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VALERIU POPA*) — TAKASHI NOIRI**) 

(Communicated by Ladislav Misik) 

ABSTRACT. N e u b r u n n [14] defined a multifunction F: X - • Y to be upper 
(lower) a-continuous if F+(V) (F~(V)) is a-open in X for every open set V 
of Y. In this paper, we obtain several characterizations and some basic properties 
concerning upper (lower) a-continuous mult if unctions. An improvement of [14, 
Theorem 1] is given as follows: if a multifunction is lower a-continuous and upper 
/3-continuous, then it is lower weakly continuous (Theorem 4.3). 

1. Introduc t ion 

In 1965, N j a s t a d [15] introduced a weak form of open sets called a-sets. 
In 1982, the second author [18] of the present paper defined a function from a 
topological space into a topological space to be strongly semi-continuous if the 
inverse image of each open set is an a-set. M a s h h o u r e t a 1. [12] called 
strongly semi-continuous functions a-continuous and obtained several proper­
ties of such functions. In 1986, N e u b r u n n [14] extended these functions to 
multifunctions and introduced the notion of upper (lower) a-continuous multi-
functions. The purpose of the present paper is to obtain several characterizations 
of upper (lower) a-continuous multifunctions and some basic properties of such 
multifunctions. 

2. Preliminaries 

Let X be a topological space and A a subset of X. The closure of A and the 
interior of A are denoted by C\(A) and Int(A), respectively. A subset A is said 
to be a-open [15] (resp. semi-open [7], preopen [11]) if A C Int (CI ( int(A))) 
(resp. A C CI (int(A)) , A C Int (Cl(A)) ). The family of all a-open (resp. semi-
open, preopen) sets in X is denoted by a(X) (resp. SO(X) , P O ( X ) ) . For these 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54C60. 
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three families, it is shown in [19, Lemma 3.1] that a(X) = S O ( X ) n P O ( X ) . Since 
a(X) is a topology for X [15, Proposition 2], by aCl(^4) we shall denote the 
closure of A with respect to a(X). A subset A is called an a-neighbourhood 
of a point a; in I if there exists U e a(X) such that x e U C A. The 
complement of a semi-open (resp. a-open) set is said to be semi-closed (resp. 
a-closed). The intersection of all semi-closed sets of X containing A is called 
the semi-closure [3] and is denoted by sCl(^l). The union of all semi-open sets of 
X contained in A is called the semi-interior of A and is denoted by slnt(yl). 
A subset A is said to be feebly open [10] if there exists an open set U such that 
U C A C sCl(U). The complement of a feebly open set is called feebly closed. 
Since sCl(U) = Int(Cl(J7)) for any open set U [4, Lemma 2.1], it follows from 
[19, Lemma 4.12] that the notion of feebly open sets is equivalent to that of 
a-open sets. 

LEMMA 2 . 1 . The following are equivalent for a subset A of a topological 
space X : 

(a) Aea(X). 

(b) U C A C Int(Cl(U)) for some open set U . 
(c) U C Ac sCl(U) for some open set U. 
(d) A C sCl(Int(A)) . 

P r o o f . This follows from [4, Lemma 2.1], [19, Lemma 4.12] and 
[23, Theorem 1]. 

LEMMA 2.2. The following properties hold for a subset A of a topological 
space X: 

(a) A is a-closed in X if and only if slnt(C\(A)) C A; 

(b) sInt(Cl(,4)) = Cl(lnt (Cl(,4))) ; 

(c) a C\(A) = AU Cl(lnt (Cl(,4))) . 

P r o o f . This follows from [23, Theorem 2], [4, Lemma 2.1] and [1, Theo­
rem 2.2]. 

