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NON LINEAR INTEGRALS

JAN S1IPOS

Introduction

This paper is a continuation of [7] where we introduced the notion of the integral
for a pre-measure (non-negative, monotone, in an empty set vanishing set
function), which is defined on a pre-space. In this paper we shall show that if
a pre-measure has some other properties, then the integral has some interesting
properties. We shall namely be interested in the study of strong subadditive and
strong superadditive measures.

If one has a set function on a ring, then constructing an integral means to define
a functional on a subclass of the class of all measurable functions. It is natural to
desire that the integral must copy as many properties of the set function as possible.
It is also natural to desire that the measure of a set should concide with the integral
of the characteristic function of the same set.

Our process of integration claims all these desired properties in case of a pre-,
strong super and strong submeasures. However, it is easy to see that in the case of
a general submeasure the integration process turns out to be useless, since in this
case it need not be subadditive.

§ 0 begins with notes about terminology and notation. We give also the definition
of the integral and list some of its interesting properties. We show a useful formula
for computing some examples. In § 1 we introduce the notion of strong super- and
strong submeasures and give examples. § 2 contains a proof of the fact that the
integral copies some properties of the set function with respect to which it has been
constructed. In § 3 we present a theory of L, spaces for our integration theory with
respect to a strong subadditive measure. In § 4 we establishe a theorem expressing
the values of a strong submeasure integral in terms of some additive measure
integral values.

§0. Preliminaries

By a pre-space we mean a pair (X, @), where § € D and 9 = 2*. An extended
real valued monotone set function u defined on 9 is called a pre-measure iff

u(@)=0.
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A pre-measure u is called continuous if it has the following” two properties:

(i) A,/ A >B(A,, Be®) implies lim, u(A,)Zu(B).
(i) A.\A cB, u(A))<, (A., B D) implies lim, u(A,)=u(B).

The function f: X — ( — », ) is @-measurable or only measurable iff the sets
{x; f(x)=a} and {x; f(x)=—a} are in @ for every a >0.

We denote by £ (D) the set of all @-measurable functions. f e £(D) is called
a simple function if the range of f is finite.

Now we recall the definition of the integral given in [7].

Let & be a family of all finite subsets of ( — o, o) which contains zero. Let
F e % with

F={bn<bm1<..<bo=0=ao<a:<...<a,},

and let f be a 9-measurable function. We put

S(f, F)=2_;(ai —ai-)u({x; f(x)=Za})

+ 25 = biou({x; f()=b))

if the right-hand side expression contains no expression of the type « — «. Since ¥
is directed by inclusion, the triple (S(f, F), &, o) is a net. We put

If=9f=f du=lim S(f, F)

if the limit exists. f is called integrable iff 4.f is finite.
We denote by £, =Z:1(X, D, u) the set of all integrable functions.
The main properties of #, proved in [7] are:

1° Suxa=u(A).

2° S f=sup {$.9;9=Ff, g is simple} for f e £ (D)

3° 4, is a monotone functional.

4° 9, is additive in a horizontal sense, i.e. if a Z0, then -

fuf=‘¢u(f/\a)+‘¢u(f_f/\a)
if one of the right-hand side expressions is finite.

5° For fe% If =9f —9f .

6° J(af)=asf.

7° f, Ifle£(D) and |f|e £, implies f e Z:.

8° If u is continuous, f. € L(D), f../'f €e L(D) and Ff,=c < o, then Ff./ If.
9° If uis continuous, fn, f € £(D), g € %1, |fa| =g, fa— fand D is a o-lattice, then

lim, $f, = J9f.
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10° Fatou’s lemma : If u is continuous, f,, g € £1(D) with f, Zg, lim inf, $f, =c,
and 9 is a o-lattice, then the function f defined by f(x) =1lim inf, f.(x) is integrable

and Jf =lim inf, $f,.
Remark. Letfe £7(X, D, 1) and let A be the Lebesgue measure on R ; then

‘¢l‘f=fg dA’

where on the right-hand side there is an ordinary Lebesgue integral and g(¢t)=

u({x; f(x)=t}).

