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A CONSTRUCTION OF GEODETIC BLOCKS 

PA VOL HfC 

1. Introduction 

Geodetic graphs were first defined by O r e [5] as graphs in which every pair of 
vertices is connected by a unique shortest path. Since a graph is geodetic iff each of 
its blocks is geodetic (see S t e m p l e and Wat k ins [13]), it is sufficient to study the 
geodetic blocks only. The geodetic blocks of diameter two have been studied by 
Lee [4], S t emp le [11], Z e l i n k a [14]. For geodetic blocks of higher diameters 
there are available some general constructions only (see for example [1, 2, 6, 7, 8, 
9, 12, 15]). 

In this paper we present one construction of new geodetic blocks G or G(s) from 
a known geodetic block G if a geodetic block G can be decomposed into two 
edge-disjoint geodetic subgraphs Gi, G2 with two special properties. This construc­
tion consists of replacing certain vertices by new edges. The construction unifies the 
construction described by B o s a k [1] (g(m, s)-graphs), P lesn ik [8] 
WPd-graphs), and S t e m p l e [12] (Xj.-graphs). We used this construction to study 
a special class of geodetic block which are homeomorphic to <&(p + 1, 2p)-graphs 
(see [4]), namely to study G(p, 2 + s)-graphs. 

2. Definitions and preliminary results 

We use the general notation and terminology of H a r a r y [3]. The graphs 
considered are simple undirected graphs. If G is a graph, then V(G) and E(G) 
denote its vertex set and edge set, respectively. The distance between vertices u, 
v G V(G) is denoted by QG(U, V). A shortest u — v path in G is called a geodesic 
and it is denoted by TG[u, v]. Any subpath of a geodesic is also a geodesic. If S is 
a path, \S\ will mean the length of S. Clearly, if TG[u, v] exists, then QG(U, V) = 
\rG[u, v]\. The supremum of all distances in G is the diameter of G, d(G). If 
veV(G), then we put VG(v)= {UGV(G)\QG(U, v)=i}. 

A clique is defined as a maximal complete subgraph Uk of order fc^3, that is, 
a complete subgraph on at least three vertices which is contained in no larger 
complete subgraph. 
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Theorem A (see S temple [11, Theorem 5.5]). If G is a geodetic block of 
diameter two and Uk, U} are cliques of G, then k = j . 

Now, if G is a geodetic block of diameter two and G contains a clique Uk,we call 
k the clique size of G . If G contains no clique, we let k = 2 be the clique size. 

Theorem B (see S temple [11, Theorem 5.11]). Let G have clique size k^3 
and assume that G contains a clique H with the property that for each vertex 
v, e V(H), / = 1, 2, ..., k; there exists a clique Ht, where 

V(H)nV(H)={v,} and VG(LO<= V(H)uV(Ht). 

Then GX = G — H is geodetic of diameter two with clique size k—\. If G\ contains 
cliques (i.e., k^4), then each clique in G\ is at distance two from every other 
clique. 

3. The construction of G and G(s) 

Py a decomposition of a graph G we mean a set of edge-disjoint subgraphs 
Gj, G2, ..., G„ of G which together contain the set of edges of G; it is denoted by 
(Gi, G2, .., Gn). 

Let G be a geodetic block and Gu G2 be its geodetic subgraphs (not necessarily 
blocks) which form a decomposition (Gi, G2) of G. Then (Gi, G2) is said to be 
a g-decomposition of G. 

We shall say that a g-decomposition (Gu G2) of a geodetic block G has the 
property P(l) if for any two vertices u, t> e V(Gi) [u, v e V(G2)] every u — v 
geodesic of G belongs to Gi [to G2] with the exception of u, v e V(Gi)n V(G2) 
where either TG[u, v] = rGx[u, v] or rG[u, v] = TG2[u, v]. In other words, G\ and 
G2 are geodetically closed in G with the exception of vertices of V(Gi)n V(G2). 

Further, we say that (G\, G2) has the property P(2) if for any two vertices u, 
r e V(G\)nV(G2) we have 

\rGl[u, v]\ - \rG2[u, v]\ = l (mod 2). 

A g-decomposition with the properties P ( l ) and P(2) is called a 
g-decomposition. 

