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A CONSTRUCTION OF GEODETIC BLOCKS

PAVOL HIC

1. Introduction

Geodetic graphs were first defined by Ore [5] as graphs in which every pair of
vertices is connected by a unique shortest path. Since a graph is geodetic iff each of
its blocks is geodetic (see Stemple and Watkins [13]), it is sufficient to study the
geodetic blocks only. The geodetic blocks of diameter two have been studied by
Lee [4], Stemple [11], Zelinka [14]. For geodetic blocks of higher diameters
there are available some general constructions only (see for example [1, 2, 6, 7, 8,
9, 12, 15)).

In this paper we present one construction of new geodetic blocks G or G(s) from
a known geodetic block G if a geodetic block G can be decomposed into two
edge-disjoint geodetic subgraphs G,, G, with two special properties. This construc-
tion consists of replacing certain vertices by new edges. The construction unifies the
construction described by Bosak [1] (g(m, s)-graphs), Plesnik [8]
WPd-graphs), and Stemple [12] (K}-graphs). We used this construction to study
a special class of geodetic block which are homeomorphic to §(p + 1, 2p)-graphs
(see [4]), namely to study G(p, 2+ s)-graphs.

2. Definitions and preliminary results

We use the general notation and terminology of Harary [3]. The graphs
considered are simple undirected graphs. If G is a graph, then V(G) and E(G)
denote its vertex set and edge set, respectively. The distance between vertices u,
v € V(G) is denoted by os(u, v). A shortest u — v path in G is called a geodesic
and it is denoted by I'c[u, v]. Any subpath of a geodesic is also a geodesic. If S is
a path, |S| will mean the length of S. Clearly, if I'c[u, v] exists, then gs(u, v)=
|F[u, v]|. The supremum of all distances in G is the diameter of G, d(G). If
v € V(G), then we put Vi(v)={ue V(G)|os(u, v)=i}.

A clique is defined as a maximal complete subgraph U, of order k =3, that is,
a complete subgraph on at least three vertices which is contained in no larger
complete subgraph.
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Theorem A (see Stemple [11, Theorem 5.5]). If G is a geodetic block of
diameter two and Uy, U; are cliques of G, then k =j.

Now, if G is a geodetic block of diameter two and G contains a clique Uy, we call
k the clique size of G. If G contains no clique, we let k =2 be the clique size.

Theorem B (see Stemple [11, Theorem 5.11]). Let G have clique size k =3
and assume that G contains a clique H with the property that for each vertex
meV(H), i=1,2, ..., k; there exists a clique H,, where

V(H)nV(H))={v,} and V&(v)c V(H)UV(H,).

Then G, = G — H is geodetic of diameter two with clique size k — 1. If G, contains
cliques (i.e., k=4), then each clique in G, is at distance two from every other
clique.

3. The construction of G and G(s)

By a decomposition of a graph G we mean a set of edge-disjoint subgraphs
G,, G, ..., G, of G which together contain the set of edges of G it is denoted by
(G, G, ..., G).

Let G be a geodetic block and G,, G; be its geodetic subgraphs (not necessarily
blocks) which form a decomposition (G, G:) of G. Then (G,, G.) is said to be

a g-decomposition of G.
We shall say that a g-decomposition (G, G;) of a geodetic block G has the

praperty P(1) if for any two vertices u, v e V(Gy) [u, ve V(G,)] every u—v
geodesic of G belongs to G, [to G;] with the exception of u, ve V(G,)nV(G,)
where either I'c[u, v]=1TIg[u, v] or I'c[u, v]=TIg[u, v]. In other words, G, and
G, are geodetically closed in G with the exception of vertices of V(G,)n V(G,).

Further, we say that (Gi, G.) has the property P(2) if for any two vertices u,
v e V(Gi)nV(G;) we have

IFGI[u’ U” - ,FGz[u’ v],E 1 (mOd 2)

A g-decomposition with the properties P(1) and P(2) is called a
g-decomposition.