Proof. Suppose first that f is bounded by A . Then g (¢) vanishes on (A, ). Let
€ >0. Choose Fo={0=ao<a;<...<a:} with ax = A and such that for F o F, there
holds: |#.f — S(f, F)| < &/2. Choose such a >0 that for every partition A of the

A

L g(t) dt—3(g, A)

where Z(g, A) is a Riemann integral sum of g with respect to the partition A. Let
F o F, be such that Fn (0, A ) is a partition of (0, A ) with the norm less then §.

Then

interval (0, A ) with the norm less then é there holds <e/2,

Sf—=S(f, F)+S(, F)—J;Ag(t) dt’

fuf-fg(t) | =

Sf—S(f,F)+=(g, Fn(O,A))—ng(t) dt’<£

A
because S(f, F)=X=(g, Fn{0, A)). And so we getﬂuf=j g(t) de =fg di.
0
If now f is not necessarily bounded, then
A
$uf = lim $,(fAA)=lim f 9 (t) dt=fg di.
- - Jo
The formula just proved may be very usefull for computing examples. Let
w =A%, MZ:\k/I, pus=arctg A and let f be an identity map on (0, 1) ; then
1 1
y,“,f=j y,({x;xét})dl(t)=f (1=t dt=1/(k+1).
(] 0 .

1
k
y“2f=f VI—tdt=k/(k +1),
0

Ff=m/4—1n V2.
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§1. Non additive measures

Let (X, 6) be a pre-space and let € be a lattice.
A pre-measure u defined on € is

a) subadditive iff
u(AUB)=u(A)+u(B),

b) strongly subadditive iff
w(AnB)+u(AuB)=u(A)+u(B)

c) strongly superadditive iff _
u(AnB)+u(AuB)Zu(A)+u(B)

d) additive iff
u(AnB)+u(AuB)=u(A)+u(B).

A strongly subadditive (superadditive) pre-measure is a strong sub-measure

(super-measure).
We give a list of interesting examples of pre-, sub- and super-mearusres. For this

we need the following. .

Lemmal. If a, b, ¢, d are non-negative real numbers with c=a, b=d,
c+d=a+b(c+d Z a+b) and f: R">R" is an increasing concave (convex)
function, then

f(e)+f(d)=f(a)+f(b) (f(c) +f(d)Zf(a) +f(])).

Proof. Denote g(x)=f(x)+f(c+d—x). (0=x=c +d). Then g is a concave
function with g(c+y) = g(d—y) for ye(c,d). Since f is concave, Ax,+
(1-2)(c+d—x1) = ¢c+d—x;and (1-A)x; + AMc+d—x;)=x, we get that g is
increasing on {(c, (c +d)/2). And so we have

g(c)=g(d)=min {g(x); xe(c,d)};

. since c+d—a=b and f is increasing, we get
fe)+f(d)=g(c)=f(a)+f(c +d —a)=f(a)+f(b).

The proof of the second assertion is similar.

Example 2. Let € be a lattice and u be a strong submeasure (supermeasure)
on 4. Further let f: R"— R™ be an increasing concave (convex) function with
f(0)=0. Then the set function v on € defined by v(A)=f(u(A)), for A €€ is
a strong submeasure (supermeasure). The proof of this is a conclusion of Lemma 1.
Moreover if ¢ and f are continuous and u is finite or f(®) =0, then v is also
continuous.
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Example 3. From the foregoing example it follows that if u is a countably
additive measure on a ring # and k is a positive integer, then the set functions

k
Vu, arctgu and v(A) = u(A)/(1+u(A)) for finite v are continuous strong

submeasures. The set functions u* and v(A)=exp u(A)—1 are continuous strong
supermeasures.

Example 4. Let u be a countably additive measure on a ring 2. We put for
A cX u*(A)=inf {lim, u(A,); AreR. A,nA A}

Then p* is a strong submeasure which is not necessarily continuous. Clearly u * is
an extension of u. By III. §1., D 18 of [3] u* is a Choquet #-capacity on X.

Example 5. Let u be defined on 4 (a lattice of sets) as follows u (@) =0 and
u(A)=1 for #+ A € €. Then u is a strong submeasure on €.

We note that all examples of submeasures and strong supermeasures are also
pre-measures.