M a h e s h w a r i and J a i n [8] defined a function to be feebly continuous if 
the inverse image of every open set is feebly open. However, we realize that feeble 
continuity is equivalent to a-continuity [12], that is, strong semi-continuity [18]. 
Throughout this paper, (X, r ) and (Y, a) (or simply X and Y) always mean 
topological spaces and F: X —» Y (resp. / : X —• Y) presents a multivalued 
(resp. single valued) function. For a multifunction F: X —• Y, we shall denote 
the upper and lower inverse of a set G of Y by F+(G) and F~(G), respectively, 
that is, 

F+(G) = {x e X I F(x) C G} and F~(G) = {x e X \ F(x) n G ^ 0} . 
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3. Characterizations 

DEFINITION 3 .1 . A multifunction F: X -+Y is said to be 

(a) upper a-continuous at a point x of X if for any open set V of Y such 
that F(x) C V. there exists U G OL(X) containing x such that F(U) C V; 

(b) lower a-continuous at x £ X if for any open set V of Y such that 
F(x) n y ^ - O , there exists U G OL(X) containing x such that F(u) n V 7-= 0 for 
every u G U; 

(c) upper (resp. lower) a-continuous [14] if it is upper (resp. lower) 
a-continuous at every point of X. 

THEOREM 3 .1 . The following are equivalent for a multifunction F: X —» Y : 

(a) F is upper a-continuous at a point x of X . 
(b) x G sCl(lnt (F+(V))) for any open set V of Y containing F(x). 

(c) For any U G SO(X) containing x and any open set V of Y con­
taining F(x), there exists a nonempty open set Uv of X such that 
Uv C U and F(UV) C V. 

P r o o f . 

(a) ==->> (b) . Let V be any open set such that F(x) C V. Then there exists 
U G a(X) containing x such that F(U) C V; hence x G U C F+(V). Since U 
is a-open, by Lemma 2.1 we have 

xeUc sCl(lnt(U)) C sCl(lnt (F+(V))) . 

(b) ==> (c). Let V be any open set of Y such that F(x) C V. Then 

x G sCl(lnt ( F + ( V ) ) ) . Let U be any semi-open set containing x. Then 

U n Int(F+(V)) ^ 0 [17, Lemma 3] and U D I n t ( F + ( V ) ) G SO(X) [16, 

Lemma 1]. Put Uv -= Int[U n I n t (F + (V) ) ] , then Uv is a nonempty open 

set of Y [16, Lemma 4], Uv C U and F(UV) C V. 

(c) => (a) . Let SO(X, x) be the family of all semi-open sets of X contain­
ing x. Let V be any open set of Y containing F(x). For each U G SO(X, x), 
there exists a nonempty open set Uv such that Uv C U and F(UV) C V. 
Let W = \J{UV I U G S O ( X , x ) } . Then W is open in X , x G sCl(W) 
and F(W0 C V. Put S = WU{x}, then W C 5 C sCl(W). Therefore, 
by Lemma 2.1 x G 5 G a ( X ) and F ( 5 ) C V . This shows that F is upper 
a-continuous at x. 

THEOREM 3.2. The following are equivalent for a multifunction F: X —* Y : 

(a) F is lower a-continuous at x G X . 
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(b) x £ sCl(lnt (F~(V))) for any open set V of Y such that F(x) n V 

¥=<&• 
(c) For any U E SO(X) containing x and any open set V of Y such 

that F(x) Pi V 7-= 0 . there exists a nonempty open set Uy such that 
F(u) H V ^ 0 for every u G Uy and Uv C U. 

P r o o f . The proof is similar to that of Theorem 3.1, 

THEOREM 3.3. The following are equivalent for a multifunction F: X -+Y : 

(a) F is upper a-continuous. 
(b) F+(V) G a(X) for any open set V of Y . 
(c) F~(V) is a-closed in X for any closed set V of Y. 
(d) sInt(Cl (F~(B))) C F~ (C\(B)) for any set B of Y . 

(e) aC\(F'(B)) C F~(C\(B)) for any set B of Y . 

(f) For each point x of X and each neighbourhood V of F(x), F+(V) 
is an a-neighbourhood of x . 

(g) For each point x of X and each neighbourhood V of F(x), there 
exists an a-neighbourhood U of x such that F(U) C V. 

