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EXTENSION AND REGULARITY
OF [-GROUP VALUED MEASURES

PETER VOLAUF

In his paper [4] J. D. Maitland Wright considered measures which take their
values in a boundedly o-complete vector lattice V. He studied the measure
extension property of V and proved the main theorem which characterizes this
quality of V through the property of the regularity of the V-valued Baire measure

on a compact Hausdorff space.

In the first part of this paper we consider the extension theorem for /-group
valued measures. We extend the measure u from the algebra .of to the g-algebra €
containing .«/. In the second part the sufficient condition for the regularity of the
[-group valued measure u defined on the o-algebra & of Borel sets of the
topological space is given.

Let us introduce some notation first. x v y, x A y-will denote lattice operations.

x,/'x (x,\x) will be written iff x,=x,,, (x,,éx,,+.) fér every n and \7x,. =X

n=1

(/\ x. =x). A similar notation is used for sequences of sets.

n=1
Let X be a nonempty set and ./ be an algebra of subsets of X. Let £ be a
commutative /-group. ,

Definition 1. The set function u: .«4— £ is a measure iff

(i) u(A)=0 for every A € .o (0 is a zero element of ¥)
(ii) u is finitely additive, i.e. if A;e A, i=1,2,...,n, and A;nA; =0 for i+,
then
H(U A,) = ZH(A)
i=1

(iii) u is continuous from above at @, i.e. if A;e A, i=1,2, ..., A\D, then
u#(A)NO.

Observe that the measure ¢ has the following properties:

(1) u®@=0
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(2) u is monotone, i.e. if A, Be..{, A c B, then u(A)=u(B)
(3) u is subtractive, i.e. if A, Be. 4, A = B, then u(B—A)=u(B)—u(A)
(4) u is countable additive, ie. if A;e. f, i=1,2,..., AnA =0, i#],

U~ A €.:Z, then H(O A,-) = ZM(A,-)

(5) u is continuous from below at any set A €., i.e. for every sequence {A,}, |,
A, e. I, for which A, /A we have u(A)= v u(A).

Definition 2. A /-group £ has a countable type if the following holds:
if #{ « ¥ and c =sup M, then there exists a countable chain ¢, X < /M. such that
c=sup X. The l-group ¥ is regular
if there holds:
ifa,e¥lfori=1,2,... k=1,2,..., are such that a,\0 (i/ =) for k=1,2, ...,
and beX is such that for every sequence {i,, i,, i, ...} of positive integers

b=\ (kz a,';k), then b=0.

.

Lemma. Every [-group is a distributive lattice. Every complete [-group is a
commutative group. (See Birkhoff G. [1])

Let us denote

B=1AcXx:A=JA., Ae. i, A CA,.. i=1,2,...}'.

i=1

Let u be a measure defined on . 7 with values in £. If £ is a complete /-group, we
define a set function ¢#: 8—.€ by

(a) #(A)= v u(A), where A, e I, A/A.

Proposition 1. The set function & is unambiguously defined.
Proof. Let A,,/'A, B./A, A,, B,e.{, n=1,2,.... We have to show that
vu(A,)=vu(B,).But A, = CJ (A« N B,) and u is continuous from below at a set
n=1
Ak .

Hence u(As)= v u(AinB,)= v u(B,) and v u(A)= v u(B,). We can rever-
se the roles of { A, } and { B, } in the argument and show that v u(A)= v u(B,).

Theorem 1. Let ¥ be a complete I-group and ¢ be a function defined on # by
(a). Then ¥ has the following properties:
(i) {cBand ¢/ {=u
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(i) if A,eB, n=1,2, ..., then A,nA,e B and | J A € B

(i) if A, Be 4, then 3(AuB)+ %(A N B)=11#(a)+ %(B)
(iv) ifA,eB.n=1,2,.and A,/ A, then $(A))=¥(A,) and }(A)= v #(A,).