A special case of strong submeasures are the so called maxitive measures [5].
A pre-measure m defined on a lattice € will be called a maxitive measure iff

m(AuB)=max {m(A), m(B)}.

The following examples show that a maxitive measure may be considered as an
indicator of the size of a set.

Example 6. Let X=R and let
m(E)=sup {|x ;xeE} for ECR.
More generally, let (X, ¢) be a metric space and
m(E)=sup {d(x, x0); x € E} (sup #=0)

Example 7. Let (X, o) be a metric space, € =2* and m(E) be the Hausdorff
dimension of E.

§2. Properties of the integral in special cases

In this section the family € is assumed to be a o-lattice.
Theorem 8. Let f and g be non-negative measurable functions. Then
F(frg)+I(fvg)=If+Ig
if u is a strong submeasure, '
F(frg)+I(fvg)=If+Ig
if u is a strong supermeasure.
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Proof. Let Fe ¥ with F={a0=0<a,<a><...<an}. Pyt
A;={x;f(x)Za} and Bi={x;g(x)=2q,).
Since u is strongly subadditive we get
u({x; (frg) )Zap)+u({x; (fvg) (x)2q))
=u(AinBi)+u(A:UB)=u(A)+u(B)).

After multiplying by (a;: —a,-,) and summing over i we get

S(ng,F)+S(fvg,F)§Z(ai—al-x) (u(A) + 1 (B,))
=S(f,F)+S(g.F).
If f +$g = o, then the assertion is trivial. Let $f + $g <. Let ¢ >0. Choose
Foe & with |S(f, F) — Jf|<¢ and |S(g, F)—9g|<e¢ for FSF,

Then
If + Fg >S(f, F)+S(g,F)—2¢

=S(frg,F)+S(fvg,F)—2¢.
Since & was arbitrary, we get

If+Ig=F(frg)+F(fvg).
The proof for a strong supermeasure is similar.

Corollary 9. If f and g are non-negative measurable functions and u is a strong

submeasure, then
F(fvg)=Ff+Ig.

We shall now establish that ¥ has similar properties on non — negative €
— measurable functions as ¢ has on €.

Lemma 10. Let A, 2A;>...oA, and A be measurable sets and let u be
a strong submeasure on € ; then
n+1 n+1

;u((A r\A.--l)uAi)élZu(AiHu(A),

where Ao=A and A, =0. If u is a strong supermeasure on 6, then the opposite
inequality holds.

Proof. If u(A)= «, then the assertion is trivial. Suppose that @ (A) is finite.
Let n=2; then using the fact that p is strongly subadditive we get

u(AUVA)+u((AnA)UAL)+u(ANAL)S
Su(A)+u(A)—u(AnA)+u(AnA)+u(A)—u(AnAinA)+u(AnAz) =S
Su(A)+u(A)+u(Az).
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For n >2 the assertion can be similarly proved by induction. The proof of the
opposite inequality for a strong supermeasure is similar.

Lemma 11.Let f and g be non-negative simple functions g =cya and p be
a strong submeaure. Then

S(f+9)=9f+Ig.
If u is a strong supermeasure, then
S(f+g)=If+Fg.
Proof. Let u be a strong sub-measure. If u(A) = w, then the proof is trivial. Let
u(A)<ow. Let {ai, ..., a,} 0=ao<a;...<a, be the range of f.
Denote A;={x; f(x)Za:} i=1,2,....,n Ao=A, Ans1=0 ¢cn+1=0 and ¢ =
a; —a;_,. Suppose first that c=c;i=1, 2, ..., n; then

n+1

f+g= Z[C “Xanaipoa (€ — ¢)xal
and

AUA DA D(ANA)UA;DA;D...o(ANA.1))UA, DA, DANA,
From Corollary 15 of [7] we have

F(f+g)= .21 [cu((AnAi—1UA)+ (¢ —c)u(A))]

n+1 n+1 n+1

= ,-; au(A)+c l=Zlu((14 NAi-1)UA;)— i; u(A’.)]é
=9f+9g,

where the last inequality follows from Lemma 10. We have proved the lemma for ¢
with 0<c=c¢ i=1,2,...,n. Let now ¢ be an arbitrary positive number and let
c=m -b, where m is a natural number and

b=min {¢;; i=1,2,...,n}.
Denote
gi=b-xa j=1,2,...,m.
Then

F(f+g)=F(f+g1+g2+..+g.)=
=SS(f+gi+...+gm)+ I =
SI5f+g1+ ...t Ggm-2)+IGm1+IGm =
=SIHf+Ig.+...+F5Gn
=9f+9g.
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Here we have used the first part of this proof. In the case of a strong supermeasure
the proof is the same.

