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Math. Slovaca 41 , 1991. No. 4, 379-391 

STABLE AND NON-STABLE 
NON-CHAOTIC MAPS OF THE INTERVAL 

TOMAS GEDEON 

ABSTRACT. We have proved that : 

1. Every continuous piecewise monotonic non-chaotic function is stable. 

2. For any continuous piecewise monotonic function with zero entropy, every 
infinite LJ-limit set is perfect. 

1. Introduction 

This paper studies one-dimensional maps of the interval I. Such a map is 
often used as a growing model of some biological population. Two questions arise 
naturally. When the map is chaotic and how large can be the scrambled set of 
such a map? 

It is known that such a map can be of the positive Lebesque measure ([8] 
among others) but it cannot be residual on any subinterval of / ([2]). 

When the map is non-chaotic, it is interesting how stable such a predictable 
behaviour under the influence of the small perturbations is. We will answer this 
question for a large class of mappings. 

Denote by C(I, I) the class of the continuous mappings of the real compact 
interval I to itself The trajectory of x (G I) is the sequence {fn(x)}%L0 

denoted also as {x(n)}%L0 and the UJ -limit set u;/(.r) of x is the set of all limit 
points of this trajectory. 

The set of all periodic points is denoted by Per(/) and h ( / ) is the topological 
entropy of a map f. 

There is the following classification of functions f G C(I,I) ([7], [4]): 
For any / G C(I, I) one of the following conditions holds: 

(i) All trajectories are approximable by cycles, i.e. for all x and e > 0 
there exists a periodic point p such that limsup \fn(x) — fn(p)\ < e. 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 58F03, 58F13. 
K e y w o r d s : Continuous map, Trajectory, Cycles, Entropy, Scrambled set, Wandering inter­
val, Stability, Chaos 
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(ii) For some e > 0 there exists an £-scrambl d s t S (non empty an 1 
perfect), i.e. such a s t that for all x, y E S, x ^ y, and all p E Per / 

l i m s u p | / n ( x ) - / n ( y ) | > £ 
n — • o o 

l i m i n f | / n ( x ) - / n ( y ) | = 0 
n — • o o 

l i m s u p | / n ( o ; ) - / n ( p ) | > £ . 
n—>oo 

The function / possessing property (ii) is called e -ch tic 
In the present paper we will investigate the stability of continuous fun tions 

posses ing the property (i). In the whole paper only c ntinu fun 'oris \ ill b 
considered and if we say ' function / " we will in f ct mean cor tinuou functi n 

/ " • 
Now we give 

1.1. Definition. A non-chaotic function f is stable if for all e > 0 all 
trajectories of every function g sufficiently near to f are e approximable b 
cycles, i e., for every x there is a p E Per(g) sv h that 

hmSup\fn(x)-fn(p)\<e. 
n—•oo 

The main aim of this paper is to prove the following 

1.2. Theorem. E )ery piecewise monotonic non-chaotic fu ction is t bl . 

This result is completed by 

1.3. Theorem. T r exist a non-chaotic non-stable m p 

We will also prove a useful and non-trivial 

1.4. Theorem. For any piecewise monotonic function with z ro topological 
entropy, every infinite u -limit set is perfect. 

In Section 2 we recall several useful theorems kno\ n from the lit r tur , 
then in Section 3 we prove Theorem 1.4 and in Section 4 we prove Theorem 1.2. 
Finally in Section 5 we show an example of a non-chaotic non stable map 

2. Preliminary notions and constructions 

2.1. Theorem. A non-chaotic function f E C(I, I) w stable if and only if 
the following conditions hold: 

(i) Per(/) is nowhere dense (or equivalently Per(/) is of the first Baire 
category, or Per(/) does not contain an interval). 
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(ii) For any infinite u? -limit set Wf(x) and any n > 0 there exists a system 
Tn — {Jn; 1 < i: < 2n} of periodic intervals such that 

oo 2 n 

«/(*)=nur»-
n = l i = l 

P r o o f . [6], Theorem 2.2. 

