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OSCILLATIONS OF DIFFERENTIAL EQUATION
WITH RETARDED ARGUMENT

BOZENA MIHALIKOVA, PAVEL SOLTES

In the present paper we shall investigate the second order nonlinear differential
equation of the form

(r(®)y'(0))" + p(Of(y(e:())h(y’(02(2))) = 0. (1)
Many authors studied the properties of solutions of the equation (1) with
r(=1, p()=0, f(y)=y or f(y)=y*, h(z)=1 (see the papers [1], [4—7]).
This paper is concerned with the oscillatory behaviour of the solutions of
equation (1). We shall assume the validity of the following conditions:
1) a) r(t)>0, p()<0 ‘
b) r(t)>0, p(t)=0
where r(t), p(t) are continuous functions on J= (to, ®), toe R =(—, ®);
2) f(y)y>0 for ye R, y#0, continuous function on R;
3) h(z)>0 and continuous on R;
4) oi(t)<t, 0i(t)> = for t—> o, i=1, 2 are continuous functions on J.
We restrict our consideration to those solutions y(t) of (1) which exist on some
interval J and satisfy

sup {|y(s)]: t<s<o}>0
for any ¢ € J. Such a solution is said to be oscillatory if the set of zeros of y(¢) is not
bounded from the right. Otherwise, the solution y(¢) is said to be nonoscillatory.

Let us denote y(t)=sup{s=to; 0i(s)<t} for t=1t,. We see that t<y(¢) and
01(y(t)) = t. Another property of the function y(t) is given in the following lemma:

Lemma 1. For every t such that to<<t <o, the value y(t) is finite.
Proof of Lemma may be found in [9].

I

The first part of the present paper deals with the oscillatoriness of the solutions
of equation (1) under the assumptions 1a), 2)—4).
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The following theorem is a generalization of Theorem 1 in [8] and Lemma 2.1 of
[3].
Theorem 1. Suppose that for all teJ
r(t)iro>0, roeR
* dt
J s @

Let there exist a differentiable function a(t), non-negative on J such a'(t)r(t)<K,
K eR and

and

Jma(t)p(t) dt = —co, 3)

Then every non-oscillatory solution y(t) of (1) is either |y(t)|— @ for t— = or
lim y(r)=1lim r(t)y’(r)=0.
Proof. Let y(t) be a non-oscillatory solution of (1). Then there exists t, = t, such
that y(t)#0 and y(0:(t)) #0 for every t=t,. Let y(¢)>0, y(0.(t))>0. Then
[r(0)y' (0] = =p()f(y(e:(D)h(y'(ex())) 0.

We have to investigate the following cases:

i) y(t)>0, y'(t)<O0 for every t=t;
ii) there exists =1, such that for t=t,, y'(t)>0.
If case ii) takes place, then for t=1t, we have

oo Py (82)
y (t)/ r(t) .

Using (2) we see that y(t)— o for t— .
If i) holds, then from (1) we get

[ a)r)y 61 ds=awry @ - [ a'©)rsyy (s) ds =
2 , “ (4)
=a(w)r(t)y' (@) - [ a©pE) 3@ )RO (ex(s)) ds

for t=t,. Since h(z) is continuous and for t=1,

r(gz(tl))r);’(ez(“)) <y'(1)<0
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holds, there exists 8 e<r(92(t'))’ry (Qz(tl)); O> such that for t=1
1]

h(B)=h(y’(e2A(1))).
Let now lim y(t)=c>0. Then there exists a number « € (¢, y(#1)) such that

f(a)<f(y(0i(t))), forevery t=t,=y(h).
From (4) we have

a(Or()y (2 kot KIy()) = y(e)] = f(@)h(B) | "a(s)p(s) ds, )

where ko=a(t:)r(t;)y’'(t;). Using (5) we see that a(t)r(t)y'(t)— + for t— o,
which contradicts the fact that y'(t)<0. Therefore, ¢ =0.
From the equation (1) it follows that

[r()y'(D]'20
and therefore the limit !im r()y'(t) = ¢ <0 exists. Let ¢; <0, then for every t=+,

there is r(t)y’(t)<c: and

* ds
g —
.Y(t) Y(t2)+C1J:2 r(s)
This is a contradiction.

