and m is odd, then equation (E2) shows that under the hypotheses of 
Theorem 6, it is possible for equation (E) to have unbounded solutions. 

Remark . Equation (E3) provides examples of equations satisfying the hypothe­
ses of Theorems 5 and 6 and having oscillatory solutions. That is, under the con­
ditions given here, it is not possible to obtain results on the limiting behavior of 
all solutions of (E). 

Our next two results require a stronger condition on the function F , namely, 
that there exists a constant B > 0 such that 

\F(n,u)\ > B\u\ for all n>N0 and all u. (10) 

In addition, we ask that there exists Ps > 0 such that 

0 < P n < P 8 . (11) 

THEOREM 7. Let conditions (10) and (11) hold, m be even, and {yn} be a 
solution of (E). 

(i) If 6 = +1, then {yn} is oscillatory, 

while 

(ii) if 6 = —1 and {yn} is bounded, then either {yn} is oscillatory or yn —> 0 
as n —^ oo. 

P r o o f . Suppose {yn} is a solution of (E) such that J/n-m+i_jt > ° anc^ 
y t > 0 for n > ATj > ^ o - By part (a) of Lemma 1, {6ATn"1^n} is decreasing 
and satisfies A m _ 1 z n ~* 6L > - o o as n -> oo. If 6L < 0, then {zn} is 
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eventually negative, which contradicts (11). Hence, 8L > 0, and by (10), we 
have 

oo 

oo 

>6L + B22Vi-i' 
i=Ni 

If 8 = + 1 , Am~1zn is bounded above; if 8 = — 1, the boundedness assumption 
on yn implies that | A m - 1 z J is bounded. In either case, the series on the right 
hand side of the above inequality converges, and so yn —• 0 as n —• oo. This 
in turn implies zn, —* 0 as n —> oo. By Lemma 1(d), zn < 0 if m is even and 
8 = -f 1, so we get a contradiction in this case. • 
EXAMPLE. If m is even and p > 0, then a in equation (E3) can be chosen 
so that the hypotheses of Theorem 7 are satisfied and (E3) has the oscillatory 
solution {yn} = { ( — l ) n } . In addition, for m even, 7 = 1, and p > 0, equation 
(Ex) satisfies Theorem 7(ii) and has the bounded nonoscillatory solution {yn } = 
{e~~n} which converges to zero. Equation (E2) with m even, 7 = 1 , and p > 0 
satisfies part (ii) of Theorem 7 and has an unbounded nonoscillatory solution. 
THEOREM 8. Let conditions (10) and (11) hold, m be odd, and {yn} be a 
solution of (E). If 8 = + 1 , then either {yn} is oscillatory or yn —* 0 as n —• oo , 
while if 8 = — 1 and {yn} is bounded, then {yn} is oscillatory. 

P r o o f . As in the proof of Theorem 7, for any nonoscillatory solution {yn} 
we have y —> 0 and zn —* 0 as n —• oo. But since m is odd, if 6 = - 1 , 
Lemma 1 (d) contradicts zn > 0. • 
EXAMPLE. If m is odd, 7 = 1, and p > 0, equation ( E J satisfies the hypotheses 
of Theorem 8. Here, {yn} = {e~n} is a solution. With m odd, O = - 1 , a odd, 
and p > 0, equation (E3) satisfies Theorem 8 and has the bounded oscillatory 
solution {yn} = { ( ~ l ) n } • This also shows that the hypotheses of Theorem 8 are 
not sufficient to ensure that oscillatory solutions of (E) tends to zero as n —• oo. 

Remark. Theorem 8 generalizes Theorem 2 in [26] and part of Corollary 1(b) 
in [10]. 

EXAMPLE. As a final example, consider the equation 

A m [y n _ m + 1 + W n _J + ( - l ) / 9 (e+i r ( l -p /e )e l J + 1 — yn_fl =- 0 , n > 1+0. 
(E4) 

For any value of the nonnegative integer /3, equation (E4) has the unbounded 
oscillatory solution {yn} = { ( — l ) n e n } . Hence, by appropriately choosing the 
parity of /3, it is possible to obtain examples of equation (E) which have un­
bounded oscillatory solutions for any values of m , 8, and p. 
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3. Concluding remarks 

We conclude this paper with a few suggestions for further research. First, by 

examining Theorems 4 - 6 , we see that pn = —1 behaves as a bifurcation point 

for the behavior of nonoscillatory solutions of (E). Moreover, if pn = —1 and 

either 

(a) 8 = + 1 and m is even, 

or 

(b) 8 -= — 1 and m is odd, 

the behavior of nonoscillatory solutions, if any, is not fully understood. If (a) 

holds, then Theorem 2(i) tells us that liminf \y I = 0, and if (b) holds, Theo-
n—•oo 

rem 2(ii) says that either \yn\ —> oo as n —> oo or liminf \yn\ = 0. In fact, when 

(9) ( P 2 -̂  Pn ^ P7 < ~1) a n ( ^ either (a) or (b) holds, we are unable to rule 
out the possibility of equation (E) having a solution {yn} with l imsup \yn\ = 00 

n—•oo 

and liminf \y \ = 0 (see Theorem 6). Further study of this situation is needed. 
n—•oo 

Secondly, when pn > 1, the results here require the additional hypothe­
sis (10). Without this added condition some, albeit minimal, information about 
the behavior of solutions is obtainable from Theorem 2. It would be interesting 
to see the conclusions of Theorems 7 - 8 reached without this added assumption. 
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