2.2. Definition. Two points u,u G J are f-separable if there are disjoint 
periodic intervals JU,JV C J witfe w G Ju, v € Jv . Otherwise u,v are f-
nonseparable. 

2.3. Theorem. Let f G C(I,I). The following conditions are equivalent: 

(i) For some e. > 0, f has a nonempty perfect e -scrambled set. 
(ii) / has an infinite u> -limit set u>f(x) containing two f -nonseparable 

points. 

P r o o f of this theorem is a part of the proof of the Theorem 3 in [4]. 

2.4. Theorem. For f G C(I,I) the following conditions are equivalent: 

(i) / has a cycle of the order not a power of two. 
(ii) / has an infinite Wf(x) containing a cycle. 

P r o o f . [9]; a shorter new proof can be found in [5]. 

2.5. Definition. An interval J is called a wandering interval if J,f(J), 
/ 2 ( J ) , / 3 ( J ) , . . . are disjoint and no point from J is asymptotically periodic. 

2.6. R e m a r k . There are some different definitions of this notion but for 
our purposes this one is the most suitable, mentioned among others ,by van 
S t r i e n ([13]). 

2.7. Theorem. If f G C(I,I) is of the type 2°° (i.e. possessing cycles of 
period 2n for all n > 0 and no others) and u>f(x) is infinite, then there are 
two possibilities: 

(i) Wf(x) is a Cantor-like set (nowhere dense without isolated points). 
(ii) u?/(x) = C U { a n } , where C is a Cantor-like set and {an} are isolated 

points of the set Wf(x) . 

In the second case every interval J contiguous to C contains at most two points 
Oi,aj. If J contains at least one point a,-, then J contains a periodic point 
(otherwise J is a wandering interval and a,- ^ cof(x)). For every an there 
exists exactly one point bn G C such that Un = [an ,bn] (or Un = [6n ,an]) is a 
wandering interval and for any y G Un, wj(y) = C. 

P - o o f . See [10]. 

381 



2.8. Corollary. Keeping the notation as above, we have fk(x) $_ Un for 
any k > 0 and n > 0. 

P r o o f . Let fk(x) £ Un. Denote by y = fk(x). Then C = uf(y) = 
wf(f (x)) = tof(x) = CU {an} , which is a contradiction. D 

2.9. Definition. We call each Un an organic wandering interval and let 
U(x) = {Un} be the set of such intervals for the infinite wf(x). Now let U(f) = 
[JU(x) be the union of such sets over all x with infinite tof(x). 

2.10. Theorem. Let f be of the type 2°° . For every infinite uf(x) there 
exists a system {K^^Q , L\n = \J{J?', 0 < z < 2n — 1} where Jn are closed 
intervals such that 

(i) wf(x) C Kn = JQU- - -UJ.2n_1 , and the endpoints of Jn are contained 
in the wf(x) . 

oo 

(ii) Ifn+i ^ Kn, pi Kn = uf(x) U D; D consists of the wandering 
n=0 

intervals. 
(hi) for any i, pn(uf(x) H Jn) C Jn 

(iv) f(JDDJ^i ( mod2») 
(v) if we define Ln = {x; f2 (x) = x} , then Ln C (L\Kn) and between 

every neighbouring Jn and Jn there is at least one x £ Ln . 

P r o o f . This theorem is a straightforward consequence of Theorem 3.5 in 
[7]-

In the sequel, we will use the technique of blowing-up the orbits (see [3] among 
others) introduced by D e n j o y [1]. 

2.11. Definition. Let orb(x) = {y- fn(x) = fm(y), m,n G N} (the orbit 
of x), and borb(x) = {y; fn(y) = x, n £ N} (the backward orbit of x). 

From a given function / £ C(L, L) we can con truct a new function g £ 
C(L^ L) in the following way: If orb(.r) is countable, we replace every v £ orb x) 
by a compact interval Lv in uch a way that g(Lt) = Lf^ , the remaining traj c-
tories of other points ar unchanged. In other words we define a nondecreasm 
function r £ C(L,L) such that T(Z) = y for all z £ Ly (such a function clearly 
exists). Thus f o T = T o g . 

