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ON SOME PROPERTIES OF TRANSFORMATIONS OF A LOGIC 

ANATOLIJ DVURECENSKIJ 

In the paper the notion of the ergodicity on a logic will be introduced and 
the different types of the transformations of a logic will be characterized and 
the recurrence theorems will be proved. 

1. Ergodic properties of homomorphisms 

Let L be a a-lattice with the first and the last elementsOand 1, respectively 
and an orthocomplementation J_ : ah> a 1 , which satisfies (i) (a±)±=a for all 
a e L; (ii) if a < b, then b-L<a± for all a,b e L; (hi) a v aL = 1 for all a e L. 
We say tha t a, b are orthogonal and write a J_ 6 if a <bL. We further assume 
tha t if a, b e L and a < b, then there exists an element c e L such that a J_ c 
and a v c = 6. A or-lattice satisfying the above axioms will be called a logic 
(see [1]). 

CO 

A state is a map m from L into <0, 1> such tha t m (1) = 1 andra( \ / c )̂ = 
i - l 

CO 

= 2 m(ai) if ai J- aj f ° r i ^j- A logic is full in the case: (i) if a ^ b, there 
i - l 

exists a state m such tha t m(a) -^ m(b); (ii) if a ^ 0, there exists a state m 
such tha t m(a) = 1. An observable is a map x from the Borel sets B(Ri) of R± 
into a logic L, which satisfies (i) a(JKi) = 1; (ii) x(E) J_ x(F) \£E C\F = 

CO CO 

= 0; (hi) a( (J Et) = V *(#*) if Ei n -®/ = 0, * =£ i, ^i e B(Ri). 
i=l i = l 

Let a; be an observable and m be a state. Then we shall say that x is 
(i) a constant (a constant a. e. [m]) if there is a real number X such that 

*({A})=1 (m(x({l)) = 1); 

(ii) bounded (bounded a. e. [m]) if there is a compact set K with the property 
x(K) = 1 (*»(.-(£)) = 1), 

We denote by a(x) (<rm(x)) the smallest closed set E such tha t x(E) = 1 
(m(x(E)) = 1). 

A homomorphism of a logic L is a map T from L into £ such tha t TO = o; 
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T(a±) = (Ta)L for all a e LT ( V ai) = V 2 ^ - - W e s l i a 1 1 s a y t h a t a homo 
i - i z"_i 

morphism T of a logic _L is (i) invariant in a state m if m(Ta) = m(a) for all 
a e L; (ii) ergodic in a state m if the equality Ta — a implies m(a) e {0, 1}. 

Let I7 be a homomorphism of £ and x be an observable. We shall say that 
a; is ^-invariant if T(x) = x, where (^(a?)) (#) = T(x(E)), E EB(BI). 

Theorem 1.1. A homomorphism T of a full logic L is ergodic in every state iff 
the constants are the only T-invariant observables. 

Proof . For sufficiency, let the constants be the only T-invariant observables 
and let Ta = a. We define an observable qa : qa({0}) = aL, qa({l}) = a. I t 
follows that qa is T-invariant and hence qa({l}) = a is either 1 or O. Then 
m(a) e {0, 1} for all m. 

Conversely, let T be ergodic in every state and let T(x) = x, hence m(x(E)) E 
E {0, 1} for all m. If 0 ^ x(E) =£ 1 for some E E B(BI), then there exist two 

1 
states mi, m^ such that mi(x(E)) = 1, m2(x(E)±) = 1. Thus if m — (mi+ 

z 
1 

+ m%), we have m(x(E)) = —. This is a contradiction and hence x(E) is either 
Ji 

0 or 1. Let us denote 

V = {E EB(BI) : E => a(x) or E n c/(x) = 0}. 

If a < &, then either <a, &> or (a, b) is in %\ But ^ is a c-algebra and hence 
it equals B(B{). Hence it follows that there is a X E B± such that x({X}) = 1. 

q.e.d 

Theorem 1.2. A homomorphism T of a logic L (L is arbitrary) is ergodic in 
a state m iff the constants a. e. [m] are the only T-invariant observables bounded 
a. e. [m]. 

Proof . Let T(x) = x, x be bounded a. e. [m] and let T be ergodic in m, 
then m(x(E)) e {0, 1} for all E EB(BI). If we denote a = inf am(x), b = sup 
<ym(%), we shall have m(x((a, b})) = 1 and by application of the Weierstrass 
method of dividing repeatedly the bounded interval (a, by into halves Tve 
shall obtain a sequence {(an, bny} of intervals such that (a, by => (a±, bi> =̂  
^ <&2,b2> => . . . and m(x((an, bny)) = 1 for n = 1, 2, Hence there is 

oo 

a A E B\ such that {%} = Q (an, bny and consequently m(x({X})) = 1. 
n-l 

The sufficient condition is trivial. q.e.d. 

