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Math. Slovaca 41, 1991, No. 4, 423-430 

ON THE LEBESGUE DECOMPOSITION 
OF A F U N C T I O N RELATIVE TO A p -IDEAL 

OF A N ORTHOMODULAR LATTICE 

ANNA BRUNA D'ANDREA — PAOLO DE LUCIA*) * + ) 

ABSTRACT. In this paper we established a decomposition theorem in which 
a finitely additive group-valued function defined in an orthomodular lattice is 
decomposed with respect to a p-ideal. 

It is well known how interesting it is to obtain a non commutative version of 
the Lebesgue decomposition theorem ([6] III.4.14) also because in many ques­
tions it is important to have a function absolutely continuous with respect to 
another (e.g. [9]). Recently many results have been obtained in this direction 
([16], [17], [12], [5], [18], [15]). 

In this paper, following the method used by V. F i c k e r [7] and P. C a -
p e k ([3], [4]) to obtain a decomposition theorem for a real function defined on 
a Boolean algebra (cf. also V. P a 1 k o [13]) and by C. T a r a n t i n o [19] for 
the group-valued case, we establish a decomposition theorem in which a finitely 
additive group-valued function defined in an orthomodular lattice is decomposed 
with respect to a p-ideal. 

Obviously this decomposition theorem generalizes the classical one and it is 
analogous to the theorem proved in [5], where the decomposition was established 
with respect to an orthoideal contained in the centre of an orthomodular poset. 

In this context, having an orthomodular lattice L and an ideal J, it is useful 
to study the orthosublattices of L of which / is a p -ideal. This enables us to 
obtain a decomposition in a more restricted lattice. In Part 3 we prove that 
between such lattices there is always a maximal one. 

1. 
Let (L ,< ) be a lattice with 0 and 1. In the following we employ the usual 

notations to indicate the supremum or the infimum of a subset of L, if they 
exist. 
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Thus the rule K2 is valid in LMC (2.3). 

P r o o f . With respect to Lemma 1.2 (R2) , the class u0 in LMC is 

{ L 0 ( y - X / 3 0 ) : L 0 e . M ( M X K B ) } . L e t (L 0 1 , L 0 2 ) ' e M(M , X X ) < = * X'L0 1 + 

B'L 0 2 = 0 =-> K'BX'L0 1 = 0 <?=> L0 1 6 A. ( M X K B ) ; further L'01Y + 

L'02(-b) = L'01Y + L02B/30 = L o i y + (-L 0 1X)/3 0 = L 0 1 ( y - X/30). Let L0 G 
X ( M X K B ) ^ K'BX'L0 = O ^=> X'L0 e M(B') <̂ => 3{w e 

R«}X'L0 + BV = O <==> (Lo\ e M(M,XA =-> L0(y-X/30) = (ť) - *«(м(ï)) 
L o y + v'B/30 = L o y + v ' ( - b ) . • 

The following lemma is useful before studing the rule R3 in LMC (2.3). 

L e m m a 2.4. Let W be an n x n p.s.d. matrix and let A4(X) C (W) . Then 

(a) 

pw f p W - P xVwxrB' f°r ^(B')CM(X'), 
XKR S _ w nW JL 

B I PX -PX(X'WX+B'VB)-B' °therw^ 

where V M any q x q matrix with the property M(B'\/B) = M(B'). 

(b) 

PXVKBPW
(X'WX)-B' = PX^X'WX)-B'PWKB = 0 if M(B') C M(X') 

P W P W - P W P W - O otherwise 
X KB X(X'WX+B'VB)-B' - KX(X'WX+B'VB)-B'KXKB ~ u otherwise. 

(c) 

PW
K =X(X'WX + B'VB)-X'W - X(X'WX + B'VB)-B'-

B 
[B(X'WX + BNB)-B']"B(X'WX + BNB)-X'W. 