Let (G1, G;) be a g-decomposition of a geodetic block G. From G we construct
a graph G as follows. Let v be any vertex from V(Gi)n V(G.). Then we replace v
by two vertices v', v* and join v' with v? by an edge. Further we join v' (or v?)
with each vertex of Vg,(v) (V&,(v), respectively). We shall denote this construc-
tion by G— G and we claim that G is geodetic.

In Fig. 1 we have illustrated the construction of G by taking Ks as G and two
cycles Cs as G, G; (G1=[u, v, x, y, z, u], G.=|u, x, z, v, y, u]). It is obvious that
(G, G,) is a g-decomposition of Ks and G is the Petersen graph.
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Lemma 1. Let x € V(G,), ye V(G,) and x, y ¢ V(G:)n V(G). Let (G, G,) be
a g-decomposition of a geodetic block G. Then there exists exactly one vertex
v e V(G)nV(G2) with

I'c[x, y]=TIGg[x, v]+ I[v, y]
and

I'c[x, v]e G\, Ig[v,y]cG..

Fig. 1

Proof. Let I'c[x, y] =[x = vo, e1, vy, ..., €, v. = y]. Let v;, [v;] be the first [last]
vertex of Ig[x, y] which is in V(G,)n V(G,), too. From the property P(1) we
have:

Is[vi, vi]=TIg[vi, vl Gi or [Iglu, vj]=TIg[vi, vi]c G..

Let I'g[vi, v;]=Ia,[vi, v;]; then I'c[x, vi]+ I's[vi, v;] = I'c[x, v;] = G, and v; is the
desired vertex. If I'c[vi, v;]=Is,[vi, v;]] € G2, then we proceed similarly.
Q.E.D.

Corollary 1. Let (G,, G;) be a g-decomposition of a geodetic block G. Let
xe V(Gy), ye V(G)), x, y & V(G)n V(G,). Let I's[y, y] be a geodesic from x to y
in the graph G. Then there exists exactly one edge [v', v’]cTs[x, y] with
[v!, v’] € E(G). ([v', v?] is a new edge corresponding to a vertex v).

Theorem 1. If G is a geodetic block, then G is a geodetic block, too.

Proof. It is sufficient to prove that for any two distinct vertices u, v of G there
exists exactly one geodesic between them. Suppose, on the contrary, that there are
two distinct geodesics I',, I'; between u and v. We can suppose that I'; and I'; are
internally disjoint (otherwise there are internally disjoint subpaths P, of I'; and P,

253



of I'; and we can take P, and P, for I'; and I3, respectively). We shall consider the
following cases:

Case 1(a). Both u and v belong to V(G,)— V(G). There cannot be two distinct
shortest u — v paths, because of the property P(1).

Case 1(b). Both u and v belong to V(G,)— V(G,). Then there cannot be two
distinct shortest u — v paths, because of the property P(1).

Case 2. One of the vertices u and v, say v, belongs to V(G)[V(G.)] and the
other u=w', i=1, 2. (w', w? are new vertices corresponding to a vertex w.) From
the property P(1) it follows that there cannot be two distinct shortest paths
between u and w. Hence, there cannot be two distinct u— w' geodesics.

Case 3. One of the vertices u and v, say v, belongs to V(G,) and the other u to
V(G,), u, v ¢ V(G1)n V(G,). By Corollary 1 both I'; and I'; contain exactly one
new edge e; and e,, respectively. From |I'y| = | I3[ it follows for corresponding u — v
geodesics I'y and I in the graph G that |I'|= || —1=|I;| — 1=|I%|. But this is
not possible because G is geodetic.

Case 4. Let u=u', ie{1,2}; v=2', je {1, 2}. Then by the property P(2) u',
u?, v', v? belong to an odd cycle C=TIg,[u, v]+[v', v’]+Ta|v, ul+[u? u'].
Hence the u’ — v’ geodesic is the shorter part of C. It is obvious that there cannot
be two distinct geodesics.

Q.E.D.