Corollary 1.2.1. A homomorphism T of a logic L is ergodic in a state m iff 
the constants a. e. [m] are the only T-invariant observables (not necessarily 
bounded). 
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Proof . Only necessity. For am(x) we have am(x) = ( J (am(x) n <?i, n -f-
W=-oo 

+ 1)) = 1. The set E = am(x) n (ji, n + 1) is bounded and as above there 
is a X e B± such that m(x({X})) = 1. 

q.e.d. 

R e m a r k 1. Theorem 1.2. will be valid if the assumption of the boundedness 
a. e. [m] of x is omitted, provided tha t x eOv(m) = {x: \ f /l-5m(o;(cZA))| < oo} 
for 1 ^ p < oo. In fact, if Ta = a, then the observable qa is in Ov(m) and 
J Xvm(qa(dX)) = m(a) e {0, 1}. On the other hand, the necessity is easily seen 
from Corollary 1.2.1. 

R e m a r k 2. Let L be now a logic in the sense [5], tha t is, L is not a lattice 
in general. Then the Theorems 1.1., 1.2., the Corollary 1.2.1. and the Remark 1 
will be valid, too. 

Lemma 1.3. An automorphism T of a logic L is ergodic in a state m iff 
00 

m( V Tia) = 1 holds for each a e L, m(a) > 0. 
i - oo 
Proof . The sufficiency is trivial. On the other hand let m(a) > 0, then for 

00 

b = Y Tla we have m(b) > 0. But Tb = b and hence m(b) = 1. 
j — oo 

q.e.d. 

If we use Wigner's and Gleason's theorems (see [1]) about the representation 
of automorphisms and the states, respectively, in the case of a logic of all 
closed subs paces of a Hilbert space H we shall give an interesting example 
which is a generalization of a known proposition in the ergodic theory (see 
[2] p . 34). 

Let L = L(H) be the logic of all closed subspaces of H and (.,.) be the inner 
product on H. Since there is a one-to-one correspondence between the closed 
subspaces M of H and their projectors PM, we shall write M for an element 
as well as for its projector. Let U be a unitary operator on H and cp be a unit 
vector in H. Then Tv: M H- UMU-1, M e L(H),is an automorphism of L(H) 
and m,q> : M F> (Mcp, cp), M e L(H) is a state of L(H). 

E x a m p l e . Let U be a unitary operator on a Hilbert space H and P = 
= {£ e H : US = £} ^ 0. Then an automorphism Tv(.) = U(.)U~1, is in­
variant in a state mq>, cp eP, \\<p\\ = 1, where m^M) = (Mcp, cp), M EL(H). 

If dim P = 1 then, moreover, Tu is ergodic in a state m^, Conversely, if 
for each cp e P , \\<p\\ = 1, Tu is ergodic in a state m<p, then dim P = 1. 

P roo f . Tor invariancy: m^TuM) = (UMU-1?, cp) = (MU^cp, c7~V) = 
= (Mcp, cp) = m<p(M). Now let dim P = 1 and TVM = M, that is UMU-1 = 
= M, UM = MU. If cp is a unit vector in P , then UMcp = MUcp = Mcp, 
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i. e, M(p G P and Mcp = occp. But a2oj = M2cp = Mcp = aoj, hence a e {0, 1} and 
consequently m<p(M) = a e {0, 1}. 

Conversely, let Tu be ergodic in all m<p, <p £ P, \\cp\\ = 1 and let dim P > 1 

1-" 
then there exist two orthonormal vectors q>i, cpz in P. Hence if cp = (oji f-

-f- 992) and M is a subspace generated by <p\, then (p e P, \\cp\\ = 1 and UiJF 
= ilfU because if £ = aoji -f- y, y _|_ <ri, then UJff = occpi, MU£ = a^i + 
+ MUy. But (991, Efy) = {U*<pi,y) = 0 and hence MU£ = aoji. Finally 

1 
m<p(M) = — and it is a contradiction with our assumption and hence 

Z 

d i m P = 1. 
q.e.d 

2. Characterizing some types of transformations of a logic 

For every two elements a,b e L we shall write a — b = a A bL. 

Theorem 2.1. (Recurrence theorem) Let T be a homomorphism of L and let T 
be invariant in a state m. Then for all a e L we have 

00 

(1) m(a - V Tm) = 0. 
i = i 

00 

Proof . Let b = a — V ^a, then { ^ 6 } ^ are orthogonal elements of L 
i=i 

00 00 00 

and therefore m( V T*b) = 2 m(Tjb) = ^ m(6) < 1. Hence m(b) = 0. 
j 0 j=o j -o 

q.e.d. 