P r o o f . 

(a) ==-> (b) . Let V be any open set of Y and let x G F+(V). By Theorem 
3.1, x G sCl(lnt (F+(V))) . Therefore, we obtain F+(V) C sCl(lnt (F+(V))) . 
It follows from Lemma 2.1 that F+(V) € a(X). 

(b) <«==> (c). This follows from the fact that F+(Y - B) = X - F~(B) for 
any subset B of Y. 

(c) :=> (d). Let B be any subset of Y. Then F~ (C\(B)) is a-closed in 
Y. By Lemma 2.2, we have 

s I n t ( C l ( F - ( S ) ) ) C s I n t ( C l ( F - ( C l ( B ) ) ) ) C F~ (C\(B)) . 

(d) •=> (e). Let B be any subset of Y. By Lemma 2.2, we have 

aC\(F~(B)) =F-(B)UsInt(C\(F-(B))) CF~(C\(B)). 

(e) --=> (c). Let V be any closed set of Y. Then we have 

aC\(F~(V)) C F~(C\(V)) = F~(V). 

This shows that F"(V) is a-closed in X. 

(b) = > (f). Let x G -K and V be a neighbourhood of F(x). Then there 
exists an open set G of Y such that F(x) C G C V . Therefore we obtain 
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x e F+(G) C F+(V). Since F+(G) E a(X), F+(V) is an a-neighbourhood 
of x. 

(f) ======> (g). Let x e X and V be a neighbourhood of F(x). Put J7 = 
F+(V), then U is an a-neighbourhood of x and F(U) C V. 

(g) ==I> (a) . Let x e X and V be any open set of Y such that F(x) C V. 
Then V is a neighbourhood of F(x). There exists an a-neighbourhood U of x 
such that F(U) C V. Therefore, there exists A G a(X) such that x e A C U; 
hence F(A) C V. 

THEOREM 3.4. The following are equivalent for a multifunction F: X —* Y : 

(a) F is lower a-continuous. 
(b) F~(V) e a(X) for any open set V of Y. 
(c) F+(V) is a-closed in X for any closed set V of Y. 

(d) sInt(Cl (F+(B))) C F+(C\(B)) for any subset B of Y . 

(e) aC\(F+(B)) C F+(Cl(BJ) for any subset B of Y . 

(f) jP(aCl(i l)) C C\(F(A)) for any subset A of X . 

(g) F(s lnt (C1(A))) C Cl(.F(i4)) for any subset A of X . 

(h) F(C\ (Int (C\(A)))) C C\(F(A)) for any subset A of X . 

P r o o f . The proofs except for the following are similar to those of Theo­
rem 3.3 and are thus omitted. 

(e) => (f). Let A be any subset of X. Since A C F+ (F(A)), we have 

aCl(-A) C aCl(F+(F(A))) C F+(C1 (F(A))) and F(aC\(A))cC\(F(A)). 

(f) => (g). This follows immediately from Lemma 2.2. 

(g) => (h) . This is obvious by Lemma 2.2. 

(h) ==> (a) . Let x e X and V be any open set such that F(x) n V ^ 0. 
Then x e F"(V). We shall show that F"(V) e a(X). By the hypothesis, we 
have 

F(C\ (Int (CI (F+(Y - V))))) C C\(F(F+(Y - V))) cY-V, 

and hence Cl(lnt (CI (F+(Y - V)))) C F+(Y - V) = X - F~(V). Therefore, 
we obtain F~(V) C Int(Cl ( in t (F~(V)))) and hence F~(V) e a(X). Put 
U = F~(V). We have xeU e a(X) and F(u) n V ^ 0 for every ueU. Thus 
F is lower a-continuous. 