Let (Gi, G2) be a g-decomposition of a geodetic block G. From G we construct 
a graph G as follows. Let v be any vertex from V(Gi)n V(G2). Then we replace v 
by two vertices v\ v2 and join v1 with v2 by an edge. Further we join v1 (or v2) 
with each vertex of VGx(v) (Vh2(v), respectively). We shall denote this construc­
tion by G—>G and we claim that G is geodetic. 

In Fig. 1 we have illustrated the construction of G by taking K5 as G and two 
cycles C5 as Gi, G2 (Gi = [u, v, JC, y, z, u], G2 = [u, x, z, v, y, u]). It is obvious that 
(Gi, G2) is a g-decomposition of K5 and G is the Petersen graph. 
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Lemma 1. Lef x e V ( d ) , y e V(G2) and x,y$ V ( d ) n V(G 2). Let (G,, G2) be 
a g-decomposition of a geodetic block G. Then there exists exactly one vertex 
veV(Gx)nV(G2) with 

and 
ГG[X> y] = ГG[x, v] + ГG[v, y] 

ГG[x, v] cz G ь ГG[v, y] cz G2. 

Fig. 1 

Proof. Let TG[x, y] = [x = v0, et, vx, ..., en, vn =y]. Let vL, [v,] be the first [last] 
vertex of TG[x, y] which is in V(Gi)n V(G 2), too. From the property P ( l ) we 
have : 

TG[vi, Vj] = rG\vi, Vj] cz Gi or rG[vi, Vj] = rG2[i)i, Vj] cz G2. 

Let rG[vi, Vj] = rGl[vi, Vj]; then TG[x, v{] + TG[vi, Vj] = TG[x, v}] cz Gi and v} is the 
desired vertex. If TG[vi, vj] = rG2[vi, i; ;]czG2, then we proceed similarly. 

Q.E.D. 

Corollary 1. Lef (Gi, G2) be a g-decomposition of a geodetic block G. Let 
x e V(G,), y e V(G2), x,y^ V(Gi)n V(G2). Lef TG[y, y] be a geodesic from xtoy 
in the graph G. Then there exists exactly one edge [v\ V2]CZTQ[X, y] with 
[vl, v2]^E(G). ([v1, v2] is a new edge corresponding to a vertex v). 

Theorem 1. // G is a geodetic block, then G is a geodetic block, too. 
Proof. It is sufficient to prove that for any two distinct vertices u, v of G there 

exists exactly one geodesic between them. Suppose, on the contrary, that there are 
two distinct geodesies A , A between u and v. We can suppose that A and A are 
internally disjoint (otherwise there are internally disjoint subpaths Pi of A and P2 
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of A and we can take Pi and P2 for A and A , respectively). We shall consider the 
following cases: 

Case 1(a). Both u and v belong to V ( d ) - V(G2). There cannot be two distinct 
shortest u — v paths, because of the property P(l). 

Case 1(b). Both u and v belong to V ( G 2 ) - V(Gi). Then there cannot be two 
distinct shortest u — v paths, because of the property P(l). 

Case 2. One of the vertices u and tj, say v, belongs to V(Gi)[V(G2)] and the 
other u = w', / = 1, 2. (w1, w2 are new vertices corresponding to a vertex w.) From 
the property P(l) it follows that there cannot be two distinct shortest paths 
between u and w. Hence, there cannot be two distinct u— w' geodesies. 

Case 3. One of the vertices u and v9 say v, belongs to V(Gi) and the other u to 
V(G2), u, v £ V(Gi)n V(G2). By Corollary 1 both A and A contain exactly one 
new edge ei and e2, respectively. From | A | = |T2| it follows for corresponding u - v 
geodesies Pi and T2 in the graph G that |Pi | = | A | - 1 = | A | - 1 = |P2 |. But this is 
not possible because G is geodetic. 

Case 4. Let u = u\ / e { l , 2 } ; v = v\ / e { l , 2 } . Then by the property P(2) u\ 
u2, v\ v2 belong to an odd cycle C = rGx[u, v] + [v\ v2] + TG2[v, u] + [u2, u1]. 
Hence the ul - v' geodesic is the shorter part of C. It is obvious that there cannot 
be two distinct geodesies. 