P r o o f . The first equality in (a) can be proved directly; as 
M(KB) = M ( M B . ) , P W K B = P W M B , = XM B . (M B .X 'WXM B . ) -M B -X 'W. 
Now the equality M B . (M B .X 'WXM B . )+M B . = (MB .X'WXMB . )+ 
and the implication M(B') C .M(X'WX) = > (M B ,X 'WXM B . )+= (X 'WX)+-
(X'WX)+B'[B(X'WX)+ B']-B'(X'WX)+ from Lemma 1.4 is to be used; thus 
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PW
K =X(M B .X 'WXM B . )+X 'W = X(X'WX)+X'W-X(X'WX)+B'[B(X'WX)+-

•X'WX(X'WX)+B']-B(X'WX)+X'W = P w - P^J X . W X ) - B . • 

In the case of the second equality in (a), it is sufficient to prove R(X) — 
T.(XKB) + J.[X(X'WX + B'VB)-B'] and M(XKB)_LW.V.[X(X'WX + B'VB)-B'], 
where _LW means the orthogonality with respect to W, i . e . x , y £ R " , x_Lwy <=> 
x'Wy = 0 . Let .Mi = M(X), M2 = .M(XKB) = M(XMB ) and M3 

yV([X(X'WX + B 'VB)-B ' ] . As MB .X'WX(X'WX + B 'VB)-B ' - MB.(X'WX + 
B'VB)(X'WX + B'VB)-B' = M B .B ' = 0 , M2±wM3 • To prove R(X) = 
R(XKB) + 7_[X(X'WX + B'VB)-B'] we proceed as follows: 
PXK = PXM = XM B . (M B .X 'WXM B . ) + M B -X 'W = XIMe.tX'WX + B'VBJ-
Me ]+X'W = X(X'WX + B'VB)+X'W - X(X'WX + B'VB)+B'[B(X'WX + 

B'VB)+B']+B(X'WX + B'VB)+X'W (Lemma 1.4 is used) 

WX(X'WX + B'VB)+X'W = W P w
K + W M 3 , 

B 

where 
M3 = X(X'WX + B'VB)+B'[B(X'WX + B VB)+B']+B(X'WX + B'VB)+X'W. 

Both matrices W P W
K , WM 3 are p.s.d. and ( w P w

K ) ' w + W M 3 = 0 (it 
B \ B / 

is a consequence of A _ 2 l w ^ 3 ); thus with respect to Lemma 1.1, we have 

J.[WX(X'WX + B'VB)+X'W] = 7_(WPW
K + W M 3 ) = i _ (wP w

K , WM 3 ) = 

7?(WPW
K ) + 7_(WM3). Further 7?[WX(X'WX + B'VB)+X'W] = R(X), 

/ . (WP W
K ) = i . (XKB) and 7_(M3) = R WM3) = 7_[X(X'WX + B'VB)+B']. 

The last three equalities are consequences of the following relations, cf. Lemma 
1.5 : X'WX + B'VB = J J ' , (X'WX + B'VB)+ = KK', .M(X'W) C M(J) 4=^ 
3{F: X'W = J F } , thus WXKK'X'W = F'J 'KK'JF = F'F => i_[WX(X'WX + 
B'VB)+X'W] = R(F') > R(FJ) = R(X'\N) > 7.(X'WW+) = R(X'); the in­
equality fl[WX(X'WX + B'VB)+X'W] < R(X) is obvious. 
Simlarly i ? ( w P w

K ) = i . (WXK B )> / . ( W + W X K B ) = R(XKB) > R(\NXKB) 
and R(M3)> R(\NM3)> Ji(W+WM3) = R(M3) (here the implication M(X)C 
M(W) = M(\N+) = ^ W+(W+)+X = X was used). 

The statement (b) is a consequence of the equalities K'BX'WX(X'WX)"B' = 
K'BB' = 0 and K'BX'WX(X'WX + B 'VB)-B ' = K'B(X'WX + B'VB)(X'WX + 
B 'VB)-B ' = K B B ' = 0 , respectively. 

(c) is implied by the equality (MB .X'WXMB ,)+= [MB.(X'WX + B'VB)MB-]+ 
and by the last statement of Lemma 1.4. D 

T h e o r e m 2.5 . In LMC (2.3) the rule R3 is valid. 
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( 2 . 2 ) . Lei L be an orthomodular lattice, k an infinite cardinal number, M 

a k -orthocomplete p-ideal, N a subset of M containing {0} . If M\N satisfies 

the ak -condition then there is an element c G M such that M = Nc> = Mc> . 