DEFINITION 3.2. A function f:X—>Y is said to be a-continuous [12] (resp. 
feebly continuous [8], semi-continuous [7]) if for every open set V of Y, f~x(V) 
is a-open (resp. feebly open, semi-open) in X. 
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COROLLARY 3 .1 . ( P o p a [23], M a s h h o u r e t a l . [ l 2 ] ) . The following 
are equivalent for a function f: X —> Y : 

(a) / is feebly continuous. 
(b) / is a-continuous. 
(c) / - 1 ( V ) is a-closed in X for every closed set V of Y . 
(d) slnt(C\(f-1(B))) cf'^C^B)) for subset B of Y . 

(e) aC^f-^B)) C / ^ ( C K B ) ) for any subset B of Y . 

(f) For each x G X and each neighbourhood V of f(x). f~x(V) is an 
a-neighbourhood of x. 

(g) For each x G X and each neighbourhood V of f(x). >there exists an 
a-neighbourhood U of x such that f(U) C V. 

(h) f(aC\(A)) C C1(/(.A)) for any subset A of X . 

(i) / ( s ln t (C\(A))) C C\(f(A)) for any subset A of X . 

(j) / (CI (Int (C\(A)))) C C\(f(A)) for any subset A of X . 

A multifunction F: X —» Y is said to be upper quasi continuous [24] (resp. 
lower quasi continuous) if for each x G l , each open set U containing x and 
each open set V of Y such that F(x) C V (resp. F(x) H V ^ 0 ) , there exists 
a nonempty open set G C U such that J F ( G ) C V (resp. F(^) n V ^ 0 for 
every g G G ) . A multifunction F: X —• y is said to be upper precontinuous 
[25] (resp. lower precontinuous) if F+(V) G PO(X) (resp. ^"(17) G P O ( X ) ) 
for every open set V of Y. 

THEOREM 3.5. A multifunction F: X —> Y is upper a-continuous (resp. 
lower a-continuous) if and only if it is upper quasi continuous (resp. lower quasi 
continuous) and upper precontinuous (resp. lower precontinuous). 

P r o o f . This follows from [24, Theorem 4.1] and [19, Lemma 3.1]. 

COROLLARY 3.2. ( N o i r i [19]). A function f:X—>Y is a-continuous if 
and only if it is precontinuous and semi-continuous. 

DEFINITION 3.3. A subset A of a topological space X is said to be 
a-paracompact [27] if every cover of A by open sets of X is refined by a cover 
of A which consists of open sets of X and is locally finite in X . 

DEFINITION 3.4. A subset A of topological space X is said to be a-regular 
[6] if for each point x € A and each open set U of X containing x . there exists 
an open set G of X such that x G G C C1(G) C U. 

LEMMA 3 .1 . ( K o v a c e v i c [6]). If A is an a-regular a-paracompact subset 
of a topological space X and U is an open neighbourhood of A, then there exists 
an open set G of X such that A C G C C1(G) C U. 
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A multifunction F: X —•> Y is said to be punctually a-paracompact (resp. 
punctually a-regular) if for each x £ X , F(x) is a-paracompact (resp. 
a-regular). By aCl(F ' ) : X —* Y , we shall denote a multifunction defined as 
follows: [a C\(F)] (x) = a C\(F(x)) for each point x eX . 

LEMMA 3.2. If F: X —> Y is punctually a-regular and punctually a-para­

compact, then [aCl(jP)] (V) = F+(V) for every open set V of Y . 

P r o o f . Let V be any open set of Y and x G [a C\(F)] +(V). Then 

a C l ( F ( x ) ) C V and hence F(x) C V. Therefore, x G F+(V) and hence 

[aC\(F)]*(V) C F+(V). Conversely, let V be any open set of Y and 

x G F+(V). Then i r(x) C V. Since F(x) is a-regular and a-paracompact, 

by Lemma 3.1 there exists an open set G such that F(x) C G C C1(G) C V; 

hence aC l (F (x ) ) C C1(G) C V . This shows that x e [aCl(F)] + (V) and hence 

F+(V) C [aC\(F)] + (V). Consequently, we obtain [aC\(F)] + (V) = F+(V). 

