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EXTENSION AND REGULARITY 
OF /-GROUP VALUED MEASURES 

PETER VOLAUF 

In his paper [4] J. D. M a i t l a n d Wr igh t considered measures which take their 
values in a boundedly a-complete vector lattice V. He studied the measure 
extension property of V and proved the main theorem which characterizes this 
quality of V through the property of the regularity of the K-valued Baire measure 
on a compact Hausdorff space. 

In the first part of this paper we consider the extension theorem for /-group 
valued measures. We extend the measure /a from the algebra .4 to the a-algebra % 
containing .4. In the second part the sufficient condition for the regularity of the 
/-group valued measure fi defined on the a-algebra tf of Borel sets of the 
topological space is given. 

Let us introduce some notation first, x v y, x A y-will denote lattice operations. 

xn/x (xn\x) will be written iff xn^xn+l (xn^xn+l) for every n and V x n ~ x 
n = \ 

(f\xn=x). A similar notation is used for sequences of sets. 
n = \ 

Let X b e a nonempty set and .4 be an algebra of subsets of X. Let !£ be a 
commutative /-group. , 

Definition 1. The set function ix\ .4-+££ is a measure iff 

(i) fi(A)^0 for every A e.4 (0 is a zero element of 5£) 
(ii) li is finitely additive, i.e. if Ake -4, i = 1, 2, ..., n, and At nAj=0 for i±j, 

then 

!л(ÛA) = І>(A) 

(iii) fi is continuous from above at 0, i.e. if A{ €.4, i= 1, 2, ..., .*4,\0, then 
fi(At)\0. 

Observe that the measure fi has the following properties: 

(1) p(0) = 0 
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(2) \i is monotone, i.e. if A, Be.J, A c B, then ^(A)^fi(B) 
(3) [i is subtractive, i.e. if A, Be A, A c B, then fi(B - A) = fi(B)-^i(A) 
(4) [i is countable additive, i.e. if - 4 , e / , / = 1 , 2 , ..., A-n_4, = 0 , /=£/, 

Ur=,Ae.:/, then ^ U A ^ i ^ A ) 
(5) // is continuous from below at any set A e./, i.e. for every sequence {A, }T ,, 

A, e. /, for which At/A we have [i(A)= v l /(A,). 

Definition 2. A l-group if has a countable type if the following holds: 
if M c .^ and c = sup M, then there exists a countable chain CJ{, JC c M« such that 
c = sup jfc. The l-group if is regular 
if there holds: 
if a'ke<£ for i=l,2, ..., k=\,2, ..., are such that af

k\0 (i/™) for k=\,2, ..., 
and beJ£ is such that for every sequence {/',, i2, /,, ...} of positive integers 

b^Vij^a'A, then b^O. 
n \k = \ J 

Lemma. Every l-group is a distributive lattice. Every complete l-group is a 
commutative group. (See Birkhoff G. [1]) 

Let us denote 

M = \AczX:A={jAi, A , e . / , AtcAi+l, / = 1 , 2 , . . . } " . 

Let fi be a measure defined on . / with values in if. If if is a complete /-group, we 
define a set function #: ^—>if by 

(a) # ( A ) = v//(A,), where A ,e . /, A/A . 

Proposition 1. The set function 1/ is unambiguously defined. 

Proof. Let An/A, Bn/A, An, Bne i, n = \,2, ... . We have to show that 

v fi(An)= v [i(Bn). But Ak = U (At n f i j and// is continuous from below at a set 
n=\ 

Ak. 

Hence /i(Ak) = v fi(Ak nB„)^ v (t(B„) and v / /04*)= v fi(B„). We can rever-
n k n 

se the roles of {An} and {Bn} in the argument and show that v fi(Ak)= v fi(Bn). 
k n 

Theorem 1. Let 5£ be a complete l-group and § be a function defined on ffl by 
(a). Then i/ has the following properties: 

(i) . /c= M and &/. / = // 

48 



(ii) ifAnem, n = \,2, ..., then AxnA2eM and \jAteM 
* - I 

(iii) if A, Bem, then i/(A uB) + {>(A nB) = &(a) + #(B) 
(iv) ifAn em, n = \,2,.andAn/A, then ^^AX)^^J(A2) and$(A)= v &(An). 