2.12. R e m a r k If orb (x) contain an interval, I e. /(J) y , y £ orb x), 
then we constru t the function g on J in such a way that g(J) ~ Ly . Thus 
T/J = Id. 

With thi modification we can blow-up every orb(.r) ofapiecewi e monotonic 
function. 

Now, from Theorem 2.4 and Theorem 2.10 we have the following 
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2.13. Corollary. If / is of the type 2°° and i-f(x) is infinite, then blowing-
up a countable orbit of any y G Wf(x) yields a function g with wandering 
intervals. 

2.14. Definition. Take any g G C(I,I) of the type 2°°. Denote by S the 
set of all not organic wandering intervals of g . The function J G C(I, I) of the 
type 2°° is called the basic function for function g if there exists a nondecreasing 
function r G C(I, I) such that 

(i) f OT = Tog 

(ii) the sets T(S) and r(Per(^)) contain no interval 

(hi) for every Ui G U(g) there exists Vj G U(f) such that r(U,) = Vj . 

A function of the type 2°° is called a basic function if it is the basic function 
for itself. 

2.15. R e m a r k . We will use the technique of blowing-up the orbits only 
for piecewise monotonic basic functions for which the interval of monotonicity 
cannot be a wandering non-organic interval or an interval of periodic points. 

As we will see only these cases are important for the dynamics of our system. 

3. Proof of Theorem 1.4 

It is known that a function / with h(/) = 0 is either of the type 2°° or of 
the type 2n for some n (i.e. / has cycles of order 1,2,..., 2n and no others). 
In the last case every u>-limit set is a periodic orbit (cf. [11]). 

So it suffices to consider functions of the type 2°° . Assume that such a func­
tion / has the infinite uif(x) with isolated points. Let (in notation of Theorem 
2.10) Jt

n = [zn,yn]. Comparing Theorem 2.7 (ii) and Theorem 2.10 (i) one can 
easily prove that there exist n and i, 0 < i < 2n — 1, such that zn or yn is 
an isolated point of u>f(x). Without loss of generality assume that zn is such a 
point. 

For a fixed n denote by [6,, c?x] (= [bn,dn]) the minimal closed interval which 
contains u>f(x) fl Jn \ {zi (= zn),yi (= yn)} . It is easy to see that [z^bi] is an 
organic wandering interval. According to Corollary 2.8 

x(k) £ [zi,bi] for any k G N. (1) 

Since ujf(x)C\ [zi,bi] ̂  0 and zt- is the limit point of {x(k)} there must be a 
sequence of integers {k(j)}JLl such that x(k(j)) G J/Li a n d x(k(j -f 1)) < Zi 
(see(l)). Since f(yi-i) and /(2i-i) belong to Jt

n (Theorem 2.10 (i),(iv)) there 
exists a critical point c G int Jn_1 such that f(c) < Zi. 
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Set M = {y E Jt
n; f(y) < zi} • Then c e M and it i easy to see tha t 

M fl Uf(x) = 0 . If we denote n ( l ) := n , then there exists n(2) > n ( l ) such 

tha t c will be contained in I\n(i) \Kn(2) and there exists j (0 < j < 2 n ( 2 ) - 1 

such tha t zn ' or y is an isolated point of Vf(x). We can repeat the same 

argument for n ( 2 ) . 

Set c ( l ) := c . By induction we obtain an increasing sequence {n(i)}^_i of 

integers and an infinite set {c(i)}-S1 of critical points with c(i) £ Ivn(l) 

Kn(.+i), hence a contradict ion . D 

4 . P r o o f o f T h e o r e m 1.2 

The proof of Theorem 1.2. is based on some propo itions and lemmas . 