Fig. 2

Note 1. The property P(1) cannot be omitted (see Fig.2). There G is
a Ks-graph (see [12]) and G, G; are odd cycles which are presented differently.
Both vertices x and y belong to V(G,;) but the x — y geodesic does not belong to
G.:. Then there are two shortest paths between x and y in G.

Note 2. The property P(2) cannot be omitted (see Fig. 3). There G is K, and
|F6,[v, w]|=1, |I[v, w]|=3. G is not geodetic because there are two distinct
shortest paths from v? to w?.
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Note 3. If G is of diameter d, then the diameter of G is d + 1 if there exists
a pair of vertices x, y § V(G1)nV(G,), xe V(G)), y € V(G>) with gs(x, y)=d;
otherwise the diameter of G is d.

1 1 _ -~ T
v X v X avl Sox2
N ,/[ i\\ /:/\. ’Z
- 1
\_X’/ I \X,/ |
' —_— ]
VAR NG
. \,ly p N /)lyz
G t Y T-—-—
Fig. 3

Problem. It would be interesting to find a geodetic block G of diameter d for
which d(G)=d.

Note 4. The construction cannot be extended for a g-decomposition with more
than two subgraphs. A counterexample is in Fig. 4(c). Subgraphs G,, G, G; are
presented differently. There are two distinct shortest paths from a to u®.

Now, let (G4, G,) be a g-decomposition of a geodetic block G. From G we shall
construct a graph G(s)[G— G(s)] which is a generalization of the graph G
described above and is obtained as follows: Every vertex v e V(Gi)n V(G.,) is
replaced by a path of length s, that is v— P[v', ..., v**'] and v' [or v**'] is joined
with each vertex of V§,(v) [V&,(v), respectively]. For an illustration, we have
a graph G and its graph G(s) in Fig. 4(a) and 4(b), respectively.

Theorem 2. If G is a geodetic block, then G(s) is a geodetic block, too.

Proof. The proof is similar to that for G. Let u, v be two distinct vertices of
G(s). We shall show that there is exactly one shortest u — v path in G(s). We shall
consider the following cases:

Case 1. Both u and v belong to V(G,)— V(G.) [or V(G;)— V(G,)]. Then the
assertion is obvious.

Case 2. One of the vertices u and v, say v, belongs to V(G1) [V(G:)] and the
other u=w', ie{l1,2, ..., s+1}. From the property P(1) it follows that there
cannot be two distinct shortest paths between u and w in G. Hence, there cannot
be two distinct u —w' geodesics.

Case 3. One of the vertices u and v, say v, belongs to V(G;) and the other u to
V(G.,); u, v & V(G1)n V(G,). From Lemma 1 it follows that there is exactly one
new path P[w', w?, ..., w**!] which lies on the u— v geodesic in G(s). Then the
existence of two distinct u — v geodesics in G(s) results in the existence of two
distinct u — v geodesics in G.
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Case 4. Letu=u',ie{l,2,...s+1},v=2', je{l,2, ..., s+ 1}. Then by the
property P(2)u’, v’ belong to the odd cycle

C= Fo.[u', ‘U1]+P[U1, s USH]'*‘FG—Z[USH, u‘”]+P[u‘”, o, Ll]].

Hence the u'— v’ geodesic is the shorter part of C.
Q.E.D.

A
JIN

G,

A

ey RN
At N
Q

(c)

-

Fig. 4c

Note 5. If we take G to be Ks and G,, G, are both Cs, then G(s) is the graph
WPd of Plesnik [8], where d=s+1, s=1.

Note 6. If we take G to be K,+1 and G, = K., G> = Ki. ., then G(s) is the graph
g(m, s) of Bosak [1] and taking G, to be a homeomorph of K. successively over
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each vertex of K,.+1, then G(s(v)) is the graph Ki.., of Stemple [12], where
s=s(v) is a mapping from V(K..1) to the set of nonnegative integers.