Proof, (i) is trivial. Clearly (ii) will hold if we prove that if An/A, An effi, 

n = \,2, ..., then A e i Let Ani/An if / / ° ° , n = \,2, ... . Denote Bi = \jAii. 

Then B, is monotone, Bte /, and [jBi = \<J An= A. (---) holds since for any 
i••= I n = I 

.4, He / we have li(.4 uH ) + /i(,4 n 5 ) = /i(A) + ^ ( 5 ) . ^f is a complete /-group 
and if a„ e.#, £„ e.S?, AZ = 1, 2, ..., AZ = 1 , 2 , ..., an/, £ . . / , then v an+ v bn = 
v (an + bn). According to Proposition 1 we prove only the second part of (iv). We 
use the notation from above. Then Ain cz Bn cz An for i^n, hence ^(Ain)^ 
li(Bn)**#(An) and #(A,)= v fi(Ain)^ v fi(Bn)^ v §(An) for i=\,2, ... . Thus 

n 

we have v &(A,)^ v //(£„)-= v §(An) and \J(A)= v fi(Bn)= v &(An). 

Theorem 2. Let the symbols ii, . /, 2ft, i/ denote the same as in the Theorem I 
and let ?£ be a complete, regular l-group which has a countable type. Then a 
function ft* defined on 2X by 

(b) v*(C)= A{&(B): CczBe0Z} 

has the following properties: 

(i) ft*/<8 = #9 l/*(C).= 0 for all Ccz X 

(ii) ii*(CxuC2) + n*(CxnC2)^-n*(Cx) + ii*(C2) for all Cx, C2 

(iii) if C„ C2 cz X and Cx cz C2, then ^i*(Cx)^fi*(C2) 
(iv) if Cn cz X, n = 1, 2, ..., Cn/C ( / i /oo), then v*(Cn)/ti*(C). 

Proof, (i) is trivial. Let Bn
xe®, Bne03, n = \,2, ... such that &(Bn

x)\ii*(Cx) 
and &(B2)\fi*(C2). According to (iii) Theorem 1 &(Bn

x) + #(B2) = 
&(Bn

xnBn) + &(Bn
xuBn

2)^ii*(CxnC2) + ̂ *(CxuC2), hence [i*(Cx) + l/*(C2)S 
//*(C1nC2) + / /*(C 1uC 2) . (iii) is trivial. Let C„ cz AT, /i = l , 2 , ..., C „ / C . if has a 
countable type and hence there exist B'neffl, n = \,2, ..., such that for every n 
^^Bi

n)\^l*(Cn)(i/™). Denote a'n = #(Bn)-!**(&) and b=^*(C)- vfi*(Cn). 
For any sequence {/,, i2, ...} of positive integers we have £.= 

fi*(\J B'nn) ~ v l**(Cn)^ 1/(0 U -9--) - v J/*(C„);= v 1/(U # > ) " v IA*(G)^ 

M\jBn")-v*(Ck)\ The difference i / ( i j B'A - l**(Ck) can be bounded by 
K k-l 

l9(Bi
x
tu...uB'k

k)^^i^(Bi/)-^fi*(Ci). This inequality may be verified using 
, = . I = I 
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mathematical induction. Hence b ^ v V(#(ß;»)- / .*(C)) ( V a\r). With 

respect to regularity of (f we have /?=() and [i*(C)= v//*(C„). 

Theorem 3. Lel t/ze symbols and assumptions of Theorem 2 hold. Denote 
%'={C^X: u*(C) + ii*(0) = /A(X)}. Then % ,'s the o-algebra of the subsets of X 
and fi = u*/<€ is the complete measure (if A e Ho, u(A) = () and B cz A, then 
Becfo). 