Q.E.D. 

Fig.2 

N o t e 1. The property P(l) cannot be omitted (see Fig. 2). There G is 
a Ks-graph (see [12]) and Gi, G2 are odd cycles which are presented differently. 
Both vertices x and y belong to V(Gi) but the x — y geodesic does not belong to 
Gi. Then there are two shortest paths between x and y in G. 

No te 2. The property P(2) cannot be omitted (see Fig. 3). There G is K4 and 
|-TGI[U, W] | = 1, IPG^f, w ] | = 3 . G is not geodetic because there are two distinct 
shortest paths from v2 to w2. 
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N o t e 3. If G is of diameter d, then the diameter of G is d+ 1 if there exists 
a pair of vertices x, y $ V ( d ) n V(G 2), x e V(Gi), y e V(G 2) with gG(x, y) = d; 
otherwise the diameter of G is d. 

'K— A 
\ / : 

У l 
i 

/ \ 1 
/ \l 

A* 
'\ -x i 
/ \ ! 

V w 2 >1 2 

Fig.З 

Problem. If wouid be interesting to find a geodetic block G of diameter d for 
which d(G) = d. 

N o t e 4. The construction cannot be extended for a g-decomposition with more 
than two subgraphs. A counterexample is in Fig. 4(c). Subgraphs Gi, G2, G 3 are 
presented differently. There are two distinct shortest paths from a to u2. 

Now, let (Gi, G2) be a g-decomposition of a geodetic block G. From G we shall 
construct a graph G(s)[G-->G(s)] which is a generalization of the graph G 
described above and is obtained as follows: Every vertex ve V(Gi)nV(G 2 ) is 
replaced by a path of length s, that is v^>P[vl, ..., vs+1] and vl [or t; s + 1] is joined 
with each vertex of VGi(v) [Vh2(v), respectively]. For an illustration, we have 
a graph G and its graph G(s) in Fig. 4(a) and 4(b), respectively. 

Theorem 2. If G is a geodetic block, then G(s) is a geodetic block, too. 
Proof. The proof is similar to that for G. Let u, v be two distinct vertices of 

G(s). We shall show that there is exactly one shortest u — v path in G(s). We shall 
consider the following cases: 

Case 1. Both u and v belong to V ( d ) - V(G 2) [or V ( G 2 ) - V(G,)]. Then the 
assertion is obvious. 

Case 2. One of the vertices u and v, say v, belongs to V(Gi) [V(G 2)] and the 
other u = wl, i e { l , 2 , ..., 5 + 1}. From the property P ( l ) it follows that there 
cannot be two distinct shortest paths between u and w in G. Hence, there cannot 
be two distinct u — w' geodesies. 

Case 3. One of the vertices u and v, say v, belongs to V(Gi) and the other u to 
V(G 2 ); u, v £ V(Gi)n V(G2). From Lemma 1 it follows that there is exactly one 
new path P[wl, w2, ..., ws+1] which lies on the u — v geodesic in G(s). Then the 
existence of two distinct u — v geodesies in G(s) results in the existence of two 
distinct u — v geodesies in G. 
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Case 4. Let u = u', i e {1 ,2 , . . . , s + 1}, t» = w', j 6 {1,2, .... s + 1}. Then by the 

property P(2)u', v' belong to the odd cycle 

C = rQ\u\ vx\ + P[v\ ..., vs+,] + rc4vs+1, u'+l] + P[us+\ .... «']• 

Hence the u' — v' geodesic is the shorter part of C. 
Q.E.D. 

Fig. 4a Fig. 4b 

No t e 5. If we take G to be K5 and Gu G2 are both C,, then G(s) is the graph 
WPd of Plesnik [8], where d = s + \, s^l. 

No te 6. If we take G to be Km+i and G, = Km, G2 = Kx,m, then G(s) is the graph 
g(m, s) of Bosak [1] and taking G2 to be a homeomorph of Khm successively over 
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each vertex of Km+U then G(s(v)) is the graph KL+i of S t e m p l e [12], where 
s = s(v) is a mapping from V(Km+i) to the set of nonnegative integers. 