Proof. (i) is trivial. Clearly (ii) will hold if we prove that if A, A, A, € A,
n=1,2 ..., then Ae®B. Let A, /A, if i/®, n=1,2,.... Denote B;=JA,.

isi

Then B, is monotone, B.e /, and CJB,: DA,,=A. (iii) holds since for any

i=1 n=1

A,Be. /wehave uy(AuB)+u(AnB)=u(A)+ u(B). £ is a complete /-group
and if a,€.%, b, e ¥, n=12,..., n=12,..., a,/, b,/, then va,+ vb,=
v (a, + b,). According to Proposition 1 we prove only the second part of (iv). We
use the notation from above. Then A, c B, = A, for i<n, hence u(A.,)<
u(B,)<¥(A,) and 19(A,-)=‘vn (A= vu(B)=v A, for i=1,2,.... Thus

we have v #(A)= v u(B,)= v iHA,) and #(A)= v u(B,)= v #(A,).

Theorem 2. Let the symbols u, . I, B, 1 denote the same as in the Theorem 1
and let ¥ be a complete, regular [-group which has a countable type. Then a
function u* defined on 2~ by

(b) u*(C)= A {#(B): C = Be B}
has the following properties :

() u*/B=19, u*(C)Z0 forall Cc X

(i) u*(C,uC)+u*(CinC)=u*(C)+u*(C) for all C,, C,
(iii) if C,, C,c X and C, = C,, then u*(C))=u*(C,)
(iv) ifC,cX,n=1,2,...,C,/'C (n/»), then u*(C,),/ u*(C).

Proof. (i) is trivial. Let Bie B, B5e B, n=1, 2, ... such that #(B})\u*(C,)
and  H(B)\u*(C). According to (iii) Theorem 1 &(B})+ 3(B3)=
HMHBTNB)+3HBIUB)Zu*(C,nC)+u*(C,uG,), hence u*(C)+u*(C)=
u*(Cin G +u*(C,u ). (iii) is trivial. Let C, =« X, n=1,2, ..., C,/'C. £has a
countable type and hence there exist B,e B, n=1, 2, ..., such that for every n
HBI)\u*(C,) (i //»). Denote a,=3HB,)—u*(C,) and b =u*(C)— v u*(C,).
For any sequence {i,, i, ...} of positive integers we have b=

( )— v u*(C, )<0(U U B: )— VENCIS Y 0(9.3;")_ G

k=1n=1

[ (U ) *(Ck)]. The difference 0(U B,’.") —u*(C,) can be bounded by

i=1

k—1
HBi'U...UB;* )520(3}‘)— > u*(C). This inequality may be verified using
i1
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mathematical induction. Hence b = v E (NB,)—u*(C,)) ' = v ( E u,‘,v'). With
w1 A

respect to regularity of ¥ we have 6 =0 and u*(C)= v u*(C,).

Theorem 3. Let the symbols and assumptions of Theorem 2 hold. Denote
€={Cc X: u*(C)+u*(C)=u(X)}. Then € is the o-algebra of the subsets of X
and fi=u*/€ is the complete measure (if Ae €, u(A)=0 and B c A, then
Be €).

Proof. Observe that ), X € € and € is closed with respect to the complementa-
tion. Let B, B-€ €. Then (B, U B,)+u*(B,NnBy)=
u*(Bi) +u*(B:) = u*(Bin By) +u*(BY) + u*(By) —u*(Biu BY) =
wW(X)+u(X)—u*(B,n B,)—u*(B,n B,)"=u(X). We have just proved that 6 is