Note 7. If s=2, then G(s) must contain vertices of degree two, but if s =1,
then there exists a geodetic block G(1) without vertices of degree two. It is the
Petersen graph in Fig. 1.

Question. Is there a geodetic block G(1) without vertices of degree two different
from the Petersen graph?

It is obvious that if such a graph exists, then G is without vertices of degree two
and for each v € V(G1)n V(G:) both degs, v=2 and degs, v =2 are true.

4. An application to geodetic graphs of diameter two

Stemple [11] proved that for any geodetic graph G of diameter two, there exist
integers n and m satisfying the properties that G contains exactly n - m + 1 vertices,
and every vertex in G has degree n or m. For fixed n and m denote by 4(m, n) the
class of all geodetic graphs of diameter two satisfying the above properties. Lee [4,
Theorem 1] used orthogonal Latin squares to construct the class 4(p + 1, 2p) for
any prime power p, p =3, (for p =2 such a graph is given in Fig. 4(a)) as follows:

From p — 1 orthogonal Latin squares of order p we first constructa [p>X (p + 1)]
array A =(a;) of integers, 1<a;<p [10, Theorem 1.3].

A graph Ge 4(p +1, 2p) can be constructed by the following steps:
(i) take vertex disjoint (p + 1)-cliques H,, H,, ..., H,.1, and label the vertices of
each H, as u,,0, Up,1, ..., U, for r=1, ..., p+1;
(ii) join every pair [w;,o, 4;,0] With an edge for i#j, in this way we make a new
clique H;
(iii) take new vertices v, v, ..., v,2, not on any H, and join v, and u; ., with an
edge for all t=1,...,p*and i=1,..., p+1.

It can be verified that G is geodetic [4, Theorem 1] of diameter two with the

following properties:

I. G has clique size p +1.

II. For every vertex w.,o€ V(H), i=1, ..., p+ 1, there exists a clique H; where
V(H)NV(H:) = {u,o} and Vi(ui,0)c V(H)U V(H)).

For example, if p = 3, then two orthogonal Latin squares of order 3 and its [9%4]

array A are:
1 2 3 1 2 3
A1=’2 3 IJ A,=13 1 2J

31 2 2 3 1
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111 1]
12 2 2
133 3
21 2 3
A= {2 2 3 1
2 31 2
313 2
321 3
3 3 2 1

The corresponding graph G € 4(4, 6) is in Fig. 5(a).
From I, II and Theorem B it follows:

Lemma 2. Let p be a prime power, p=2, and Ge 9(p+1,2p). Then G,=
G —H is a geodetic graph of diameter two with clique size p and G,e §(p + 1,
2p—1).

For p =2, the graph G is in Fig. 4(a). The outer triangle is H and G — H is the
Petersen graph. The graph in Fig. 5(a) has p =3 and the complete 4-graph with
darkened edges is H.

Lemma 3. Let Ge9(p +1,2p), Gi=G — H, G, be a subgraph of G consisting
of the subgraph H and the edges [u.,0, U, foreveryi=1,...,p+1,r=1, .., p.
Then (G,, G,) is a g-decomposition of G.

Proof. G is geodetic, because of Lemma 2. From the definition of G, it follows
that G, is a geodetic graph, too. Now, we shall prove the property P(1). If x,
y € V(G,) and gg,(x, y)=1, then os(x, y) =1, too. If x, y € V(G,) and gs,(x, y) =
2, then g6 (x, y) =2, too, since from g (x, y) =1 it follows that gs,(x, y)=1. Then,
by the definition of G, at least one of the vertices x and y belongs to {u.o, . .,
U,+1,0} and this is a contradiction to the assumption x, y € V(G,). Therefore, the
graph G, is geodetically closed. If x, y € V(G,), x, y & V(G,), then x, y € {uy.0, ...,
Up+1,0) and 0c,(x, y)= 0c(x, y)=1. Hence, the property P(1) is proved. Now, we
shall prove the property P(2). V(Gi)nV(G:) =U (U1, . - U,y Let x,

r—=1
y € V(G)nV(G;). We distinguish two cases:

A x=u;, y=u, r=1,..., p+1; j#i, j, ie{l, ..., p}; then gg/(x, y)=
06.(ur.;, ur,)=1 and gc(x, ¥) = 0c(thr.j> r,i) =2.