THEOREM 3.6. Let F: X —» Y be punctually a-regular and punctually 
a-paracompact. Then F is upper a-continuous if and only if a C1(F): X —> Y 
is upper a-continuous. 

P r o o f . 

Necessity. Suppose that F is upper a-continuous. Let x G X and V be any 
open set of Y such that aC l (F ) (x ) C V. By Lemma 3.2, we have 
x G [aCl(F)] (V) = F+(V). Since F is upper a-continuous, there exists 
U G a(X) containing x such that F(U) C V. Since F(u) is a-paracompact 
and a-regular for each u G U, by Lemma 3.1 there exists an open set H such 
that F(u) C H C C1(H) C V. Therefore, we have aC\(F(u)) C C1(H) C V 
for each u G U and hence aCl(F ')(U) C V . This shows that aCl(F ' ) is upper 
a-continuous. 

Sufficiency. Suppose that a C l ( F ) : X —> Y is upper a-continuous. Let 
x G X and V be any open set of Y such that F(x) C V . By Lemma 3.2, 

we have x G F+(V) = [aC\(F)] + (V) and hence aCl(F)(a?) C V. Since 
a Cl(F') is upper a-continuous, there exists U G a(X) containing x such that 
aCl(F)(U) C V'; hence F(U) C ^ . This shows that F is upper a-continuous. 

LEMMA 3 .3 . For a multifunction F: X —*Y, it follows that for each a-open 

setV ofY [aC\(F)]~(V) = F~(V). 

P r o o f . Suppose that V is any a-open set of Y . Let x € [a C1(F)] ~ (V). 

Then aC\(F(x)) n V ^ 0 and hence F(x) H V ^ 0. Therefore, we obtain 

483 



VALERIU POPA — TAKASHI NOIRI 

x E F~(V). This shows that [aCl(F)]~(V) C F~(V). Conversely, let 

x E F~(V). Then we have 0 ^ F(x) n V C aCl(F(x)) n V and hence 

x E [aCl(F)]~(V). This shows that F~(V) C [aC\(F)]~(V). Consequently, 

we obtain [a Cl(F)] ~ (V) = F~ (V). 

THEOREM 3.7. A multifunction F: X —• Y is lower a-continuous if and only 
if a C1(F): X —> Y is lower a-continuous. 

P r o o f . By utilizing Lemma 3.3, this can be proved similarly to that of 
Theorem 3.6. 

For a multifunction F: X —• Y, the graph multifunction GF: X —• X x Y 
is defined as follows: GF(x) = {x} x F(x) for every x E X. 

LEMMA 3.4. The following hold for a multifunction F: X —> Y : 

(a) G+(AxB) = AnF+(B), 

(b) Gp(AxB) = AnF~(B), 

for any subsets Ac X and B CY. 

P r o o f . We shall prove only (b). Let A and B be any subsets of X and 
Y, respectively. Let x E G^(A x B). Then 

0 ^ GF(x) n(AxB) = ({x} x F(x)) n(AxB) = ({x} n A) x (F(x) n B). 

Therefore, we have x E A, and F(x) f l . 5 ^ } and hence x e An F~(B). 
Conversely, let x £ An F~(B). Then x G A, and F(x) n B ^ 0 and hence 
G F ( X ) n (A x B) 7-- 0. Therefore, xeGp(Ax B). This completes the proof. 

THEOREM 3.8. Let F: X —>Y be a multifunction such that F(x) is compact 
for each x E X. Then F is upper a-continuous if and only if GF : I - ^ I x F 
is upper a-continuous. 

P r o o f . 

Necessity. Suppose that F: X —> Y is upper a-continuous. Let x € X and 
W be any open set of X x Y containing GF(x) . For each y E F{x) , there exist 
open sets U(y) C X and V(y) C Y such that (x,y) E U(y) x V(y) C W. The 
family {V(y) \ y E F(x)} is an open cover of F(x) and there exist a finite 
number of points, say, yi, y2, • • •, Vn in F(x) such that F(x) C \J{V(yi) \ 1 _ 
t = n} . Set U = f]{U(yi) | 1 = t = n} and V = \J{V(yi) \ l = i = n}. Then 
U and V are open in X and y , respectively, and {x} x F(x) CU xV CW. 
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Since F is upper a-continuous, there exists Uo £ a P 0 containing x such that 
F(U0) C V. By Lemma 3.4, we have 

unu0cun F+(V) = G+(U xV)c G+(W). 