closed under formation of finite unions. Let B, €€, n=1,2, ..., B,/ B, then

nol

u*(B,)+u*(B,)=u(X),m=1,2, ..., and u*(( LL,I B) )éu*(Bf,.) for all m and

m

/1*(8",)+u*((0B,,)C)éu(X) for all m. We have vu*(B,,,)+u*((LLJB,,)t)§

w(X) and € is a o-algebra. According to (iv) Theorem 2 u* is a measure if we show
that w* is additive. Let B,, B,e€¢, then u*(B, UB,)+u*(B,NnB,)=
u*(B))+u*(B,) according to (ii)) Theorem2. Also u*((B,uB-))+
w*((B,n B,) )= u*(B7)+ u*(B3) and the sum on the right-hand sides of the two
last equalities is equal to 2u(X). On the other hand u*(B,u B,) + u*(B,u B,)'=
w(X) and pu*(B,n B,)+ u*(B,n B,)*=u(X), hence there is equality in each of
these inequalities and p* is additive. u* is complete since if A € €, u*(A)=0 and
Bc A, u*(B)+u*(B)= u*(A)+u(X)=u(X) holds and Be €.

Theorem 4. If u is a measure on the algebra . I with values in the complete,
regular [-group ¥ which has a countable type, then u has the unique extension (i on
the o-algebra & generated by the algebra . {.

Proof. According to Theorem 3 the system ¢ from Theorem 3 is the o-algebra
containing . 7 and hence € > @. ji defined by i(A)=u*(A) for every A € 7V is the
extension of the measure u. Let there exist a measure ¢ on & such that g/. ¢ = pu.
With respect to the definition u*, g =u* on 9B (observe that g =9 on ). Let
A, € Y be such that g(A,) <u*(A,). With respect to the last inequalities we have
q(X)=q(A))+q(Ay) <u*(A,)+u*(Ay)=wu(X), which is impossible since g =
u* on . {.

2.

Let X be a topological space with a topology 7. It is known (see Halmos P. [2])
“that in the locally compact spaces the real measure is regular if every compact set is

50



outer regular. Let us investigate the analogy quality of a /-group valued measure.
Let . be a complete, regular /-group which has a countable type. Let X be a
topological space with a topology 7, let % be a o-algebra of Borel sets in X.
Denote by & the system of all closed sets in X and 4 a measure on 9% with values in
7. ’

Definition 3. The set E € B is outer regular, if u(E)= A {u(U): Ec UeJ}.
The set E € B is inner regular, if u(E)= v{u(Z): Eo>ZeZ). The set E€ B is
regular if it is both inner and outer regular. A measure u is regular if every set
E € B is regular.

Let R be a system of all regular subsets of X.

Proposition 2.

(i) Z is a lattice of sets .
(ii) if .4 is a system of subsets ofX denote by PA the system {A: A=B—C,
Cc B, C, Be.{}. PZ is a semiring.
(iii) if .4 is a system of subsets of X, let N.of be a normal system generated by .:{.
Then NP = FSP, where P is a semiring and SP is a o-ring generated by P.
(See Halmos P. [2] §5.6)

Theorem 5. If every set in & is outer regular, then PZ c R.

Proof. Let C, DeZ and C = D. A set D — C is inner regular since u(D)—
w(CO)=u(D)— A {u(U): CcUeT}=v{uD)—u(U):CcUeT}=
v {u(D - U); B-CoD-UeZ}=v{ul2): D—-C>ZeZ%}. But
u(D—-C)=u(D)—u(C)= A {u(U): DcUeJ}—u(C)= a{uw(U-0):
D-CcU-CeJ}ZA{u(U): D—Cc U€J} and the set D—C is outer
regular.

Theorem 6. The system R is closed with respect to finite disjoint unions and
with respect to the complementation. '

Proof. y(AuB)=u(A)+uB) = v{u(A): A>AeZ, k=12,..}+
+ v{u(B.):B> B.eZ, k=1,2,..}= v{u(A)+u(B.): ADAeZ,
B> B.eZ, k=1,2,...}=v{u(AtuB,): AUB>A,UB.e%, k=1,2,...}=
v{u(Z): AuB o ZeZ}, the reverse inequality is trivial. Let us prove the outer
regularity of AUB. u(AuB)=u(A)+u(B)=Ar{u(A): AcA.eJ,
k=1,2,..}+ A {u(B): BcBied,  k=1,2,.)Z A {u(AcUB):
AUBc A UB,eT}ZA{u(U): AUBc UeJ}. At last if A e R, then A° is
inner regular since U(A)=u(X)—u(A)=u(X)— Ar{u(U): AcUeT}=
v{iu(X-U):AcUeT}=v{u(X-U):A>DX-U,X-UeZ}= v {u(2):
A° o Z €%}, and outer regular in the dual way.

