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(Commaunicated by Miloslav Duchon)

ABSTRACT. If the introduced Condition (GB) is fulfilled, then everywhere con-
vergence of nets of measurable functions implies convergence in semivariation on
a set of finite variation of a measure m: ¥ — L(X,Y) which is o-additive in
the strong operator topology (X is a o-algebra of subsets, and X, Y are both
locally convex spaces). In the case of the purely atomic measure Condition (GB)
is fulfilled.

Introduction

In the operator valued measure theory in Banach spaces pointwise conver-
gence of sequences of measurable functions on a set of finite semivariation implies
convergence in (continuous) semivariation of the measure m: ¥ — L(X,Y),
where X is a o-algebra of subsetsof aset T # @, and X, Y are Banach spaces,
cf. [1]. If X fails to be metrizable, the relation between these two convergences
is quite unlike the classical situation, cf. [6, Example after Definition 1.11].

The importance of Condition (B) (for sequences) in the classical measure
and integration theory was stressed by N.N.Luzin in his dissertation [5].
Condition (B) for nets in the classical setting was introduced and investigated by
B.F.Goguadze, cf. [2]. We introduce Condition (GB), see Definition 1.2,
which generalizes Condition (B) to the case of a measure m: ¥ — L(X,Y)
which is o-additive in the strong operator topology, where ¥ is a o-algebra of
subsets, and X, Y are both locally convex spaces. If the introduced condition
(GB) is fulfilled, then everywhere convergence of a net of measurable functions
implies convergence in semivariation on a set of finite variation of the measure
m. The new condition concerns families of submeasures. If the measure m is
purely atomic, then Condition (GB) is fulfilled.

AMS Subject Classification (1991): Primary 46G10.
Key words: Semivariation of operator valued measures, Locally convex topological vector
spaces, Atomic measures, Convergences of measurable functions.
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1. Preliminaries

By a net (with values in a set D) we mean a function from I to D, where
I is a directed partially ordered set. To be more exact we will sometimes specify
that, for instance, the net is an I-net to indicate that I is an index set for a
given net. For terminology concerning the nets see [4]. N={1,2,...}.

Let X, Y be two Hausdorff locally convex topological vector spaces over
the field K of real R or complex C numbers. Let P and Q be two families of
seminorms which define the topologies on X and Y, respectively. Let L(X,Y)
denote the space of all continuous linear operators L: X —» Y.

Let T # 0 be a set and let ¥ be a o-algebra of subsets of T'. Denote by \ g
the characteristic function of the set E.

Let m: ¥ — L(X,Y) be an operator valued measure o-additive in the
strong operator topology, i.e. if E € ¥, then m(E)x is an Y-valued measure
for every x € X.

DEFINITION 1.1. Let pe P, q€ Q. Let E€ X.
(a) By the p,g-semivariation of a measure m, cf. [6], we mean a set function
my,: % — [0,00], defined as follows:

N
i) - i)
n=1

where the supremum is taken over all finite disjoint partitions {E, € ©; E =

N
U En, ExNE, =0, n#m, mn=12... N} of E and all finite sets
n=1
{xp, € X; p(x,)<1,n=12,...,N}, NeN.
(b) By the p,q-variation of a measure M we mean o set function

Vp,e(m,): £ — [0,00], defined as follows:

N
vp,q(m,E) = suqu,, (m(En)), Eex, qp(m(E)) = (Sl;IiI(I(m(E)X),
n=1 VARSI S

where the supremum i3 taken over all finite disjoint partitions {E, € ©; E =
N

E., E,NEn=0,n#m, nm=1,2,...,N, Ne N} of E.
=1

n

The proof of the following lemma is trivial.

LEMMA 1.2. The p,q-(semi)variation of m is a monotone and o-additive
(o-subadditive) set function, and v, 4(0) = 0 (1, 4(8) = 0) for every p € P
and ¢ € Q.

Note that mp¢(E) < Vp¢(E) for every q € Q, peP, Fel.
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DEFINITION 1.3. We say that a set E € ¥ 13 of positive variation of a mea-
sure m if there exist ¢ € Q, p € P such that v, ,(m,E) > 0.
We say that a set E € £ 1s m-null if i, o(E) =0 for every g€ @, peP.
We say that a set E € ¥ 1s of finite variation of a measure m if to every
q € Q there exists p € P such that v, (m,E) < co. We will denote this
relation briefly Q —g P, or, q+»pp, g€ Q, peP.

Note that the relation @ — g P in Definition 1.3 may be different for different
sets E € ¥ of finite variation of m.

