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ON TWO SUMMABILITY METHODS 

M. ALI SARIGOL — H. BOR 

(Communicated by Ladislav Mišík) 

ABSTRACT. The purpose of this paper is to establish some relations between 
the |R,pn|fc and |C,a|fc summability, where a > 0 and k>l. 

1. Definitions and notat ions 

Let ^2 an be an infinite series with sequence of its partial sums (sn) and let 
T = (anv) be an infinite matrix. Suppose that 

CO 

Tn = ^2anvsv (n = 0,1,...) (1) 
v=0 

exists (i.e., the series on the right-hand side converges for each n ) . If (Tn) E bv , 

I.Є., 

] Г | T n - Г n _ x | < o o (T_i = 0) (2) 
n = 0 

then the series ^2 an is said to be absolutely summable by the matrix T , or 
simple, summable | T | . As known, the series ^2an is said to be | R , p n | summable 
if (2) holds when T is a Riesz matrix. By a Riesz matrix we denote one that 

a>nv = Pv/Pn for 0 < v < n, anv -= 0 for v > n, 

where (pn) is a sequence of positive real numbers and Pn = po +p\ H Vpn , 
P _ ! = 0 . 

Let (T„) be given by (1). If 

CO 

£nfc-1|r„-Tn_1|*<oo, (3) 
n = l 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 40D25, 40F05, 40G05, 40G99. 
Key words : Absolute summability, Riesz summability, Cesaro summability, Infinite series. 
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then Ylan -s s a-d to be |T|& summable, k > 1. As known, |T|^ summability 
reduces to |C,a|fc summability whenever we put the Cesaro matrix of order a 
( a > — 1) in place of the matrix T (see [2]). And in this special case, condition 
(3) is equivalent to 

oo 
1 \j.a\k ££.£ .*<«>, (4) 
n 

7 1 = 1 

where t^ denotes Cesaro means of order a of the sequence (nan) (see [1]). 

F l e t t [2], using (4), established comparison theorems between |C,a|fc, 
|C,/3|fc , and |A|/., where A denotes Abel summability. 

Throughout the paper, the matrix T = (anv) will be a Riesz matrix with 
Pn —> co as n —> co. Hence, if there is no confusion, we say that ^2,an is 
summable |R,pn|fc , k > 1, if (3) holds. 

Let a be any real number, and let 

K = ^ny(a + l)(a + 2)...(a + n) ^ ^ ^ ^ = ^ ^ 

We have immediately the following well-known identities: 

( T r ^ = E K - V (|x|<i) , (6) 

« > - l = > Ea>0, (7) 

\Ea\ < A(a)na for all a, Ea> A(a)na for a > - 1 , (8) 

where -4(a) is a positive constant depending on a. 

E%+ß = Y,K-ІEß, (9) 
v=0 

1 
l—= / ' ( l - x ) ť V - 1 d x , ( a > - l , n > l ) . (10) 

П J nEi 
o 
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2. Comparison theorems 

The purpose of this paper is to establish some comparison theorems for 
|R>Pn|fc a - d |C,a|fc summabilities for a > 0 . 

THEOREM 2.1. Let 0 < a < 1. Then |R,pn|fc summability (k > 1) implies 
|C,a|fc summability provided that 

Pn = 0(napn) as n —* oo. (11) 

P r o o f . Suppose that J_ an is summable |R,pn|fc , fc > 1 . Then 

CO 

^ n f c - 1 | T n - T n _ 1 | f c < o o , (12) 
n = l 

where Tn denotes weighted means of ] ^ a n , i.e., 

1 n 

rn = -r5Zp^- (13) 
^n v=0 

p 
Hence, we have by (13), sn = T n_i - A T n _ i and 

Pn 

an — -—5n_i — Sn Sn-

(T0 for n = 0 , 

— (PiTi - a0p0 - Pi^o) for n = 1, 
i = < Pí 

VAT-*+A(fcrAT-*) 
(14) 

Now by (££) we denote the (C, a) mean of the sequence (nan), then it follows 
from (14) that 
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* n = W E ^"->°« = %rai + -£*± EZzlvav 
n
 v=l U n v=2 

= §[U + iEc>{- i r-+-(fe-r-)} 
= ¥«'+ i-{__K-.»(-A3._2) + £ K__-j^_r.-s 

** n \<v=2 v=2 

+ E^->(-gAT„_1 

v=2 x v 

=T§^ ' + ^{E E ; -W- A T »- '>+^ToK-k 

+EK_-.^Ar„_2+
nf£;_-;.(-fAT„_1)-K-^AT-_1} 

u=3 v—2 ' 