Proposition 12. Let f and g be non-negative simple functions and u be a strong
submeasure ; then

F(f+g)=9g +Ig .
Moreover if u is a strong supermeasure, then

S(f+g)=If+Ig.

Proof. Let {by, ..., b.} with 0=bo<b,<...<b, be the range of g.Denote g, =
=(b,—biy). x{x; g(x)Zb;} fori=1, 2, ..., n; then

g=2g,~ and Jg zz;ﬂgi.

Further

F(f+g)=F(f+g1+..+6.)SI(+g1+...+gn1) + Fg.
SS(ft+gi+...+gn2)+Ign+ Ign
SIf+Fg:+...+5g.
=9f+ g,

using Lemma 11. The case of a strong supermeasure is similar.

Theorem 13. Let f and g be measurable non-negative functions ; if yu is a strong
submeasure, then
I(f+9)=9f+ g,

if u is a strong supermeasure, then

S(f+9)=If+9g.

Proof. Let u be a strong submeasure. If $f or $g is infinite, then the assertion
is clear. Let $f and $g be finite; then since
f+9=2-(fvg)

from the monotonicity of $ and Corollary 9 we have

F(f+9)=2. S(fvg)=2. (J(H)+F(9))<w.

Take a simple function h =f +g. Clearly u(S,)<o.Let F = {g,, a,, ..., a,} € F
(as=0<a;<...<a,) be such that max {a; —a,_,} < £/2, Jf—-S(f, F) < €/2 and
99 —S(g,F) < &/2. Let (f+ g)r(x) =@, fr(x)=a; and gr(x) =g, ; then a, =f(x)
+ g(x),a,=f(x)<a;+r and ax =g (x) <a.,,, Since max {a; —a._,} < e/2, we get
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hX)EherX)=Sf+9)r(xX)=a=f(x)+g(x)=aj1+ain
Saitac+e=fr(x)+gr(x)+e,
and so

h(x)=fe(x)+gr(x) + x5, (x) -
Hence

Fh = (fe+ gr) + eu(Sp) = Ifr + Fgr + € - u(Sn)
=SS+ Fg +€-u(Sn).
Since u(S,) <, we have
Sh=9f+9g.
The proof now follows by 2°.
If u is a strong supermeasure, then the case $(f +g)= o isclear. Let $(f +g) <o

then by the mononicity of # #f and $g are finite. Let f, § are measurable simple
functions with f=fand g =g ;then $f + $§ = $(f+3) = $(f+g) and so by 2°

If+Fg=F(f+g).

Corollary 14. Let f be a measurable function. Let u be a strong submeasure ;
then f is integrable iff |f| is integrable.

Proof. Let f be integrable; then
Flfl=F(f +f)=If +If <.

And so |f| is also integrable. The opposite implication follows by 7°.
The results of this paragraph involve the validity of the following theorem.

Theorem 15. Let u be a measure on 6. Let f and g be non-negative €-measura-
ble functions, then

I(f+g)=F(Frg)+I(fvg)=If+Ig.

§ 3. Function spaces

In this paragraph we shall assume that & = & is a o-ring of the subsets of X and u
is a continuous strong submeasure on &.

A property P pertaining to points of X is said to hold almost everywhere (a.e.) iff
the set of all x for which P does not hold is from & and is of u measure zero.
For example f =g a.e. means that

E={x;f(x)>g(x)}
is from & and u(E)=0.
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In all our convergence theorems (see [7]) we may the pointwise convergence

change by convergence a.e. To illustrate this fact we give now the variant of 8°. We
shall need some lemmas.

Lemma 16. If Ec ¥, u(E)=0 and f is a measurable function, then
Fu(fxe)=0.
Proof. Let a>0; then
{x;fxe=a}cE,
and so S(f, F")=0, for every F in %.. And so we get $.(f xe)=0.
Similarly $.(f xe)=0. From 5° we get

Fu(fxe)=3.(f xe)— $.(f x£)=0.