Theorem 7. If every set in & is outer regular then a system R is a normal syétem
containing P%.
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Proof. According to Theorem 5 and 6 we have to prove (1) and (2):

(1) if A eR, A,.\(:] A,, then ﬁA, is outer regular
it [

2) if A;eR, A,/‘OA,, then OA,- is outer regular.

i il

(1) We have to show that u(ﬂA,)i A {u(B): (NA c Be /'} since the reverse
1 1
inequality is trivial. ¥ has a countable type and for any /=1, 2, ... we have

y(A,-)=/:{/,t(B,»,(): A, cB,e.J, k=1,2,...} and u(f:]A,)=/\/2{u(B,A):
) !
A, c B,€e.J, i,k=1,2,...}=/}/\{u(B,k): A, cB,eJ, i,k=1,2,...} but

A{u(Bi): A, < By ev.7} = A {u(B):ﬁAi c Be.7} for any k.

x

(2) We have 1o show that u{UJ A )= A {u(B): UJA, = Be.7). But A, €4 and
1 [ |

u(A)= A {u(B,-k): A, cB,eJ, k=1,2,...}. Let {k,, ko, ...} be any sequence of

positive integers. Denote ai = u(B,) — u(A;). Then a;\0 (k /=), fori=1,2, ....

Denote a = A {u(B): UA c Be.’/“}— v u(A;), then a§u(EJ B..k_)— vUu(A)=
i—1 il

x 1] 1 {
W(UUB.) - v = v|uUB)-ua)]| = ]S @B -uan|-
=li=1 i=1 =1
1]
v (Eaf') and according to the regularity of . we have ¢ =0. We used the

i=1

inequality
n n n -1
((UBL) =S u(Ba) - 3 u(A)
il i=1 i=1
which holds since B, o A,.

Corollary. If every set in % is outer regular and if ¥ is a complete, regular
[-group which has a countable type and u is a measure on B with values in ¥, then u
is regular in the sense of the Definition 3.

Proof. According to Proposition 2 and Theorems 5, 6, 7 we have B = %% =
SPE=NPX c R.
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MPOJIOJXEHUE U PETYJNIAPHOCTb MEP CO 3HAYEHUAMU
b a-TPYINE

[Merp Bonaydp

Pesrwome

B HacTosinien 3aMeTke nojt Mepon OyieM NMOHUMATh OTOOPAKEHHUE (¢ OnpeeaeHHoe Ha anrebpe ¥
MOAMHOXECTB MHOXECTBa X €O 3HAYEHUSMU B JI-rpynne 4, BbIMOJHSIOIIEE CAEAYIOIIME YCAOBUS
w(A)Z0 ansa BCIKNX A €./, (I KOHEUHO-QUINTUBHAS M TMOJIyHeNpepbiBHas cHu3y. Llenwno 3ameTkun
SABNAETCS (DOPMYTUPOBKA YCIOBUA HAKNAABIBAEMbIX Ha % JIOCTATOUHBIX ISl NPOJOJIXKEHUS MEPbI €
anrebpbl .4 Ha g-anre6pbl Y8 coaepxauyio -¥.

Bo BTOpHi HacTh u3ydaeTcs npobrema peryaspHOCTH Mepbl KaK OHa (pOPMYJIMPOBaHA Hanpumep B
kHure Xanmoina [2]. B oGenx 4acTsx HEHTPadbHYK) POJb UIPAKOT YCIOBHS CUYETHOBO THMA W
PErylISpHOCTH HAKJIAAbIBAEMbIC Ha J-rpynny ‘f.

‘n
‘»
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