4 . 1 . P r o p o s i t i o n . Let f £ C(I, I) be of the type 2°° , let ujf(x) be an 

infinite UJ-limit set and let y,z G ujf(x). Then the following conditions ar 

equivalent: 

(i) Points y,z are f -nonseparable (according to Theorem 2.3 / is chao­

tic). 

(ii) Interval [y, z] does not contain any periodic point. 

P r o o f . 

(i) => (ii) Let y, z G Wf(x) be / -nonsepa rab l e and as ume tha t there exi ts 
a periodic point p of order 2 n _ 1 in the interval [y, z]. Then by Theorem 2.10 on * 
can easily find intervals Ht

l D Jn , Hn D Jj1 of period 2 n such tha t y <E Hn , 
z E II; . Since p g IIn U H; , we have Hn 0 H; = 0 . 

( M ) => (i) Let y,z E Uf(x) be / - s epa rab l e ; let Hy,Hz be periodic intervals 
containing y and z , respectively, such tha t HyC\Hz = 0 . Then for some k > 0 

fk(Hy) = Hy and fk(Hz) - H . (2) 

As ume y < z . Denote by u the right endpoint of the interval H and * 
the left endpoint of the interval Hz . From (2) we obta in fk(u) < u , fk(v) > v . 
By the continuity of / there is a point p E [u,v] with fk(p) p and since b \ 
Theorem 2.4 y, z ^ P e r ( / ) , we have p G (y, z ) . n 

4 . 2 . De f in i t i on . If y E Vf(x) is both the left and the right-hand limit point 

of the set Wf(x) then y is called a point interior relative to Uf(x). Otherwise 

y G Uf(x) is an endpoint of some interval contiguous to ojf(x) ( = one sided 

limit of a>f(x)) or an isolated point of Uf(x) and we will call it a point exterior 

relative to Wf(x). 
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4.3. Proposition. Take an arbitrary basic non-chaotic function f. Let y G 

CJ/(X) and let orb/(y) be countable. We blow-up orb/(y) and obtain a function 

9-

(i) If orb/(y) is such that there exists z G orb/(y) interior relative to 
Ljf(x), then g is chaotic. 

(ii) If g has no infinite u -limit set with isolated points and if all z G 
orb/(y) C\u>f(x) are exterior relative to Uf(x), then the function g is 
non-chaotic. 

P r o o f . 

(i) Consider a point z G Wf(x) interior relative to 0Jf(x) and the correspond­
ing interval Iz . Then Iz = [z(l),z(2)] is a wandering interval (Corollary 2.13) 
of the function g and z(l),z(2) G wg(x)- Since 7 2 nPer(y) = 0, Proposition 4.1 
and Theorem 2.3 imply that g is chaotic. 

(ii) Denote by wg(z) an infinite CJ-limit set of g such that r o (wg(z)) = 
Uf(x). Since wg(z) is a Cantor-like set and all points of orb/(y) flw/(x) are 
exterior relative to u>f(x), we see that ujg(z)C\ Iv = {v} for any v G orb/(y) VI 
Ljf(x). Since / is non-chaotic, by Proposition 4.1 there exists a periodic point 
p between any two different u , u G ^/(-O and, clearly, this conclusion holds also 
for every u,v G u>g(z). Thus g is non-chaotic D 

4.4. R e m a r k . According to Theorem 1.4 g has no organic wandering in­
terval and therefore / has no wandering interval at all. Then Theorem 2.7 
implies the Cantor-like structure of any infinite u?/(x). In such a case it is easy 
to see that intervals J J1 from Theorem 2.10 are such that 

oo 2 n 

<-7(*) = П U J.n 

n = 0 t = 0 

Theorem 2.10 (v) and the definition of the basic function imply that every 
interval contiguous to LOf(x) contains a periodic point and / has no interval of 
periodic points. 

4.5. Proposition. Any piecewise monotonic function f with infinite Wf(x) 
without isolated points is non-chaotic stable. 

P r o o f . In fact, we have proved the stability of / in Remark 4.4; it suffices 
to consider Theorem 2.1. 