DEFINITION 1.4. A measure m i3 said to satisfy Condition (GB) if for every
E € ¥ of finite variation and every net of sets E; € ¥, E; C E, 1 € I, there
holds

limsup E; # 0
€]

whenever there ezist real numbers 6(q,p,E) > 0, p € P, q € Q, such that
m, o(E;) > 6(q,p, E) for every 1 € I and every couple (p,q) € P x Q such that
q—EPD-

DEFINITION 1.5. We say that a set A € ¥ of positive semivariation of a
measure M i3 an M-atom if every subset E of A 1s either § or E ¢ ¥. We
say that a measure m 13 purely atomic if each E € ¥ can be ezpressed in the

oo
form E = |J Ak, where Ay, k € N, are r-atoms.
k=1

DEFINITION 1.6. A function f: T — X 1s said to be measurable if
{teT; p(f(t)) 2n} €T
for every n >0 and pe P.

LEMMA 1.7. If there exists a nonmeasurable set E such that E C Ey,
Ey € &, and every finite subset of E 13 measurable, then the set of all measurable
functions s not closed with respect to pointwise limits of measurable functions.

Proof. In [2,10.1, p. 126], there is shown the assertion for increasing nets
of measurable, real and uniformly bounded functions.

DEFINITION 1.8. We say that a net f;, 1 € I, of measurable functions is
eventually m-convergent on E € ¥ to a measurable function f if for every
q € Q there 13 p € P, such that for every n >0,

lim i, 4 ({t € E; p(£(t) - £(t) 2 n}) = 0. (1)

el
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2. Condition (GB) and purely atomic L(X,Y)-valued measures

In this section we show that a class of measures satisfying Condition (GB) is
non empty. First, we prove a lemma.

LEMMA 2.1. Let E € T be a set of positive and finite variation of a (countable)
purely atomic measure m.

If Ay, k € N, 13 a class of m-atoms such that Ax C E, k € N, then
Vp,e(m, E) = Z 1y o(Ak)
k=1

for every couple (p,q) € P x Q such that ¢ —gp.

Proof. Let ¢g—g p, ¢ € @, p € P. Then by Definition 1.1 and Lemma
1.2 we obtain

k=1

Vpq(m, E) = Z Vp,q(m, Ag) = Z‘Ip(m(Ak))
k=1

= Z sup q(m(Ak)x) = Z m, q(A),
k=1

k=1 p(x)<1

because Ag, k € N, are m-atoms.

THEOREM 2.2. If m s a (countable) purely atomic L(X,Y)-valued measure,
then m satisfies Condition (GB).

Proof. Let E € ¥ be an arbitrary set of finite variation. Let E; € ¥,
¢ € I, be an I-net of sets such that there are 6(¢,p, E) > 0 with 6(¢,p, E) <
m, ((E;) for every ¢ € I and every couple (p,q) € P x Q, satisfying ¢ —g p.

Denote by {Ax; k € N} the class of atoms of the measure m such that
Ax C E, k € N. Clearly

6((111)1 E) < Z rhp,q(Ak) = Vp,q(m,E) < 00.

k=1

To prove the assertion, it is enough to show that for every cofinal J-subnet
of the I'net E; € ¥, 1€ I, J C I, there exists an atom A such that 4 i1s a
subset of each element of a cofinal K-subnet of this J-net of sets, K C J.

Suppose this is not true for some J-subnet. Without loss of generality let it
be the I-net E;, 1 € I, itself. So, for every atom A;, k € N, there exists an
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index ix € I such that Ax ¢ E; for every ¢ > iy, ¢ € I. Take real numbers
e(¢,p, E) > 0 such that e(q,p, E) < 8(q,p, E). Then there are non-negative
integers N(q,p, E) such that

oo N(q,p,E)
Z o (Ar) — Z m, q(Ax) <e(q,p, E).
k=1 k=1

The existence of such N(g,p, E) follows from the series convergence on the left
hand side of the inequality.

Taking the atom A; we find an index i; € I such that A; ¢ E; for every
1> 1y, ¢t € I. Thus, from the o-subadditivity of the p,q-semivariation of the
measure m, for ¢ > iy, we obtain

1y q(Ei) < Z mm,  (Ak) — 1y o(Ay).
k=1

Further, we find an index 22 € I, i3 > iy, such that A; ¢ E; for every i > iz,
1 € I, and

ﬁ"p,q(Ei) < Z rhp,q(Ak) - ﬁ‘p,q(Al) - ri11!uq(A2)
k=1

for every i > iy, 1 € I. Repeating this procedure by induction we can write:

oo N(q,p,E)
m,,q(Ei) < L m, o(Ax) — Z m, (Ax) < e(q,p, E)
k=1 k=1

for every 7 > in(g,p,E)> U iN(q,p,E) € L.
This contradicts mp 4(Ei) > 6(¢q,p,E), ¢ € I. The theorem is proved, cf.
also [3].