Proposition 17. Let f be an integrable function, let g be a measurable function
and let f=g a.e.; then

If=9g
and so g is also integrable.
Proof. Let E={x;f(x)#g(x)); then Ee¥ and u(E)=0. Since
I =9 xe +f xe)SI(f1e) + I(f xe)
=9(f xe)SIf",

we get

I =9(f"xe)-
Similarly

If =3 xe)-

From 5° we get

If=If" = If =I(f xe)— I (f xe)=F(fxe) =
=9(gXe)=9g .
The following result is sometimes called the Theorem of Beppo—Levi.

Theorem 18. Let {f.} be a sequence of integrable functions a.e. increasing,

which converges a.e. to the measurable functionf. Let $f.=c<® n=1,2,....
Then f is integrable and

If =lim, If, .

Proof. Let E be such a measurable set that u(E)=0and f.(x)./f(x)forx ¢ E ;
then

foxe /" fxe
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If follows from 8° that
I(fuxe’) /' (fxe).
By the last proposition $(f.xe') = #f, and $(fxe') = $f, and so
If = (fxe) =lim, $(fuxe’)=lim, Ff,.

The Banach spaces £, (X, 1) 1=p =« for a continuous strong submeasure are
defined in the natural way. All classical results; namely Holder’s inequality,
Minkowski’s inequality and the completeness of %, are valid. We give first the
proof of the completeness of Z;.

For a function f € £, we write
P o
Ifllo = VSIfI®.

The number ||f]|, is called a pseudonorm of f.

Theorem 19. The linear space £1(X, ¥, u) of all integrable functions on
(X, &, u) is a complete pseudometric space with respect to the pseudometric

of,ga)=If—gli=If—gll.

Proof. Let {f.} be a fundamental sequence of integrable functions with
lfusr=fall <1/2". Put fo=0 and

@n = i Ifc = fx-1| (@a(x)=0 if the i If(x) = fx-1(x)| is not defined).

Then @./'@ = D, |fc —fx-1| and F@.=1.
k=1

By the theorem of Beppo—Levi we get that ¢ is integrable and the sequence {@,}
has a limit a.e. clearly f, = Z (fc = fi-1) has a limit a.e. too. We define f(x)=0 if
k=1

lim, f.(x) does not exist and put f(x)=lim, f.(x) in the oposite case. |f|=¢, and
so f is integrable. Choose no with ||f. —f..|| <& for n, m Zn,; then

“f_"fp” =‘¢(|f—fpl)=‘¢(|lh’nﬂ fa —fp')§
=9(im, |f. = f,|)=lim inf, ||f. — f,|| =¢.

In the following we give a proéf of a result of Mazur [4] (see also [6]).

Theorem 20. The spaces %,(X,¥,u) (p=1) are complete pseudometric
spaces.

Proof. Let p>1. Let us define a map @: £, —> % by ®f = |f|” signf and
amap ¥: £ —» Y%, by Wg= lg|'” sign g.
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Since
2P Ix—yP=|x I[P =ylyl”™"| for x,y€eR,
we get
|¥(g:) - ¥(92)I" =2°7" |91~ g2
and hence
¥ (g:) - ¥(g2)ll» =2"llg1 — glli”
for all g, and g, in #,. Clearly ¥ is a continuous map.

Since

x [x " = yly "=l —yl(x T+ Iy 77

yields
@)~ oE)=pdfi=Ffl LI +If = £l 1A,
hence by the Holder inequality
e ()= eE=plfi = fll, (A7 + 1115 -

If {f.} is a fundamental sequence in %,, it is bounded and is therefore carried by
@ into a fundamental sequence {g.}, g. = @ (f.) in &..

Let g be a limit of this sequence in £, by the completeness of £, this exists. By
the continuity of ¥ the function f=¥(g) is the limit of {f,} in Z,.

Corollary 21. The spaces &,, p =1 are mutually homeomorphic.

§4. On the value of the integral

We turn now our attention to the theorem about the value of the integral. We
shall need the following two lemmas.