Therefore, we obtain U n U0 G a(X) and GF(U nU0) CW. This shows that 
Gp is upper a-continuous. 

Sufficiency. Suppose that Gp: X —• X x Y is upper a-continuous. Let 
x G X and V be any open set of Y containing F(x). Since X x V is open in 
X xY and Gp(x) C X x V, there exists U G a(X) containing x such that 
GF(U) C X x V. Therefore, by Lemma 3.4, U C G^(X x V) = F+(V) and 
hence F(U) C V. This shows that F is upper a-continuous. 

THEOREM 3.9. A multifunction F: X —+Y is lower a-continuous if and only 
if Gp' X —> Y is lower a-continuous. 

P r o o f . 

Necessity. Suppose that F is lower a-continuous. Let x € X and W be any 
open set of X x Y such that Gp(x) H W ^ 0 . There exists y G F(x) such that 
(x, y) G W and hence (x, y) G U x V" C W for some open sets U C X and 
V C Y. Since F(x) n V ^ 0, there exists Uo € c^PO containing x such that 
F(u) n V ^ 0 for each u G Uo ; hence U0 C -F"(V) . By Lemma 3.4, 

U n U0 c U n F-(V) = Gp(u xV)c G^(W). 

Moreover, x G U n Uo G « (X) and hence G^ is lower a-continuous. 

Sufficiency. Suppose that Gp is lower a-continuous. Let x G X and V be 
an open set in Y such that -F(x) n V ^ - 0 . Then X x 17 is open in X x Y and 

G F (x ) n (X x V) = ({x} x F(x)) n ( X x 7 ) = {x} x (F(x) n y ) ^ 0. 

There exists U G a(.X") containing x such that Gp(u) H (-X" x V) ^ 0 for each 
u G U. By Lemma 3.4, we obtain U C Gp(X x V) = F (V). This shows that 
F is lower a-continuous. 

COROLLARY 3.3 . ( H a s a n e i n e t a l . [5]). A function f: X —> Y is 
a-continuous if and only if the graph map gf.X —> -K x Y, defined by 
gf(x) = ( x , / (x ) ) / o r every x E l , is a-continuous. 

4. S o m e p r o p e r t i e s 

The following lemma was shown by M a s h h o u r e t a 1. [12] and R e i 11 y 
and V a m a n a m u r t h y [26]. 
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LEMMA 4 . 1 . Let A and B be subsets of a topological space X . 

(a) If Ae SO(X) U PO(X) and B e a(X), then An Be a(A). 
(b) If ACB CX, Ae a(B) and B e a(X), then A e a(X). 

THEOREM 4 . 1 . If a multifunction F: X —> Y is upper a-continuous (resp. 
lower a-continuous) and X0 e PO(X) U S O ( X ) ; then the restriction 
F\X : X0 —> Y is upper a-continuous (resp. lower a-continuous). 

P r o o f . We prove only the assertion for F upper a-continuous, the proof 
for F lower a-continuous being analogous. Let x e X0 and V be any open set of 

Y such that (F\X )(x) C V. Since F is upper a-continuous and (F\X )(x) = 

F(x), there exists U e a(X) containing x such that F(U) C V. Set U0 = 

f / n l 0 , then by Lemma 4.1 we have x eU0 e a(X0) and (F\x )(U0) C V. 

This shows that F\x is upper a-continuous. 

THEOREM 4.2. A multifunction F: X —> Y is upper a-continuous (resp. 
lower a.-continuous) if for each x e X there exists X0 e a(X) containing x 
such that the restriction F\x : X0 —> Y is upper a-continuous (resp. lower 
a-continuous). 