P r o o f . Let H be an o r t hogona l m a x i m a l subse t of M\N , as c a r d ( H ) < k 

t h e n t h e r e exis ts c = \J H G M, a n d , for t h e l e m m a above , M = Nc> . 

If an e lement a be longs to Mc>\Nc> t h e n {OAc'}UH is a n o r t h o g o n a l subse t 

o r M \ N , a con t r ad i c t ion because of t he m a x i m a l i t y of H as an o r t h o g o n a l 

subse t of L. T h e n Mc> — Nc> . 

( 2 . 3 ) . Let k be a cardinal number and L an orthomodular lattice, and let L 

be k -orthocomplete if k is infinite. If (x , ) J ( c/ is an orthogonal family of elements 

of L with cardinality k and c is an element of L, we have 

(\/{xt : i G / } ) A ( A { * ; V c : j G / } ) - \J{x, A (x[ V c) : i G I}. 

P r o o f . It is sufficient to observe t h a t t he set 

{x. A c : i G / } U {x, A (xt A c')' : i G / } 

forms an o r thogona l family of ca rd ina l i ty k . 

( 2 . 4 ) . Let L be an orthomodular lattice, G a commutative topological group, 

M a p-ideal of L , /i an element of a(F , G) . If c is an element of M such 

that M CJ\f(fic,) then p,c> G a ( F , G ) . 

P r o o f. It suffices to observe t h a t if .r, y G L w i th x ± y t he set 

{x A c', y A c', c A (x V y) A (x ' V c) A (y' V c)} 

is an o r t h o g o n a l subse t of L a n d therefore we have 

c A (x V y) = (x A c) V (y A c) V (<:' A (x V y) A (x ' V c) A (y' V c)) . 

For (2.3) a n d [11] 2.6.4 we find t h a t 

(x V y) A (x V c) A (y ' V c ) = ( i A (x ' V c)) V (y A (y ' V c)) G M . 

Then 

/ t c t (x V y) = fic>(x) -f- / / r / (y ) . 

In t h e s a m e way we prove t h a t : 
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( 2 . 5 ) . Let L be an orthomodular a -orthocomplete lattice, G a topologi­

cal commutative group, M a a -orthocomplete p-ideal of L, ^i an element of 

c a ( L , G ) . Lf c is an element of M such that M C J\f(fir>) then fir> £ c a ( L , G ) . 

( 2 . 6 ) . Let L be an orthom,odular lattice, M a p-ideal of L, G a topological 

commutative group. Let L£,£,77 be elements of a ( L , G ) such that 

i) // = f + 77, 

li) MQAT(ri), 

iii) 3 c £ M such that cf £ Af(£); 

then we find, for every x £ L, 

£(x) = ji(x A (x ' V c)) , r](x) = /j(x A c). 

P r o o f . Since x A (x' V c) £ Af for every x £ L, we find tha t 

rj(x A (x ' V c)) = 0 for every x £ L 

a n d by hypo thes i s , 

£(x A c) — 0 for every x £ L, 

therefore 

T?(X) = 7/(x A c) F 7/(x A (x ' V c)) = rj(xAc) = 

= 7/(x A c') F ((x A c') = /i(x A c'), 

f (x) = £(x A c') F {(x A (x ' V c)) = ( ( x A (x ' V c)) = 

= £(x A (x ' V c)) F ?/(x A (x ' V c)) = //(x A (x ' V c)). 

( 2 . 7 ) . Let L be an orthomodidar lattice, M a p-ideal of L , t7 a commu­

tative topological group, // an element of a ( L , G ) . Moreover let c and d be two 

elements of M and 

fi\ : x £ L —> //(x A c') , //2 : x £ L —> fi(x A (x ' V c)), 

v\ : x £ L —> //(x A (/'), i/2 : x £ L -> fi(x A (x ' V d)) . 

If M C N(fi\)n Af(u\), l//en //! = //! and //2 = ?>2 . 

P r o o f. M is a p-ideal, c V d belongs to M , hence, for every x £ L , 

/ / ! (x A ( x ' V c V J ) ) = 0. 

