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AN ELEMENTARY PROOF
OF THE FUBINI-STONE THEOREM

IVAN DOBRAKOV

0. The Fubini-Stone theorem is the analog of the Fubini theorem from the theory
of integration for the Daniell integral, see 7-2 in [1], or § 23 Th. 2 in [2]. Its proofs
(as far as it is known to the author) essentially exploit, besides elementary facts, the
completeness of the class of summable functions. The proofs of the mentioned
completeness are rather long and exploit the monotone and the dominated
convergence theorem, see the proofs of Th. 6-41V in [1] and of Th. 1in § 16 in [2].
The purpose of this note is to'give a short proof based only on few quite standard
elementary facts. These facts, together with notations, are summarized in points
1 and 2 below.

1. R=(—, +®) and R*=(—, + ) with operations as in 4-1 in [1].
(T, %, I) denotes an elementary Daniell integral, see 6-1 in [1]. %#° is the class of
over-functions of % and I°: #° — R* is the corresponding extension of I, see 6-2 in
[1]. We point out the next simple fact, see Th. 6-211I(d) in [1]:

1) Iff,eF,n=1,2, .. and f, /f, then fe F and I’(f.)/I°(f).

For each f: T— R* we define its upper integral I(f) and its lower integral I(f) by

equalities:

I(f)=inf {I°(h): he F°, h=f}, (inf{@} = + =),
and )
INH=-1(-1.
The class £ of summable functions is determined by the equality:
L={f:f: T>R* —o<[(f)=1(f)< + »}.

For fe % the common value I(f) = I(f) is denoted by I(f).
The classes & and N of I-null functions and I-null sets respectively are defined
by equalities:
N={f:f: T->R*, I(|f))=0},
and
‘ N={E:EcT, ygeN}.
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IftheF ,H={r:teT, h(t)= +»} and I°(h)< + o, then He N(x, =)(hVv0)
for each n=1, 2, .., and I°(Av0)=I°(h)—I°(hAO)< + =, since
I’(hAQ)> — ). Hence,

(2) if fT->R* B ={r:teT, f(t)= + »}, and I(f)< + =, then B* € N.

The properties of I° and the definition of I imply:

(3) If f, g:T—>R*, and I(f)+1(g) is not of the form (+ %)+ (—=), or
(= ©)+(+), then I(f+9)=I(H) + 1(g).

Thus AuBeN,when A,BeN.If Ac T, BeN, and A c B, then A € N by the
monotonicity of I.

Using (1) we easily obtain: v
(4) Iffi ToR*andA={t:teT, f(t)#+0},thenfe N (+x)|fle YA eN.

(3) and the definition of I implies:

(5) If f, g:T->R*, and I(f)+I(g) is not of the form (+x)+(—=), or
(=) +(+ ), then I(f+a)Z1(f) + I(g). ‘

If I(f)<+ o, then I(—f)+I(f) is not of the form (—)+(+ ®), hence

0=I(-f+f)=I(- )+ I(f) by (3). Thus

(6) I(f)SI(f) foreach f:T— R*.

(3), (5), (6) an1 the definition of £ imply:
(7) ff, ge, then —f, f+geX, and I(f+g)=I1()+ I(g).

Let feN. Then by the monotonicity of [ and I and (6)
0=—-I(fh=1(-1fH=IN=I(N=I(f])=0. Thus
(8) NcZ.

2. Let (T, %, I,) and (T;, %, L) be two elementary Daniell integrals and
denote by % and % the corresponding classes of summable functions. Put
T, =T, X T,. By % +%, we denote the class of all f: T,— R such that f(¢,,-) € &, for
each ¢, € T, and such that Lf(-, -) € %, (from now on we use If instead of I(f)).

Suppose %, to be a vector lattice of functions f: T,— R such that # c #x%,,
and for fe% put Lf=LLf(-, ). Then clearly (T;, %, ;) is an elementary
Daniell integral. By .%, we denote the corresponding class of summable functions.

Iff: T,—>R* h,e%,n=1,2,...,and h, /A =, then using (1) we easily obtain
that LLf(-, )SLLA(-, -)=II%k(-, -)=lim LLA,(-, -)=lim LA, = Ish. Thus

9) LLf(-, )=Ef foreach f:T,—R*.

From (9), (6) and the definition of the lower integral we immediately have our
basic inequality:

(10) LfSLLSf(-, )SLLS(-, )SLf
for.each f: T,—> R*.
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We define %, *.%, to be the class of all f: T;— R* such that there exist an I;-null
set Ec T, and a @ € 4, such that f(¢,, ) € %, and Lf(t,,")=@(t) if t,e T, — E. For
such an f with corresponding @ we write Lf(-, -) = ¢. By this definition Lf(-, -)
does not have a unique meaning as an element of Z,. Since the ambiguity involves
only an I,-null set Ec T,, however, by (4), (7) and (8) the numerical value
LLf(-, )= 1@ is unique. _

3. The Fubini-Stone theorem. Suppose that %, ¢ %,*%, and that Lf = L Lf(-, -)
for each fe #%. Then % c %+%, and Lf=1Lf(-, -) for each fe %.

Proof. Let fe %. Then by (6) and (10) )

- w<1‘f?ll!2f(v )=I-I!2f(’_)=_1|j2f(’ ')=IIIZf(.9 )=I'5f< + m9 henCC
Lf(-, ), Lf(-, -)e %, and L[Lf(-, -)— Lf(-, -)]=0 by (7). Thus owing to (6)
and (4) there is an. I,-null set A < T, such that Lf(#, )=Lf(t, ) for each
r,eT,— A. Since Lf(-, -)e %, according to (2) there is an I,-null set B c T, such
that |Lf(t,,-)]<+« for each #eT,—B. Thus f(t,')e% for each
t,e T,— (AUB). Taking ¢ = Lf(-, ) and E = AUB we see that f € %,x% and that
Lf=1Lf(-,-). The theorem is proved.
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3JIEMEHTAPHOE NOKA3ATEJIbCTBO
TEOPEMbBI ®YBMH-CTOYHA

HBan Jo6pakoB
Pesiome
Teopema ®y6unu-CroyHa ABIAETCS aHanorom teopembl Py6unu anst unrerpana Naruanns, cM. (1,

otaen 7-2) win (2, §23 Teop.2). B 3aMeTKe naeTcs KOPOTKOE AOKA3aTENLCTBO ITOM TEOPEMBI
OCHOBaHO Ha pocToM HepaBeHcTBe (10) ¥ Ha caMbIX 3JIEeMEHTaPHBIX CBOMCTBAX HHTErpana [{anuamns.
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