B. x=un:i, y=u,;, m#¥s, m, se{l,..., p+1}; i, je{l,...,p}; then
06.(x, ¥) = 06,(Unm, i, Us,;) =2 and 06,(x, ¥) = 06,(tm.., us, )=3. Hence, the property
P(2) is proved.

| Q.E.D.

Theorem 3. For every prime power p=2, every integer s=1 and every
Ge%(p+1,2p), G(s) is a geodetic graph of diameter 2 + s. (We shall denote it
by G(p,2+5).)
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G(3,2+s)
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Proof. The geodeticity of G(p, 2+ s) follows from Lemma 3 and Theorem 2.
Using Lemma 1, we evidently have

06s)(Ur.0, V) =2+,
for r=1,..., p+1;i=1, .., p> Therefore it is sufficient to prove
0ci)(x, Y)<2+s

for any x, ye V(G(p, 2+ s)). This is obvious if x, ye V(G,) or x, y € V(G.). If
xeV(G)-V(Gy)and y=y’, j=1, ..., s+1, (ie. the vertex y’ lies on a new path
Ply', ..., y**'] of length s), then gg,(x, y')<2 and it follows that

06, 245 (X, ¥') < 0a,(x, y‘) +s5<2+s.
Similarly, if x € V(G,)— V(G,) and y =y’, then gc,(x, y°*')<2 and hence

QG(,,_2+S)(X, y’)$ QGZ(X, ys+l) +s5<2+s5.

Finally,if x=v',i=1,...,s+1;y=w/,j=1, ..., s+ 1; then there exist vertices v,
we V(G,)nV(G,) and corresponding paths P,=[v',...,v*"'] and P,=
[w!, ..., w**], respectively, with v‘e P,, w’ € P,. We distinguish two cases:

A. 06(v, W)= 0cp.2en(v', w)=1 and 0c,(v, W)= 0cp.2e0(v""", w*)=2.
Then x, y lie on a cycle

C=Tcp.240[v", W'+ P2t Lo 2en[w™, v+ Pi
(where P is the path reverse to P;) of length 25 + 3. Hence,
06, 2+;)(x, y) = ”C,/2] <2+s.

B. 06,(v, W)= 064240, w)=2 and 0c(v, W)= 0c@.2e0(v*", W) =3.
Then x, y lie on a cycle

C' = Fc(p‘2+s)[vl, W1]+P2+I-‘G(p_2+;)[ws+l, Us+1]+ Pl’

of length 2s + 5. Hence,

06, 2+5(x, Y)<[|C'|/2]=2+5.
Q.E.D.

For illustration, the graph G(3, 2+ ) is in Fig. 5(b).
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OJHA KOHCTPYKLHSA 'EOOJE3UYECKUX I'PAPOB
Pavol Hic
Pe3omMe
HeopueHnTnpoBaHHbIil rpacd Ha3bIBaeTCs reofie3M4eCKUM rpaoM, ecitd Il KaxabIX AByX BEPLIMH
CYLIECTBYET €JUHCTBEHHas KpaTyadias LeNMb MEXAY HUMH. ABTOD HaeT OfHY KOHCTPYKLMIO 3THX
rpadpoB. DTa KOHCTPYKLUMS COCTOMT B HATSKEHMH ONpefeneHHoro ¢-pasnoxenus (Gi, G2)

reoge3udeckoro rpaca npu kKaxaou u3 BepuwmH V(Gi)NV(G:) Ha eauHuuy wid 6Gonbiie. JTa
KOHCTPYKIMS 06 beqMHSET HEKOTOpbIE U3BECTHbIE KOHCTPYKLMH reofe3uyeckux rpacgos.
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