Then 

fi)(x) = //.(x A (•') = //(x A c' A J ' ) F //(.r A c' A (x' V c V J)) = 

= //(x A c' A </') F fi\{x A (x ' V c V </)) = //(x A c' A (/'). 

In t he s a m e way, we have 

i ' i(.r) = ft(x A c' A d') for every x £ L, 

therefore fi\ = //j . 
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T h e o r e m I. Let L be an orthomodular lattice, G a commutative topological 
group, p an element of a ( L , G ) (resp. s a ( L , G ) ) . Moreover let k be an infinite 
cardinal, M a k -orthocomplete p-ideal of L such that M\M(p) satisfies the 
Qtk -condition. Then p can be uniquely represented as the sum of two elements 
£,77 of a ( L , G ) (resp. sa (L , G ) ) such that 77 is M -continuous and £ is M -
singular. 

P r o o f . Since M\J\f(p) = M\(MnJ\f(p)), because of (2.2), c G M exists 
such t h a t 

M = (MnM(p))c, = Md n (M(p))c> 

therefore 

M C ( j V ( / i ) ) c . = N ( / v ) - (1) 

Then the function 77 = pc< , because of (2.4), is an element of a ( L , G) (resp. 

sa (L , G) ) and because of (1), is also M -continuous. 

Let £ be the function 

£ : x G L —> p(x A (x V c)), 

obviously ^ = £ + 77,.then £ belongs to a(F, G) (resp. sa(L, G ) ) , moreover c' 
belongs to JV(£), then £ is M -singular . 

T h e uniqueness of the decomposition follows from (2.6) and (2 .7) . 

In the same way as in Theorem I, but using (2.5) instead of the (2.4), the 
following is proved 

T h e o r e m I I . Let L be a a -orthocomplete orthomodular lattice, G a com­
mutative topological group, p an element of ca (L , G ) . Let k be an infinite 
cardinal, M a k -orthocomplete p-ideal of L such that M\Af(p) satisfies the 
Offc -condition. Then p can be uniquely represented as the sum of two elements 
£,77 of ca(F , G) such that 77 is M -continuous and £ is M -singular. 

We observe tha t from Theorem II it is easy to obta in Theorem 2.11 of [5] 
and subsequently to arrive at the classical Lebesgue decomposit ion theorem. 

We note also tha t proposit ion (2.2) is t rue if we suppose tha t M is a p -ideal 
and tha t every orthogonal subset of M \ N is finite; then also Theorem I and 
Theorem II are t rue with the hypothesis 

i) M is a p- ideal , 
ii) every orthogonal subset of M \ N([i) is finite. 
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3. 

( 3 . 1 ) . Let L be an orthomodular lattice, H an ideal of L. Then we have 
an orthosublattice L\ of L such that: 

i) H is a p-ideal of L\, 
ii) there is no orthosublattice of L that strictly contains L\ and for which 

H is a p-ideal within it. 

P r o o f . Let 

H = HUH\ where H' = {a : a' G H}. 

Obviously H contains H and is contained in each or thosubla t t ice of L which 
contains H. Moreover 

x G H implies x G H. (1) 

Let x , y be two elements of H . If they bo th belong to H , it is obvious t ha t 

x V y G H , if x $ H , for (1), then x' A y' G H and also x V y = (x ' A y ' ) ' G H . 

For every x G H and for every a G H 

{x,x V a } D H 7-- 0, 

therefore x A (x' V a) G H . Then (cf. 2.6.4 of [11]) H is a p- ideal of H. 

T h e proof is completed by Zorn's Lemma. 

If L is an o r thomodula r lat t ice obtained by Greechie's me thod (cf. [8] theor. 
3) the results of (3.1) can be improved proving tha t L\ is an or thosublat t ice 
such t ha t 

i) H is a p- ideal of L\ 
ii) If A is an or thosublat t ice of L such tha t H is a p- ideal of A , then 

A is contained in L\ . 

T h e au thors wish to thank the staff of the Mathemat ics Depar tmen t of the 

University of Reading for their warm hospitali ty dur ing their extended stay. 

They t h a n k also the referee for improving the original draft. 
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