= (£„_!«! + 2 - A T 0 £ n _ 2 j K pnEa Ea ^n-vV^v-2 

+ W E ^ n ^ - 1 ^ + 1) - I ^ ) ̂ ATB-i • 
n u=2 

On the other hand, since 

T-l-yiV + 1) " En-> = «(^- ' - i - -E".1) + -E^-i (1 < t; < n - 1), 

id 
^ - l - ^ n - ^ - ^ n - ' ( « # - . ! < « < n - l ) , 

and 

E: 

we have 

« = (EZZÌaг + 2 ^ Д Г o ^ 1 ) ^ " щ £ A ^ - i - ^ ± E^vAT^ 

+^ g-ö- i^ - i+^ E ( - ^ > ë ^ -
=: < , 1 + < , 2 + < , з + < , 4 + < , 5 • 
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To prove the theorem, by Minkowski's inequality and (4), it suffices to show that 

oo 

X^K*I*<°° for < = 1,2,3,4,5. (15) 
n = l 

Taking account of (8) and a > 0, we have 

oo t oo 

n = 3 l n = 3 

and by the fact that Pn = 0{napn), and by (12) 

- f e - Ҷ < o o : 

E£l<-
П = l 

oo 

ľ-Ež 
n = l 

0Í±n 
l n = l 

n P n A T n _ ! 
KPn 

%k-1\ATn.1\
k\<oo. 

V » - i ) 

Now by Holder's inequality and (9) 

n = l x ' 

(16) 

oo 

E^Ҝ/< 
n = 2 

oo , П v k 

E ^ k E^n-Г^IA^-21 (a>0) 
n = 2 Щ ^ n ) l v = 2 ) 

oo w , JП >. ^ 

< E Љ* E«fc-S-.i-^--iЯiғ E-S-Л 
n=2 n

 V=2 ^ ^ n „= 2 J 
oo n 

< E ^ E ^ n - l A W 
n = 2 n v = 2 

oo oo TT-a-l 

= E«fciAr---ifcE§_F-
v = 2 n = v n 

However, by (10) 

oo p a - l oo J?CL-1 ° ° /» 

n = v n t = 0 v ' v + 2 t = 0 Q t = 0 v 7 " " ^ t = 0 u 

-= /(l - -r) V 1 (f>ГV) dx = j(l - *)«---
0 i = 0 0 

1 

= íж""1 dx = ì . 
0 

ŕ l - ж ) " * a ж 
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(Term-by-term integration is legitimate since everything is positive.) 

oo oo ( oo \ 

E i i<3i f c < E u f c _ 1 i A T ^ i f c = o'j E t , fc~1iAr---i* < °°-
n = 2 v=2 \v=l ) 

by (12), and we write 

oo r n—1 

CXJ CXJ ґ П— L Ч Дl 

E Ž K . I * Í E ^ Ec-;- | iдr- j 
r7=Я n = 3 ^ n ) K v=2 } 

OO n — 1 / ч fc • TŁ — 1 v A 

- E sfe E -rí- (£) iдï.-.ľxЏ E E-_, 
n = 3 n v=2 V У ^ n 7>=2 J 

OO П — 1 • \ AC 

* E яҗ E-£.'-. (ÍÍ)I-Ћ-.I' 
n = 3 " Ü = 2 

oo • v fc oo г л a - 1 

-E(£ ) i^-ľ E % f 
г;=2 Ч ^ 7 n = v + l n 

k w / \ « oo 1 / r> \ 

= E<^y(£) i - W s E j f é ) I-1--!'- <"> 
v = 2 v / \ - / v = 2 

Therefore by the fact that condition Pv = 0(vapv) for 0 < a < 1 implies 
condition Pv = 0(vpv) it follows by (12) that 

Ei l<4l f c = 0 E^IATWl* <oo. 
n=3 lv=2 J 

Finally, applying Holder's inequality for k > 1 (trivially for k = 1). we have 

oo oo • n—1 \ k 

EiK.1*^E^j i E^nc'iiAn-.i 
n = 3 n=3 ^ nJ ^ v = 2 ^ J 

oo n - 1 / v k r n - l \ k-1 

^E^E(^)l-.-.i^KEl^l} • 
Now, if 0 < a < 1, i.e., 1 < 2 — a < 2 , then (using (8)) we have 

Yl\E^\<A(a)^n-vr-2 = A(a)J2va-2 = 0(l) as n-,00. 
v=2 v=2 v=l 
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So that it follows that 