Proof. Observe that 0, Xe H! and H' is closed with respect to the complementa­
tion. Let B„B2e€. Then U*(B,KJB2) +u*(B\nB\)% 
\i*(Bx) + fi*(B2)- fi*(BlnB2) + fi*(B\) + / / * ( # 2 ) - (A*(B\vB2)^ 
fi(X) + fi(X)-u*(BtnB2)-u*(BxnB2y^u(X). We have just proved that 6 is 

closed under formation of finite unions. Let BneH, n = 1, 2, ..., Brl/[J Bn, then 
•i I 

u*(Bnl) + n*(B)n)^u(X), m = \,2, ..., and/**(( U Bm) )^u*(Bl) for all m and 

u*(Bm) + u*(((jBn) ) ^ / i ( X ) for all m. We have v \i*(Bm) + \i*[ ( | J B„) ) ^ 

fi(X) and % is a a-algebra. According to (iv) Theorem 2 fi* is a measure if we show 
that u* is additive. Let B„B2e%, then /v*(H, uB2) + u*(B] n B2)^ 
^*(B]) + ̂ i*(B2) according to (ii) Theorem 2. Also n*((Bx uB2)

c) + 
fi*((BinB2y)^^*(B\) + ̂ i*(B2) and the sum on the right-hand sides of the two 
last equalities is equal to 2//(X). On the other hand /u*(Bl u B2) + /i*(H, u B2y '=: 
Li(X) and f^*(Bin B2) + ̂ *(Btn B2y^fx(X), hence there is equality in each of 
these inequalities and //* is additive. //* is complete since if A e H?, u*(A) = 0 and 
B czA, Li*(B) + [i*(Bc)^ /u*(A) + fA(X) = fi(X) holds and B e HI. 

Theorem 4. If /i is a measure on the algebra I with values in the complete, 
regular /-group .¥ which has a countable type, then [i has the unique extension fi on 
the o-algebra c$ generated by the algebra .4. 

Proof. According to Theorem 3 the system % from Theorem 3 is the cr-algebra 
containing . / and hence <€ =) Q). fi defined by ft(A) = [i*(A) for every A e Q is the 
extension of the measure //. Let there exist a measure q on Q such that ql.i = //. 
With respect to the definition //*, qtk[i* on ?M (observe that q = # on £#). Let 
Ane& be such that q(A0)<[i*(A0). With respect to the last inequalities we have 
q(X) = q(A0) + q(A0)<fi*(A0) + fi*(A0) = ̂ (X), which is impossible since q = 
li* on . / . 

Let X be a topological space with a topology .T. It is known (see H a l m o s P. [2]) 
That in the locally compact spaces the real measure is regular if every compact set is 
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outer regular. Let us investigate the analogy quality of a /-group valued measure. 
Let !£ be a complete, regular /-group which has a countable type. Let X be a 
topological space with a topology :£T, let ^ be a a-algebra of Borel sets in X. 
Denote by :3? the system of all closed sets in X and \i a measure on £# with values in 
</. 

Definition 3. The set Ee^ is outer regular, if fi(E)= A {fi(U): E cz UeST}. 
The set Eeffl is inner regular, if{i(E)= v {\i(Z): £ D ZeSt}. The set E em is 
regular if it is both inner and outer regular. A measure \i is regular if every set 
Eeffi is regular. 

Let 31 be a system of all regular subsets of X. 

Proposition 2. 

(i) <% is a lattice of sets . 
(ii) if. / is a system of subsets of X, denote by 3>sd the system {A: A=B-C, 

CczB, C, Be.4}. 3>2£is a semiring. 
(iii) if .4 is a system of subsets of X, let Ns&be a normal system generated by.:/. 

Then N3> = ¥3, where 3 is a semiring and &*3 is a o-ring generated by 3. 
(See H a l m o s P. [2] §5.6) 

Theorem 5. If every set in ££ is outer regular, then 33£ cz 31. 
Proof. Let C, D e f and Ccz D. A set D — C is inner regular since \i(D) — 

li(C) = II(D)- A{fi(U): Ccz Ue3~} = v {11(D)-ii(U):Ccz Ue3~} = 
v {fi(D -U); B-C=>D-Ue%}^v {\i(Z): D-CzoZe^}. But 

fi(D-C) = fi(D)-^i(C)= A{[i(U): Dcz Ue3~}-fi(C) = A{^(U-C): 

D-CczU-CeST}^ A{[I(U): D-CaUeST} and the set D-C is outer 
regular. 

Theorem 6. The system 31 is closed with respect to finite disjoint unions and 
with respect to the complementation. 