N o t e 7. If 5 ^ 2 , then G(s) must contain vertices of degree two, but if s = 1, 
then there exists a geodetic block (5(1) without vertices of degree two. It is the 
Petersen graph in Fig. 1. 

Question. Is there a geodetic block (5(1) without vertices of degree two different 
from the Petersen graph ? 

It is obvious that if such a graph exists, then G is without vertices of degree two 
and for each v e V(Gi)n V(G2) both degGl v^2 and degc^ v^2 are true. 

4. An application to geodetic graphs of diameter two 

Stemple [11] proved that for any geodetic graph G of diameter two, there exist 
integers n and m satisfying the properties that G contains exactly nm + \ vertices, 
and every vertex in G has degree n or m. For fixed n and m denote by <&(m, n) the 
class of all geodetic graphs of diameter two satisfying the above properties. Lee [4, 
Theorem 1] used orthogonal Latin squares to construct the class ^ ( p + 1, 2p) for 
any prime power p, p ^ 3, (for p = 2 such a graph is given in Fig. 4(a)) as follows: 

From p — 1 orthogonal Latin squares of order p we first construct a [p2 x (p + 1)] 
array A = (a„) of integers, l^au^p [10, Theorem 1.3]. 

A graph G e ^(p + 1 , 2p) can be constructed by the following steps: 
(i) take vertex disjoint (p + l)-cliques Hi, H2, ..., Hp+i, and label the vertices of 

each Hr as ur,0, ur,i, ..., ur,p for r = l , ..., p + 1; 
(ii) join every pair [w.,0, ujt0] with an edge for /-£/, in this way we make a new 

clique H; 
(iii) take new vertices vu v2, ..., t y , not on any Hr and join vt and ut,ati with an 

edge for all t=l, ..., p2 and i= 1, ..., p + 1. 

It can be verffied that G is geodetic [4, Theorem 1] of diameter two with the 
following properties: 

I. G has clique size p + 1. 
II. For every vertex u.,0e V(H), i = 1, ..., p + 1, there exists a clique FJ. where 

V(H)nV(Hi) = {uit0} and VJ,(II,.O)<= V ( H ) u V ( H ) . 
For example, if p = 3, then two orthogonal Latin squares of order 3 and its [9x4] 

array A are: 

A , = 
1 2 3 1 2 3 
2 3 1 A2 = 3 1 2 
3 1 2. 2 3 1. 
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A = 

1 1 1 1 
1 2 2 2 
1 3 3 3 
2 1 2 3 
2 2 3 1 
2 3 1 2 
3 1 3 2 
3 2 1 3 
3 3 2 1 

The corresponding graph G e ^ (4 , 6) is in Fig. 5(a). 
From I, II and Theorem B it follows: 

Lemma 2. Let p be a prime power, p ^ 2 , and G e <S(p + 1, 2p). Then Gx = 
G — H is a geodetic graph of diameter two with clique size p and Gie

c£(p + I, 
2 p - l ) . 

For p = 2, the graph G is in Fig. 4(a). The outer triangle is H and G — H is the 
Petersen graph. The graph in Fig. 5(a) has p = 3 and the complete 4-graph with 
darkened edges is H. 

Lemma 3. Let G e ^ ( p + 1, 2p), Gi = G - H, G2 be a subgraph of G consisting 
of the subgraph H and the edges [ui.o, u,,r] for every / = l , . . . , p + l , r = l , . . . , p . 
Then (Gu G2) is a g-decomposition of G. 

Proof, d is geodetic, because of Lemma 2. From the definition of G2 it follows 
that G2 is a geodetic graph, too. Now, we shall prove the property P(l). If x, 
y e V ( d ) and oGl(x, y) = 1, then pG(x, y) = 1, too. If x, y e V ( d ) and £>Gl(x, y) = 
2, then QG(X, y) = 2, too, since from QG(X, y) = 1 it follows that Qch(x, y)= l .Then, 
by the definition of G2, at least one of the vertices x and y belongs to {ui,0, . ., 
up+i,o} and this is a contradiction to the assumption x, y e V(Gi). Therefore, the 
graph Gi is geodetically closed. If x, y e V(G2), x, y ^ V(Gi), then x, y e {uuo, ..., 
up+i,o} and QG2(X, y) = QG(X, y) = 1. Hence, the property P(l) is proved. Now, we 

p + i 

shall prove the property P(2). V ( d ) n V(G2)= IJ [urA, . ., ur,p}. Let x, 

ye V(Gi)nV(G 2) . We distinguish two cases: 
A. x = ur,h y = urJ, r = l , . . . , p + 1; j±i, j , ie{\, . . . , p } ; then oGl(x, y) = 