P r o o f . We prove only the assertion for F upper a-continuous, the proof 
for F lower a-continuous being analogous. Let x e X and V be any open set of 
Y such that F(x) C V. There exists X0 e a(X) containing x such that F\x 

is upper a-continuous. Therefore, there exists U0 € &(X0) containing x such 

that (F\XQ)(U0) C V. By Lemma 4.1, U0 e a(X) and F(u) = (F\XQ)(U) for 

every u e U0 . This shows that F: X —> Y is upper a-continuous. 

COROLLARY 4 . 1 . Let {Ua | a e V} be an a-open cover of X. A mul­

tifunction F: X —> Y is upper a-continuous (resp. lower a-continuous) if 

and only if the restriction F\JJ : Ua —» Y is upper a-continuous (resp. lower 

a-continuous) for each a e V . 

P r o o f . This is an immediate consequence of Theorems 4.1 and 4.2. 

COROLLARY 4.2. ( M a s h h o u r e t a l . [12]). Let {Ua | a e V} be an 
a-open cover of X. A function f:X—*Y is a-continuous if the restriction 
f\jj : Ua -*Y is a-continuous for each a e V . 

A b d E 1 -M o n s e f e t a 1. [13] defined a subset A of a topological space 
X to be (3-open if A C Cl(lnt (Cl(;4))) . The family of /3-open sets of X 
contains YO(X) and SO(X) . 
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DEFINITION 4 . 1 . A multifunction F: X —>Y is said to be 

(a) upper ^-continuous [21] if for each x E X and each open set V of 
Y such that F(x) C V there exists a (3-open set U containing x such that 
F(U)aV; 

(b) lower (^-continuous [21] if for each x E X and each open set V of Y 
such that F(x) H V 7-- 0 there exists a /3-open set U containing x such that 
F(u) n V 7-- 0 for every u eU. 

R e m a r k 4.1. For a multifunction F: X —•» Y, the following implications 
hold: . 

upper a-continuity 

upper quasi-continuity upper precontinuity 

upper /3-continuity 

LEMMA 4.2. ( N o i r i a n d P o p a [21]). A multifunction F: X —> Y is 
upper (5-continuous (resp. lower (3-continuous) if and only if 

Int(Cl (Int (F~(B)))) C F " (C1(B)) 

(resp. Int(Cl (Int (F+(B)))) C F+(Cl(B)) ) 

for every subset B of Y . 

DEFINITION 4.2. A multifunction F: X —>Y is said to be 

(a) upper weakly continuous [22] if for each x E X and each open set V 
of Y such that F(x) C V, there exists an open set U containing x such that 
F(U) C C\(V) ; 

(b) lower weakly continuous [22] if for each x G l and each open set V of 
Y such that F(x) f l V 7 - 0 , there exists an open set U containing x such that 
F(u) n Cl(tO 7-- 0 for every ueU . 

THEOREM 4 .3 . If a multifunction F: X —• Y is lower a-continuous and 
upper /3-continuous, then it is lower weakly continuous. 

P r o o f . Let V be any open set of Y. Since F is lower a-continuous, 
F~(V) E ct(X) by Theorem 3.4. Since F is upper /3-continuous, by Lemma 4.2 
we have 

F~(V) C Int(Cl (Int (F~(V)))) C .F~(C1(^)) . 

Therefore, we obtain F~(V) C Int(F~ (Cl(V))). It follows from [22, Theorem 4] 
that F is lower weakly continuous. 

487 



VALERIU POPA — TAKASHI NOIRI 

COROLLARY 4 .3 . ( N e u b r u n n [14]). If a multifunction is lower a-conti-
nuous and upper quasi-continuous, then it is lower weakly continuous. 

THEOREM 4.4. If a multifunction F: X —> Y is upper a-continuous and 
lower (3-continuous, then it is upper weakly continuous. 