Theorem 2. Suppose that 0:(t) is non-decreasing in J and there exists a number
ko> 0 such that

lim inf f(_y)> ko. (6)
y—0 y
Let there f;r(her exist a sequence {t,}n-1, t.— ® so that for sufficiently large n

J;'" [R(s) = R(e:(t:))]p(s) ds < ’k—olh_o @)

1(tn)

is true, where r(t)=J % and 0<ho= inf h(z).

If (2) holds, then any bounded solution y(t) of (1) is oscillatory on J.
Proof. Suppose that y(t) is a bounded solution of (1), e.g. such that y(¢) >0,
y(01(t))>0 for t=1t,=t,. The equation (1) yields

[r()y'()]'=0.

Analogously with Theorem 1 we have two cases:
i) y'(1)<O for t=t,
ii) there exists &=t such that y'(t)>0 for t=1t,. Suppose that i) holds true.
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Integrating the equation (1) from s to t=s, s =1,, and then from 01(1) to 1= 0.(1),
we get

t

y(e(D)=y(1) = ho j

ot

) 71\_) '[’f’(“)f()’(e)n(u))) du ds. ®

Let lim y(1) =L >0. Then there exists a number a € (L, y(0:(1:))) such that for

every (=1,

0<fla)<f(y(o:i(r)))
is true. The inequality (8) implies
U202 ' [R(6)=R@()Ip(s) ds. ©)

Since
. y(e(0) = y(1) _
!1—{2 hnf((l) =0

there exists a T=1t, such that

y(e()—y(0) 1
h()f((l) I’l()ko

From (9) for sufficiently large n, we may put t=t,= T, we obtain a contradiction
with (7).
Suppose now that lim y(¢)=0. Then (8) yields

forevery t=T.

1=-h[ [REs)=RG@(ln(s) LD g
e1(1)

. y(ei(s))
Using (6) we see that there exists T, > T such that for every t=T,
fy(e:(1)))
SAS ALk
y(o(e)) ~7°

is true, which means that from the last two inequalities we have

t

1>-kohof

el

N [R(s)— R(e:())]p(s) ds.
If we put ¢t = t,, this again leads to a contradiction with (7) for sufficiently large n.
If case ii) takes place, then
r()y'()=r()y’(z)>0 for t=t.

Considering the assumption (2) we have a contradiction with the boundedness of
the solution.
Remark 1. Theorem 2 is.a generalization of Theorem 3.1 in [2].
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Theorem 3. The hypotheses of this theorem are the same as those for Theorem 2
except that instead of (2) and (7) we suppose

! ds
O<h t ——=Ko<® 2'
R O @
and
. ! 1
timsup [ [R(s) = R(@u())p(s) ds <~ - (7)
= oi() hOkO

Then all bounded solutions of (1) are oscillatory.
Proof. Analogously to Theorem 2 in case i) we have from (8)

k:ho>_£.(,) [R(s)= R(o:(r)lp(s) ds for t=t

which contradicts (7').
Suppose that ii) obtains. From equation (1) we get for t=s=1t,

t

oxol ) %zy(o—y(ol(r))—hoL

(310

765 | PO au as.

1t

Since y(t) is bounded, there exists a number

ae(y(oi(r)), K)
such that for t=t=y(t,)

0<f(a)<f(y(e:()))

is true. From the last two inequalities we get

y O 2y 0=y =hf(@]  [RE-REOIPG) s

(10)
According to the hypotheses (2') and (7') there exists £4= t; such that for ; > 4,
! ds
r(t —=<2K
() aw 1(s) °

and
! 1
| [RG)=R@)lp(s) ds < =5
Hence, in view of (10) we have
y’(t);éj’f—alg>0 for =1,
01x0

which again contradicts the fact that y(t) is a bounded solution of (1),
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The next part of the present paper contains some sufficient conditions for the
oscillatory properties of the solutions of equation (1) under the conditions 1b),
2)—4).

Theorem 4. Let for every teJ r(t)=r,>0, roe R hold and let a(t) be
a differentiable non-negative function such that for every teJ

a'(Dr()=K <o
If

jmu(s)p(s) ds =+ (11)

and (2) hold, then any non-oscillatory solution y(t) of (1) is unbounded.
Proof. Let y(t) be a solution of (1), e.g. such that y(¢)>0, y(0:(t))>0 for
t=1=t,. We have to investigate the following cases:
i) y(1)>0, y'(t)=0 for t=t,;
ii) then there exists ©,=1, such that y(1)>0, y'(1)<O0 for t=1t,.
If ii) holds, then (1) yields

r()y'()<r(t)y'(tz) for t=t.