3. Condition (GB) and eventual r-convergence
of measurable functions on measurable sets

In this section we show that Condition (GB) is a necessary and sufficient
condition for the assertion that everywhere convergence of measurable functions
implies eventual m-convergence in locally convex setting. Further, as an appen-
dix, we show that a Egorov theorem cannot hold for arbitrary nets of measurable
functions without some restrictions putting on the measure, net convergence of
functions, or class of measurable functions.
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THEOREM 3.1. Let a measure m satisfy Condition (GB). If a net of measur-
able functions f;, 1 € I, converges everywhere on a set E € ¥ of finite variation
to a measurable function f, then it eventually m-converges to f on E.

Proof. Let f be a measurable function and f;, 7 € I, be a net of measur-
able functions such that for every p € P the equality

lim p(f(t) - £()) = 0 2)

is true for every t € E. Show that the net f;, : € I, is eventually m-convergent

on E to f.
Let us denote

Ei(p,n)={te E; p(fi(t) - f(t)) >n} €%,

forevery n >0, pe{peP; q—Ep, ¢€Q}, t€I.
Now, suppose that there are qo € @, po € P, 1o > 0, & > 0, such that

My, q0 (Ei(POvWO)) > o (3)

holds for a cofinal J-subnet E;(po,no), je€J, JCI of the I-net Ei(po,no),
i € I. Consider the J-net E!(po,n0), j € J. From (3) and Condition (GB) we
see that there is a cofinal K-subnet E}(po,m0), k € K of the net El(po,10),
je€J, K C J,such that

E" = ﬂ Ei(po,m0) # 0.

kEK
Take a point to € E"” and k € K. Then clearly
po(fi(to) — £(t0)) = mo - (4)

Pointwise convergence (2) of the net f;, : € I, to f implies pointwise con-
vergence of every subnet of the net f;, ¢ € I, to the same function f. Thus, the
net fi(ty), k € K, converges to the point f(¢¢). This is a contradiction with

(4).

THEOREM 3.2. Let E € ¥ be a set of positive and finite variation. Let
E, € ¥, E; C E, 1 € I, be a net of subsets such that for every couple
(pq) € PxQ, ¢ —g p, there 1s § = 6(¢,p, E) > 0 such that the inequal-
ity My, o(E;) > 6 s true for every 1 € I, but limsupE; = 0.

el
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Then there ezists a net of uniformly bounded measurable functions such that
1t converges everywhere on the set E to a measurable function, but it does not
eventually m -converge to this function on E .

Proof. Let x € X be an arbitrary nonzero element. Put f(¢) =0 € X for
every t € E. It is easy to see that

limp(x - x&:(t) - £(1)) =0

for every t € E and p € P. Indeed, let to € E. So, there is 7y € I such that
to € E! = E\ E; for every 1 > 1y, t € I. Thus x- xg,(to) =0 for every 7 > i,
1€ I, and

i . (to) =0.

limx - xg;(to) =0

On the other hand, for every : € I we have
i 1
mp,q({t € E; p(x XE:(t) — f(t)) > 5}) >6,

and the I-net x - xg;, ¢ € I, of functions does not eventually m-converge
to f.

THEOREM 3.3. Let E € T be a set of finite variation. Everywhere convergence
of an I-net f;, i € I, of measurable functions to ¢ measurable function f on
E wmplies eventual yn-convergence of the net f;, 1 € I, to £ on E if and only
if the measure m satisfies Condition (GB).

Proof. Combining Theorem 3.1 and Theorem 3.2 we obtain this criterion
directly.

THEOREM 3.4. Let E € ¥ be a set of positive and finite variation. Let
{t} €=, my,({t}) =0 forevery te E, pe P, g€ Q.
Then there ezists a net of uniformly bounded measurable functions f;, 1 € I,

such that leIIllp(fg(t) —f(:t)) =0 for every t € E and for every FC E, F € &,

of positive semivariation, pointwise convergence of the net f;, 1 € I, on F 13
not uniform.
(We consider the uniform convergence with respect to the system of sema-
norms ||f||Fp = sggp(f(t)) ,pEP, FCF, FeX)
t

Proof. Let I denote the direction given by the inclusion of sets. Let x € X
be an non-zero element. Let E; C E, 7 € I, be a net of complements of finite
subsets of the set E to E. It is easy to see that x- xg,, ¢ € I, is a (decreasing)
I-net of functions converging to 0 € X at each point of the set E. But there
does not exist an infinite subset F' C E such that the I-net x- xg,, ¢ € I,
would converge uniformly. It follows from the fact that x- xg,(t) =0 only on a
finite subset of the set F.
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