A logic L is said to satisfy the finite chain condition (f.c.c.) if {am} <-= L 
with a\ > a2 > . . . implies that there exists N such that an = a^ for n > N 
(see [3]). A logic £ is c-continuous if for {an} <z £ with ai < &2 < . . . we have 

00 00 

a A ( V a?0 = V (a A a^) f ° r a ^ 0 e i . I t is easy to see that if L satisfies f.c.c. 
n=l 11-I 

00 00 

then it is a-continuous. For {an} <=• L let lim sup an — A V a i • 
w=l j-n 

Theorem 2.2. (Strong recurrence theorem) Let L be o-continuous and T be 
a homomorphism invariant in a state m. Then for all a eL we have 

(2) m(a — lim sup T*a) = 0. 
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Proof . Let us put b = a — lim sup T*a, then b = a A V ( V T*aV = 
n=i j=tt 

0 0 oo 00 00 00 oo 

- V (o A ( v ^«)x) = V (« — V y / a ) = V 6» where &» = o — y 2%, 
w 1 J—n n = l j=n n = l j~n 

n = 1, 2, . . . . Applying Theorem 2.1. to a map II = Tn we get for 6* = a — 
00 

— V Ma, m(b*n) = 0. But bn < &'*, therefore m(6») = 0, ra = 1, 2, . . . and 
i - i 

m(b) = lim m(bn) = 0. 
n 

q.e.d. 

In the rest of this paper according to [4] some types of transformations will 
be introduced and relations among them will be shown. 

Let I7 be a transformation L -> L and m be a state. Then we shall say that 
T i s 

(i) incompressible in a state m: if a e L, a < Ta implies m(Ta — a) = 0 ; 

(ii) conservative in a state m: if a e L , a _\_Tna, n = 1, 2, . . . implies 
m(a) = 0; 

(iii) weakly conservative in a state m: if a e L, {Tna}%L0 is a sequence of 
mutually orthogonal elements of L, then m(a) = 0; 

0 0 

(iv) recurrent hi a state m: if a e L, then m(a — V TMa) = 0; 
n=i 

(v) strongly recurrent in a state m: ii a e L, then m(a —- lim sup Tna) = 0. 
R e m a r k 3. I f? 7 is a homomorphism of i invariant in a state m, then T is 

conservative in m. 

Theorem 2.3. Le£ L be a-continuous, then (v) implies (iv). 
00 00 00 

Proof . Let asL, then a — lim sup Tna = a — /\ V T^a = V (a — 
tt=i &=tt tt=i 

00 00 00 

— V T*a) > a — ( V -T*a) and hence w(a — V Tna) = °-
& n & = 1 tt = l 

q.e.d. 

Theorem 2.4. Le£ T be a monotonic transformation, that is Ta <Tb if a <by 

m be a state, then (v) implies (iv), and (ii) and (iv) are equivalent. 
00 00 

Proof . Let aeL and let (v) hold, then a — V Tna = (a ~ V Tna) -
n=l n = l 

00 

lim sup T*(a — \/ Tna). Indeed, if b is the element on the right-hand side, 
r i = i 

00 00 00 

then b <a y Tna. Since lim sup Tk(a — V Tna) < lim sup Tka < V Tka, 
n - l n = l jfc-1 
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we have b > (a — V Tna) ~" V Tna = a — V Tna and therefore m(a — 
n = l n = l n = l 

- \jTna) =m(b) = 0. 
n = l 

co 

Let now (ii) hold. Then if a e L, let b = a — V -Tw0. -For each ra = 1, 2, . . . 
n - l 

CO co oo 

we get Tm(a — \J Tna) < Tma < a1 v V Twa = (a — V 27w^)"L
J therefore 

n = l n 1 n 1 

Tmb _]_ b and hence ra(b) = 0. On the other hand let (iv) be valid, then if 
00 oo 

a _L Tna, n = 1, 2, .. . , we have a _]_ V Tna a I l d a "" V T w a = a- Therefore 
n—1 n 1 

(ii) holds, too. 
q.e.d. 

We shall be able to say something more if we assume the following properties 
oiT 

(3) T( V a „ ) = V Tan for {an} a L 
n = l n = l 

(4) T(aL) > (Ta)x for all a e L. 

If {a^}^GA is a system of orthogonal elements from L, there is a Boolean 
c-algebra A <= L which contains the given system (see [1]). Therefore the 
distributive law holds for the orthogonal elements of L. 

Theorem 2.5. Let T be a transformation L -> L with the properties (3), (4) 
and m be a state, then (i) implies (Hi). 

Proof . Let a EL and (i) hold. If {Tna}^0 are orthogonal elements of L, 
00 CO CO 00 

then for b = ( \ / Tna)L we have T(( \ / Tna)L) > (T( \J Tna))L = \ / {Tna 
n —0 n = 0 n 0 n 0 

oo oo 

\ ( V Tma)L} = a A ( V Tma)L = a. We conclude finally that m(a) < m(Tb 
m=l m=l 

— 6) = 0. 
q.e.d 

Lemma 2.6. Let T be a homomorphism of L and m be a state, then (ii) (iv) are 
equivalent. 

Proof . The equivalency of (ii) and (iv) has been proved, Theorem 2.4., 
and (ii) and (iii) are equivalent as can easily be seen. 

q.e.d. 
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