Using (2) we see that y(t)— — o for t— o, which contradicts the positivity of y(r)
for t=1t,.

Let i) hold and y(t) is a bounded solution. Then there exist numbers k, >0,
K,>0 and a € (k,, K,), such that

0<f(a)<f(y(0i(1))) for tZn=ry(t)

Evidently for t=1t we have also

<y(n <y’ (1)
0<y'(N< .

and there exists § such that

h(B)<h(y'(0:(1))) for t=t.

Therefore we have from (1)
a()[r(t)y’ ()] + f(a)h(B)a(t)p(1) <0
and integrating this inequality from % to t=1, we get
a(t)r(6)y’ (1) +f(a)h(ﬁ)J: a(s)p(s) ds <a(t)r(1)y' () + 2KK.,

which contradicts the positivity of y'(t) for t— oo.
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Theorem 5. Let the hypotheses of Theorem 4 be satisfied and instead of the
assumption r(t)=r,>0 we suppose that

i?lfl h(Z)=h0>0, h()e R
Then all bounded solutions y(t) of (1) are oscillatory.
Proof. The proof is analogous to proof of Theorem 4.

Theorem 6. Let a(t) be a differentiable, positive function on J such that (11) and

RO
o as) *ds=A<

hold. Suppose further that f(y) is non-decreasing on R, 121‘1: h(z)=ho>0 and (2)

holds. Then every solution y(t) of (1) is oscillatory.

Proof. Suppose that (1) has a non-oscillatory solution y(t), e.g. that y(1)>0,
y(01(t)) >0 for all t=t,= t,. In view of (2) it is sufficient to consider the case i), it
means y(t)>0, y'(¢£)=0 for ¢t=1,. From (1) we get

aWr(@y'®- [ a'(s)r(s)y'(s) ds +

. (12)
+ f()’(Ql(tz)))hoL a(s)p(s) ds<a(t)r()y'(L)=c

for t=t=y(t,) and then (12) yields

alr(y’'(<a+ 12' {L‘;((—ss—))}; a(s)r(s)y’(s) ds.

Using the Gronwall inequality we get

ar()y’'(<a exp[ {a ((“;))}+ ds<ciexpA.

]

We further have from (12) for t=¢t,

a(Or®y' )+ [ @Dho [ a(e)p(s) ds<ai+ Ac expa
and so using (11) we get that
a()r(t)y'(t)»>—o for t— o,

This is a contradiction with y'(£)>0.
Remark 2. If we put a(t)=1, we have Theorem 3 in [8].
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Theorem 7. Let the assumptions of Theorem 6 be satisfied with the exception
that instead of f(y) to be non-decreasing we suppose that

® ds
f —_a(s)r(s)<°°' (13)

Then any solution y(t) of (1) is oscillatory.
Proof. Analogously to Theorem 6 it is easy to verify that for t=1t,=y(t,)

a()r(6)y' (D) + hf a($)p()f(y(or(s)) ds<cr+ Acr expA =B (14)

holds. From (13) and (14) it follows

0<y )=y +B[ 9

which means that y(¢) is a bounded solution. Thus from (14) we get
a(:)r(:)y'(:)+f(a)hof a(s)p(s) ds<B, (15)

where « is such a number that for t=t,=y(t;)
fla)<f(y(e:(1))).

From (15) we have for t— ® a contradiction with y'(¢)>0.
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KOJIEBJIEMOCTb [IMd®EPEHLIMAJILHBIX YPABHEHWUN
C 3ANA3JIBIBAIOIIMM APT'YMEHTOM

BoZena Mihalikovi, Pavel Soltés
Pe3wome

B cTaThe mpuBeeHbI JOCTATOYHbIE YCJIOBUS IS TOro, 4To6bl peuwieHus auddepeHumansHOro
ypaBHEHHS

(r(Dy' () + p(Df (y(er(DNh(y'(e2(1))) =0

6b1nK Kosebmomecs.
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