Since every contiguous interval contains a periodic point, [z,y] C\ Per(/) ^ 0 
for any z,y £ LOf(x). Theorem 2.3 and Proposition 4.1 imply that / is non-
chaotic. D 
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4.6. Definition. An endpoint of J n (notation of Theorem 2.10) is of the 
mth level if it is an endpoint of J™ for some i, but is an endpoint of no J* 
for k < m. 

4.7. Lemma. An endpoint of J n is mapped by a basic piecewise monotonic 
function f onto an endpoint of some J J1. 

P r o o f . Without loss of generality assume that the left endpoint a of J n 

is mapped onto some point which is interior relative to Uf(x). If / is a home-
omorphism on J n , then the endpoints of J n will be mapped to the endpoints 
of J/^ 1 . Thus / cannot be a homeomorphism on J n and there exists a critical 
point c G int J n . 

Denote by c(0) the critical point nearest to a. (Such a c(0) does exist, 
because / is piecewise monotonic). Since / is a basic function, Wf(x) is a 
Cantor-like set and it is easy to see that there exists an interval J J1 C [a, c(0)], 
a G J J1 (cf. Remark 4.4). But then / is a homeomorphism on J™ and maps 
its endpoints to endpoints of Jj^_1 and thus f(a) is an endpoint of JJ7^ - a 
contradiction. O 

4.8. Lemma. Every endpoint is mapped onto an endpoint of the same or 
higher level with a finite number of exceptions, when the level of the image is 
lower than thai of the preimage. 

P r o o f . If a is an endpoint of the level n , f(a) = 6, and b is of the m t h 
level with m < n, then a is the interior point of Jj7* for some j . (Since n > m , 
a is an endpoint of no J™). Since /(J™) D JJ+! and b = f(a) is the endpoint 
of JJ\.\ , there must exist a critical point c such that either c = a or c is 
contained in the contiguous interval of m th level, one endpoint of which is a. 

Take some other 6(1) = / ( a ( l ) ) , 6(1) of the level m(l ) > m and repeat the 
same construction. Then clearly the point c will get out of our attention and 
thus one can easily prove that there is a one to one correspondence between the 
critical points and exceptions from our "rule". Thus the number of exceptions 
has to be finite. D 

4.9. Proposit ion. Let f be a piecewise monotonic basic function and let 
u)f(x) be infinite. There is no such a y G u>f(x), that orb(y) f! Uf(x) contains 
only endpoints of the intervals J n which cover Wf(x) according to Theorem 
2.10. 

P r o o f . Suppose y G Uf(x) and OTb(y)C\u>f(x) contains only the endpoints 
of the intervals J n . Let {y_n}£L0 C Uf(x) be such a sequence that f(y-n-1) = 
y-n and yo = y . Let k be the number of exceptions for the function / according 
to Lemma 4.8. If a is of the n t h level, and f(a) is of the m t h level, m < n, 
then we say that number n — m is the depth of a jump (for a —• f(a)). 
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Denote by p the maximal depth of jumps for the function / . Assume that 
y-s has the level q . Then for m , the level of yo , we have the following estimate: 
m > q + (s — k) — kp, hence q < m + k(p + \) — s. Thus for every s > m + k(p+l), 
the level of y_5 is less than zero and this is impossible. D 

P r o o f of t h e T h e o r e m 1.2. According to Proposition 4.9 for any 
y E Wf(x) the set orb(y) CiUf(x) contains at least one point interior relative to 
ujf(x) and according to Proposition 4.3 by blowing-up the orbit of any such y 
we obtain the chaotic function. Thus if we take any piecewise monotonic function 
g of the type 2°° , g can be non-chaotic stable (if g is the basic function - cf. 
Proposition 4.5) or chaotic (if g is not the basic function we. can obtain it by 
blowing-up several orbits of the corresponding basic function / ) . There is no 
place for non-chaotic non-stable maps in this class. D 

5. Proof of Theorem 1.3 

In the last part of this paper we show an example of a non-chaotic non-stable 
map. 