P r o o f . Let V be any open set of Y. By Theorem 3.3 and Lemma 4.2, we 
have 

F+(V) C Int(Cl (Int (F+(V)))) C F+ (C\(V)) . 

Therefore, we obtain F+(V) C Int(F+ ( C\(V))) . It follows from [22, Theorem 6] 
that F is upper weakly continuous. 

COROLLARY 4.4. ( N e u b r u n n [14]). If a multifunction is upper a-continu­
ous and lower quasi-continuous, then it is upper weakly continuous. 

A topological space X is said to be a-compact [9] if every a-open cover of 
X has a finite subcover. 

THEOREM 4.5 . Let F: X —• Y be an upper a-continuous surjective multi­
function such that F(x) is compact for each x E X. If X is a-compact, then 
Y is compact. 

P r o o f . Let {Va \ a E V} be an open cover of Y. For each x G l , F(x) 

is compact and there exists a finite subset V(x) of V such that F(x) C \J{Va \ 

a E V(x)} . Set V(x) = IJ{^a I a E V(x)} . Since F is upper a-continuous, 

there exists U(x) E OL(X) containing x such that F(U(x)) C V(x). The family 

{Z7(x) | x E X} is an a-open cover of X and there exist a finite number 

of points, say, x i , X 2 , . . . , x n in X such that X — \]\U(x\) \ 1 ^ i ^ n} . 

Therefore, we have 

Y = F(X) = F MJ U{xi) = (J F{U(Xi)) c (J V(Xi) = (j [}Va. 
\i=l / 2=1 i=l i=l aeV(xi) 

This shows that Y is compact. 

COROLLARY 4.5 . ( N o i r i a n d D i M a i o [20]). If X is a-compact and 
f: X —> Y is an a-continuous surjection, then Y is compact. 

For a multifunction F: X —> Y, the graph G(F) of F is defined as follows: 
G(F) - {(x,y) | x E X and y E F(x)} . 

488 



ON UPPER AND LOWER a-CONTINUOUS MULTIFUNCTIONS 

THEOREM 4.6. If F: X —>Y is an upper a-continuous multifunction into a 
Hausdorff space Y and F(x) is compact for each x G X , then the graph G(F) 
is a-closed in X xY. 

P r o o f . Let (x,y) G XxY-G(F). Then y G Y-F(x). For each oG F(x), 
there exist open sets V(a) and W(a) containing a and ?/, respectively, such 
that V(a) fl W(a) = 0. The family {V(a) | a G -F(x)} is an open cover of 
F(x) and there exist a finite number of points in F(x) , say, a i , a 2 , . . . , an such 
that F(x) C ( J { ^ ( a i ) I 1 = * = n } - S e t V = U { ^ ( « i ) I 1 = i = n} and 
IV = n { ^ ( a « ) I 1 = z = n } • Since F(x) C V and F is upper a-continuous, 
there exists U G a ( X ) such that x G U and P\U) C V. Therefore, we obtain 
F(U) n TV = 0 and hence (U x TV) n G(F) = 0. Since U x TV is a-open in 
X x y and (x,y) G U x TV, (x,y) ^ a C l ( G ( F ) ) and G(F) is a-closed in 
XxY. 

THEOREM 4.7. If F,G: X —> y are tapper a-continuous and Y is Hausdorff, 
then A = {x G X | F(x) fl G(x) ^ 0} is a-closed in X . 

P r o o f . A multifunction F: (X, r ) —> (y, a) is upper a-continuous if and 
only if Fa: ( X , r a ) —> (y,cr) is upper semi-continuous, where Fa is the multi­
function defined by Fa(x) = F(x) for every x G X and r a denotes the family 
of a-open sets of (X, r ) . Since (y, o") is Hausdorff, 4̂ is closed in (X, Ta) [2, 
Theorem 3.3]. Therefore, A is a-closed in (X, r ) . 

COROLLARY 4.6. (N o i r i [19]). If f,g: X —• y are a-continuous and Y is 
Hausdorff, then the set {x G X | / ( # ) = p(-c)} is a-closed in X. 
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