QG,(ur,j, ur,t)=l and Qch(x, y) = Qch(ur,h urJ) = 2. 
B. x = um,t, y = iis,i, m±s, m, 5 e { l , . . . , p + 1}; /, j e {1, ..., p}; then 

QGXX, y) = QGl(um,i, us,;) = 2and ^ ( x , y) = oG2(wm,I, us, ) = 3. Hence, the property 
P(2) is proved. 

Q .E .D . 
Theorem 3. For every prime power p^2, every integer S^l and every 

G e <£(p + 1, 2p), G(s) is a geodetic graph of diameter 2 + s. (We shall denote it 
byG(p,2 + s).) 
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Fig. 5Ь 
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Proof . The geodeticity of G(p, 2 + s) follows from Lemma 3 and Theorem 2. 
Using Lemma 1, we evidently have 

Qc(s)(ur,0, Vt) = 2 + S, 

for r= 1, ..., p + 1; / = 1, ..., p2. Therefore it is sufficient to prove 

Qo(S)(x,y)^2 + s 

for any x, y e V(G(p, 2 + s)). This is obvious if x, y e V(Gi) or x, y e V(G2). If 
xe V ( G i ) - V(G2) and y = yy, ; = 1, ..., 5 + 1, (i.e. the vertex y; lies on a new path 
P[y\ ..., ys+1] of length 5), then gGl(x, y ! ) ^ 2 and it follows that 

QG(P,2+S)(X, yj)^QGl(x, y J ) + 5 ^ 2 + 5. 

Similarly, if x e V(G2)-V(GX) and y = y\ then Q^X, ys+l)^2 and hence 

QG(P, 2+S)(X, y y ) ^ QG2(X, ys+1) + 5 ^ 2 + 5 . 

Finally, if x = v\ i= 1, ..., 5 + 1; y = w\ j= 1, ..., 5 + 1; then there exist vertices ?>, 
we V(Gi)n V(G2) and corresponding paths Pi = [V, ..., ra+1] and P2 = 
[w\ ..., ws+1], respectively, with v{ ePu w1 eP2. We distinguish two cases: 

A. QG,(v, W) = QG(P,2+S)(V\ wl)=l and Q^v, w) = QG(P,2+S)(V
S+\ ws+l) = 2. 

Then x, y lie on a cycle 

c=rG(P,2+s)[v\ wx] + p2 + rG(P,2+S)[ws+\ vs+1] + P[ 

(where P[ is the path reverse to Pi) of length 25 + 3. Hence, 

QG(p,2+S)(x,y)^[\C\/2]^2 + s. 

B. QG,(v, W) = QG(P,2+S)(V\ WX) = 2 and Q^V, W) = QG(P,2+S)(V
S+\ ws+1) = 3. 

Then x, y lie on a cycle 

c = rG(p,2+s)[v\ w1] + p2 + rG(P,2+s)[ws+\ vs+l] + P[ 

of length 25 + 5. Hence, 

QG(P,2+s)(x, y)^[\C'\/2] = 2 + s. 
Q.E.D. 

For illustration, the graph G(3, 2 + 5) is in Fig. 5(b). 
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ОДНА КОНСТРУКЦИЯ ГЕОДЕЗИЧЕСКИХ ГРАФОВ 

РаVо1 НГс 

Р е з ю м е 

Неориентированный граф называется геодезическим графом, если для каждых двух вершин 
существует единственная кратчайшая цепь между ними. Автор дает одну конструкцию этих 
графов. Эта конструкция состоит в натяжении определенного д-разложения (О., 0 2 ) 
геодезического графа при каждой из вершин У(0\)пУ{С2) на единицу или больше. Эта 
конструкция объединяет некоторые известные конструкции геодезических графов. 
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