Proof. \i(AuB)=\i(A)+11(B) = v {\i(Ak): Az>Ake%, k = l,2,...} + 
+ v{fi(Bk):Bz>Bke%, k^ 1, 2, ...} = v {[i(Ak) +fi(Bk): Az>Ake%, 
Bz>Bke%, k = l,2,...}= v{[i(AkuBk): A uB ZD Ak uBk e%, k = l,2,...}^ 
v {\i(Z): A uB => Ze3£}, the reverse inequality is trivial. Let us prove the outer 
regularity of AuB. pi(A uB) = n(A) +pi(B) = A {fi(Ak): AczAke3~, 
k = l,2,...}+ A{fi(Bk): Bcz6keF, ' k = 1, 2, . . . } ^ A {pi(Ak uBk): 
AuB czAkuBke3~}^ A{V(U): AUB CZ Ue?T}. At last if Ae3l, then _4C is 
inner regular since fi(Ac) = [i(X)-[i(A) = [i(X)- A {[i(U): A<zzUefF} = 
v{fi(X-U):Acz Ue&-}= v {{i(X- U): Ac zo X- U, X- Ue%} = v {\i(Z): 

Ac z? Z e ^ ^ a n d outer regular in the dual way. 

Theorem 7. / / every set in 3? is outer regular then a system 31 is a normal system 
containing 3$E. 
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Proof. According to Theorem 5 and 6 we have to prove (1) and (2): 

(1) if AieMi A\f)Ai, then f lA, is outer regular 
/ i i i 

(2) if /4 , -eJ , A./ClAi then \J At is outer regular. 
/ i / i 

(1) We have to show that lv(p| A A = A \pi(B): f]A,czBe jV since the reverse 
/ i I / i ) 

inequality is trivial, f has a countable type and for any / = 1, 2, ... we have 

n(Ai)= A{ii(Blk): A,czBlkeJ, k=l,2,...} and v(f)A,) = A A {//(H,A): 

AidBlkeJ, /, k= 1, 2, . . .}= A A {n(Blk): A,aBikeJ* / , k = V 2 , . . . } but 
k / 

A {£/(#,*): Ai c ft,6J)^A{^):n/4( c B e J } for any k. 
/ i 

(2) We have to show that J U ( L M . ) = A {^L(B): IJ At c fieJ|. But A e i and 
/ i / / - 1 

u(Af)= A \fi(Bik): A,•, a Blk eJ, k= V 2, . . . } . Let {k,, k2, ...} be any sequence of 

positive integers. Denote a^ = /a(Bik) - ii(Ai). Then a-\() (k / ' so) , for / = 1, 2 

Denote a= A j £/(#): I j A c: He.7 - v /w(A), then a^/i(\jBlk)- v l/(A,) = 

^ ( U U ^ ) - v ^ A ^ v /^(UH,,,)-^^)! ^ v[V(^(ftikf)-^(A)) = 
/ = i / = i ' l x , = i l i , = i 

v f ^ a / l and according to the regularity of ,f we have a^Q. We used the 
1 / = i / 

inequality 

^(u^)gi/i(B«.)-V/^(Aj 
v i i / / = i / = i 

which holds since Bik. ZD A(. 

Corollary. / / every set in °f, is outer regular and if ^f is a complete, regular 
l-group which has a countable type and \x is a measure on ffi with values in f, then /u 
is regular in the sense of the Definition 3. 

Proof. According to Proposition 2 and Theorems 5, 6, 7 we have ?% = J°T = 
J(P% = N(P%CL(31. 
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ПРОДОЛЖЕНИЕ И РЕГУЛЯРНОСТЬ МЕР СО ЗНАЧЕНИЯМИ 

Б л-ГРУППЕ 

Петр Бол а уф 

Р е з ю м с 

В настоящей заметке под мерой будем понимать отображение // определенное на алгебре ../ 
подмножеств множества X со значениями в л-группе (УЧ выполняющее следующие условия: 
//(Д)^() для всяких А е./, ц конечно-аддитивная и полунепрерывная снизу. Целью заметки 
является формулировка условий накладываемых на (/ достаточных для продолжения меры с 
алгебры . / на а-алгебры ^М содержащую .-./. 

Во вторий части изучается проблема регулярности меры как она формулирована например в 

книге Халмоша [2|. В обеих частях центральную роль играют условия счетново типа и 
регулярности накладываемые на л-группу 7\ 
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