Define the function / : [0,1] -+ [0,1] = J 

/(*) = 
•7-x + ^ 

3 - Ł т 9 

x Є [0, | ] 

* Є [ І §] 

ЗJ 

2 
3 ' ЗJ 

and for x E [|,1] in the following way 

/ | [ | , l ] = ^ ° ( / l [ 0 , l ] ) o r - 1 
where т(x)= ±x + 

(see Figure 1). 

Note that every point has at most three preimages and therefore we can use 
the technique of blowing-up the orbits. 

Fig. 1 
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5.1. R e m a r k . The same map was recently studied also in [12], but from a 
different point of view and for a different purpose. 

We show that / is non-chaotic stable (Proposition 5.2) and that there exists y 
such that oib(y)r\uJf(x) contains only points exterior relative to uf(x) (Propo­
sition 5.3). Blowing-up this orbit gives a function g. Proposition 5.4 shows that 
g is non-stable and Proposition 5.5 shows that g is non-chaotic. 

5.2. Proposition. The function f is non-chaotic stable. 

Proo f . Denote In = [ 1 - £ , 1], InU/(In)U- • . U / 2 " " 1 ^ ) = Kn , I\Kn = 
Nn for all n > 0 and u(f) - \J uf(x). Then 

xei 
(i) In is a periodic interval with the period 2n and f2 (In) — In , 
(ii) u>(/) n Nn = (J orb(pj), p, is a periodic point of the period 2n~l , 

*<" 
and for any x £ Nn\ Per(/) there is s such that f9(x) G I\n , 

(iii) pn | In,..., / 2 n | f2n~l(In)
 a r e linearly conjugate to / , 

is clearly true for n — 1; for n > 1 use induction. 

We see that In , / ( I n ) , . . . , f2" ~~l CM are closed intervals of the n th level in 
the construction of a Cantor set C . Thus 

oo 

c = n K»- (3) 
n = l 

Now we prove short 

Claim. Lj(f) - C U Per(/) . 

P roo f . Denote W = u>(/) \ Per(/). We show that W = C . Take arbitrary 
points x G C, y G I \ Per(/) and fix some e > 0. We show that there is an r 
such that 

\f(y) -x\<e. (4) 

Take n sufficiently large such that |In | < e and denote by L — /*(In) 3 
x. According to (ii) there exists a(l) such that fa^l\y) G A'i , further there 
exists a(2) such that / a ^ + a ^ ( y ) GA'2, . . . , and there exists a(n) such that 
yra(n)+...+a(i)^y) £ ^ n S i n c e j n h a s t h e pei'lo^ 2n , there is j < 2n such that 

ja(n) + ...+a(l)+j(y) G L , T a k e r _ fl(n) + . . . + a ( l ) + j . Such an T fulfils (4) 

and therefore C G W. The inclusion VV C C is trivial. D 

Now take x,y G C, x ^ y and choose m such that |Im | < \T~y\ . Then 

by Claim there exist integers i,j , i ^ j , such that x G fl(Im) V E / J(Im), 
0 _ i, j < 2m . According to Theorem 2.3 / is non-chaotic. 

Since Per(/) is countable (and hence of the first category) and property (ii) 
from the Theorem 2.1 also holds (see (3)), Theorem 2.1 implies stability of / . 
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5.3. Proposition. Let f be the above quoted function and C its Cantor 
LO -limit set. Then the orbit of any point exterior relative to C contains no point 
interior relative to C. 

P r o o f . Denote by L(n) (R(n)) the set of the left (right) endpoints of 
component intervals of Kn and let I(n, k) := fk(Ln) for k > 0. Clearly L(\) C 
L(2)C., I?(1)CIZ(2)C. . 

Take some I(n, k) . Then I(n, k) is mapped onto I(n, 0) after at most 2n — 1 
iterates. Notice that the right endpoint of I(n, k) is mapped onto the right 
endpoints of the intervals I(n, k + 1 ) , . . . , I(n, 2 n _ 1 ) since / is increasing on all 
intervals of the set Kn \ I(n, 0) . 