For the rest of this paper (X, &) will be a measurable space (see [2]) and u will
be a strong submeasure on &.

Lemma 22. Let Bic A, cB,cA;c...cB,c A, be a sequence of sets from &
with u(B.)< > ; then

Z(H(Ai)"”(B.-))éu(g (A; —B)).

Proof. Forn =1 the inequality is an easy consequence of the subadditivity of u.
Let n =2 ; then, using the subadditivity and the strong subadditivity of u, we get
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u(B1)+u(B2) +u((Ar1—B1)U(Az2—B3)) Zu(B2) + u(A1U(A,— By)) =
gu(Bzf\(Alu(Az - Bz))) + H(BzUA]U(Az - Bz)) =
=u(A)+u(Az) :
frpm which the inequality follows. The proof in general proceeds by induction.

Lemma 23. (see [8]). Let E, be the linear subspace of a partially ordered upward
filtering linear space E. Let l, be a linear monotone functional on E, and let p be
a seminorm on E. Let lo(x)=p(x) for xe E;. Then there exists the linear

monotone functional | on E with the properties:
(i) [ is an extension of fo,

(ii) I(x)=p(x) for x in E*.

Lemma 24. Let R be a subring of &. If ¢ is a measure on R, with ¢ =u then
there exists a finitely additive measure v on &, such that v is an extension of ¢ and
v=uon . :

Proof. Denote Eo=%1(R, @), E=%:(¥%, 1), Eo=EonE, lo=Y, and p(f)=
Fu|f|- Then Iy is a linear functional on E,, p is the seminorm on E and [,=p on E5.
It follows from the last lemma that there exists the linear monotone functional / on
E such that [ is an extension of /o and [=p on E". Let us define the set function v
as follows: v(A) = Iy.. By the additivity and monotonicity of [ it follows that v is
a finitely additive measure on &. Since v(A) = lxa = pxa = Juxa = u(A)for A
in ¥, we have v=u on &.

Theorem 25. Let f be a nonnegative integrable function on X; then
S.f =max 4.f,

where the maximum is taken over all finitely additive measures v such that
O=v=uon.
Proof. We put
' P D ={{x;f(x)Za}; a>0}u{h).
Denote by # the family of all sets of the form

U (A; = B;), where BjcA,cB,c A,c...c B, c A, is a sharply increasing sequ-
i=1 . . . . 3
ence of sets from @ and the sets A, — B; (i=1, 2, ..., n) are pairwise disjoint. We

. o(Uca —B.'))='_=il(u(A:)—u(B.~))-

It is easy to see that & is a ring. By Lemma 22 @ is a finitely additive measure on R
with @ =u. By the last lemma there exists a finitely additive measure v on &, such
that v is an extension of @ and v =u on &. Since J.f depends only on the values of
u on 9, itis clear that 4,.f = #.f. Since for all finitely additive measures T on & with
t=u there holds $.f =4.f, we get

Juf =max Sf.
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Corollary 26. If u is a strong submeasure on a o-ring &, then
YU =max v

where 0=v =u and v is a finitely additive measure on &.

Proof. This is a clear conclusion of the last theorem and the fact that
Fxa =1(A) for every A and for every pre-measure T on &.

Let now m be a supermeasure on (X, &). Similarly one can prove as the last
theorem the following one:

Theorem 27. Let m be the, strong super-measure on &. Let f be a nonnegative
integrable function; then
Imf =min S, f

and
m(A)=minv(A) AeZ,

where the minimum is taken over all finitely additive measures von ¥ withv Zpu.
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HEJIMHEAPHBIE UHTEI'PAJIBI

S Ivnow

Pesiome

ITycTh p-11070XUTENBHAS, BO3PACTalolias M CTPOTO MonyamiuTHBHAsA (DYHKLMS MHOXECTBA OI-
peaeneHHast Ha HEKOTOPOY O-KOJbLie.
B cTaTbhe NOKa3bIBAETCS, YTO MHTErpall BBEAEHbIH B [7] sBISETCS CTPOro MOJyajiuTHBHbIM (DyHK-

L{MOHAJIOM.
KpoMe Toro fokasbiRaeTcss — B clydae HempepbIBHOH y — yTo L, — npoctpaHcTBo Banaxa.
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