ïp - ) |дг-__|fc|_E:w-| 
oo f oo n — 1 • 

= o{±(^)Vт^±jЩ 

{ oo / ч k oo 

.-(£) I ^ - . I ^ E 
§(f) i - * -^ 

ґ oo / _ ч k 

\En-v 

nE% 

тpcx-2 
П-V 

nE% 
,L=V + 1 П y 

oo т-a-2 i-a-2 lì 

E ^n-v _ _ _ _ \ \ 
nE% vES\y n=v 

=°{|(^) ' '-- ' 'T^ 
On the other hand, by (8) and (10) 

oo p Q - 2 I I oo . zpot — 2 oo /» 
: _ 1 dx 

= 0 ? ) . 

constant 

oo 

I r ( _°°_ *. I 

= / ( i - x y v - 1 {_T)-?-V d x = - ^ 
0 z _ u 

itegration is legitimate since the terms are ultimately of 
r (11) we have 

(here term-by-term integration is k 
constant sign), and by (11) we have 

~ ' A - _ , _ _ 
t-ЛvEl v=2 

oo 

l ^ І P . / 1 ' (ÆÇY-1 V«-„ 
- + —— 1 ^ v Ef, 

= 0 

--Л IДT, l i s v W | t t 1 - 1 1 ' ^ } 

This, together with (12), leads to the proof of the theorem. 

The following result can be at once derived from the above theorem by taking 
k-1. 
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COROLLARY 2.2. If Pn = 0(napn) for 0 < a < 1. then |R,I>n | =--> | C , a | . 

Also, taking account of Corollary 2.2 and the following theorem of F 1 e 11 

[2], we can establish a relation between |R,P n | and |C,a | j t , k > 1. 

THEOREM 2.3. If ]T) an is summable |C,a|fc , where k > 1, a > — 1 , then it 
is summable |C,/3| r , whenever r > k and (3 > a + l/fc — 1/r . If we take k = 1, 
the result holds when a > — 1, /? > a -f 1/fc — 1/r . 

COROLLARY 2.4. If Pn = 0(napn) for 0 < a < 1. then 

|R,Pn| = > | C , a + l | f c , fc>l. 

One may now ask such a question as under what condition does: 

| R 5 p n | f c = > . |C,/3|fc, where /3 > 1. In fact, condition (11) is answer to this 

since, by Theorem 2.3 and Theorem 2.1 

|R,Pn|k => |C,a | f c => |C, l | f c =--> |C,/3| f c . 

However, we show that |R,Pn|fc = ^ |C,a|fc, fc > 1, replacing by a weaker 
condition. 

THEOREM 2.5. Let a > 1. T/ien |R,pn|fc summability (k > 1) implies |C,a|fc 
summability provided that 

Pn = 0(npn) as n —> oo. (18) 

P r o o f . The case a = 1 is easy, so consider a > 1, we only show that 

oo 

1 L..C* I E ^ K i l <°° for . = 2,3,5, 
n= l 

since the other is the same as in Theorem 2.1. By (16), 

k / r» \ к 

n= l n=l x 7 

k_fc-l 

Thus by the fact that Pn = 0(npn) implies Pn = 0(napn) for a > 1, it follows 

that 

OO ( OO s v k ^ f oo ^ 

Eii< 2 r=o{E(^)"' '" 1 | a T »-' | ' }= 0 (5"'" 1 | A T "-' | j < o o , 
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and by (17) and (18) it is clear that 
oo oo • x k ( oo ,J 

Eil<3|k< EHV-) \AT°-J = ° E^l^-Xl* <OC. 
n=3 v=2 \ y v ' \<v=2 ) 

Finally, by Holder's inequality, for a > 1, 
oo oo r n —1 N k 

£ \\<,\k i £ ; ^ M £v0^|AT,-,|} 
n=3 n=3 " - ^ n ; ^ v=2 ^v * 

oo n - 1 / -, \ * ( n _ 1 ^ k-1 

£ £ d* £• (£) Kzl\^-A>\ J, E <*«} 
n=3 n v=2 V ^ 7 ^ n v=2 ' 

Observe that for a > 1 

^E^n% 2 = o{^E^--„2}t_1 = o(-^£;r1)A"1 = o(i). 
n

 v=i ^ n
 v=i J ' 

S O , 

n=3 l v = 2 \ ' r v / n=u+ l n J 

= o{gj(^)Vr--i|*} = o[g«*-MAr._1|*}<eo. 
This completes the proof. 

We note that, if we choose pn = 1 for all n , then Pn = n + 1. In the 
case, |R,Pn|fc summability is the same as |C,l|fc summability. Therefore, the 
following known result of [2] can be derived from the above theorem. 

COROLLARY 2.6. |C,l|fc summability implies |C,a|jt summability for a > l 
and k > 1. 
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