What can we say about the image of 7(n, 0) ? 

The right endpoint is mapped onto zero, which is the left endpoint of I(l, 1) 
and the left endpoint is mapped onto the left endpoint of the interval 
I(n + l , 2 n + 1) C Ifn+i • Roughly speaking / is such that 

> R(n) -> R(n - 1) -> > R(\) -> L(\) -> L(2) -> > L(n) - > . . . , 

where A —> B means that any point x from A is mapped onto a point from B 
after the finite number of iterates. 

Consider the backward orbit of an arbitrary point exterior relative to C. 
Such a point has exactly two preimages, one of which belongs to C and the 
other to some Nn . Denote the last one by a. Since C is an invariant set, 
borb(a) fl C = 0. Thus the orbit of any point exterior relative to C contains no 
point interior relative to C . Q 

5.4. Proposition. Blowing-up orb(l) gives a function g, which is non­
stable if it is non-chaotic. 

P r o o f . Define / : [-f, f ] = I -> I such that f(x) = f(x) for all x G [0,1], 
/ is continuous on I and constant on both intervals [— f ,0] and [1, f ] . Let us 
blow-up the orbit of the point 1 in such a way that all points of the Cantor 
set C C [0,1] (C is the infinite attractor of / ) remain unchanged and still 

Denote by r the corresponding semiconjugacy, i.e. T o g(x) = f OT(X) for all 
x. Thus T(X) = x for all x G C and if we take y = T(Z) where z is such that 
Wf(z) = C, then C = ug(y). 

This condition can be fulfilled because orb(l) contains only the endpoints of 
intervals contiguous to C and we can blow-up "into" interiors of these intervals. 
In other words for any contiguous interval (ai,a2) there exist Si,S2 such that 
r(ai,ai -T-Si) = T(a\) = ai and T(a2 — S2,a2) = r(a2) = a2 (with some modifi­
cation for the intervals [-f, 0], [1, f ] ). Recall the notation from Proposition 5.3: 
I(n, 0) = In , I(n, k) = fk(L(n, 0)), and let I(n, t) = [x(i), y(i)]. Fix n > 0. 
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Take Pn = {P(n,i); 0 < i < 2n — 1} an arbitrary system of periodic intervals 
of period 2 n covering the infinite ug(y) = C. Then clearly in a suitable notation, 
P(n,i) D / (n , i ) for all n and all i. We show that also /x(,) U /-,(,) C P(n,i) 
holds. 

Take v = 1 — :^nn". Then v 6 in t ( / (n , i ) ) , / (u) = y(l) is an endpoint of 
/ ( n , l ) and / ( / (n ,0 ) ) = / ( n , 1), / (P (n ,0 ) ) = P(n, 1), P(n ,0) D / ( n , 0 ) . Thus 
P(n, 1) D / (n , 1) U /y(i). The periodicity of P(n, i) and the fact that y(l) after 

2 n - l 
at most 2 n + 1 iterates is mapped onto each endpoint of the set Kn = | J / ( n , i ) 

t=0 
implies 

P ( n , i ) D / ( n , O U / l ( 0 U / y ( l ) . (5) 

oo oo 

But then f] pn D orb( / a ) . Clearly ug(y)C f] Pn and ^ ( y ) n i n t o r b ( / ! ) = 0 
n = l n = l 

(every interval contained in the intorb(/ i) is a wandering interval). Thus (5) 
implies 

C\PnD u>g(y) 
n = l 

and Theorem 2.1 finishes the proof. B 

5.5. Proposition. Function g is non-chaotic. 

P r o o f . It is easy to see that (i) and (ii) from the proof of the Proposition 
5.2 imply that wg(y) has no isolated points. 

Now / is the basic function for g and to finish the proof it suffices to consider 
Proposition 4.3 (ii). B 
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