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GRAPH ISOMORPHISMS OF SEMIMODULAR
LATTICES

JAN JAKUBIK

This note is a continuation of a former paper of the author [4], where it was
proved that a condition concerning sublattices of type C (for denotations, cf.
below) is sufficient for semimodular lattices £ and %, of locally finite length with
isomorphic graphs to have direct product representations f: £— s X B and g:
% — oA X B~ such that h=g~'f (where B~ is dual to B and h is the given graph
isomorphism of £ onto %#).

_In the present paper it will be shown that the condition concerning sublattices of |

type C is also necessary for the existence of such direct product representations.
A further result on graph isomorphisms of semimodular lattices (dealing with
sublattices of type C,) is established. _

Graph isomorphisms of distributive lattices were studied in [7]; for the case of
modular lattices cf. Birkhoff [1] and the author [3], [5].

We recall some notions of graphs of lattices. Let £=(L; =) be a lattice. & is
said to be of locally finite length if each bounded chain in % is finite. In what
follows all lattices are assumed to be of locally finite length. If a, be L and a is
covered by b (i.e., a<b and the interval [a, b] is prime), then we write a <b or
b >a. The lattice £ is called semimodular if and only if its elements satisfy

(&') If x and y cover a, and x# y, then x vy covers x and y. (Cf. [2a], p. 100; in
[2b], p. 15, the term ‘semimodularity’ has a different meaning.)

By the graph G(¥) we mean the undirected graph whose set of vertices is L and
whose edges are those pairs {a, b} which satisfy either a <b or b <a. If 4, and %,
are graphs with sets of vertices G, and G; and if h: G,— G, is a bijection such that,
for any x and y from G, the pair {x, y} is an edge in %, if and only if {h(x), h(y)}
is an edge in %, then h is said to be an isomorphism of %, onto %,.

If %1 ={1; =)is alatdice and h is an isox/ndrphism of G(&) onto G(%1), then h
is ca.led a graph isomorphism of the lattice £ onto %,. The covering relation in %,
is denoted by <;.

Now let h: L— L, be ary bijection and let T< L. The subset T is said to be
preserved (reversed) under .: if, whenever t,, L€ T, x1, x€ L and h=Sx;<x:=t,,
then h(x:)<ih(xz) (or h(x1)>,n\.:,, respectively).
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Let C be the lattice in Fig. 1. A lattice is said to be of type C if it is isomorphic to
C. Consider the following conditions for the lattices £ and %, and for the mapping
h:

(a1) All sublattices of type C of £ are preserved under h and all sublattices of
type C of ¥, are preserved under h™'.

(a2) There are lattices ¢ and B and direct product representations f: ¥—
AXB, g: Hr>AXRB such that h=g""f.

X4 Y,

u
Fig 1

The following result was proved in [4]:

(A) ([4], Theorem 2.) Let ¥ and ¥, be semimodular lattices and let h be a graph
isomorphism of ¥ onto ¥,. Then (o.) = (a.).

(In [4] it was assumed that ¥ and %, are finite, but the proof established in [4]
remains valid in the case when ¥ and %, are of locally finite length. Also, in Thm. 2
of [4] it was asserted only that there are lattices ¢ and % such that =« X B and
Fi=s X B~ ; but, in fact, the stronger result (a;) = (a2) was proved in [4]. If (a2)
holds, then h is a graph isomorphism of £ onto %,.)

1. Lemma. Let 9 =(T; =) be a lattice of type C. Then J is subdirectly
irreducible.

The proof is simple; it will be omitted.

Now let ¥, % and h be as above. Assume that (&) holds. We denote
A=(A; =), B=(B; =). In view of the assumption, there exists an isomorphism f
of Zonto o X B.1If x e L and f(x) = (a, b), then we write also a =x(A), b = x(B).
For Mc L we put M(A)={x(A): xe M}, M(B)={x(B): xe M}.

2. Lemma. Let J =(T; =) be a sublattice of “ and suppose that J is .. vne C
Then we have either (i) card T(A)=1, or (ii) card T(B)=1.

Proof. Put 7,=(T(A); =), 7.=(T(B); = The injection defined by f|r:
T —-T1X T, is a subdirect product represerta )f T ; in view of Lemma 1 we
infer that either (i) of (ii) is valid
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If (i) holds, then clearly T is reversed under f; if (ii) is valid, then T is preserved
under f.

3. Lemma. Let & and &, be semimodular lattices. Then (a2) = (a.).

Proof. Let h: L— L, be a bijection. Assume that (a.) is valid. Then h=g~'f,
and as already remarked above, h is a graph isomorphism. By way of contradiction,
suppose that there is a sublattice J in £ such that J is of type C and T is not
preserved under h. (If in this supposition £ and ¥ are replaced by %, and h™*, then
we proceed analogously.) Thus the condition (i) of Lemma 2 holds and hence 7 is
reversed under h. Also, from (a;) we easily obtain that (h(T); =,)=9, is
a sublattice of %, which is dually isomorphic to C. By using [8], § 45 it is easy to
verify that %, is not semimodular, which is a contradiction.

Theorem (A) and Lemma 3 yield:

4. Theorem. Let & and ¥, be semimodular lattices and let h be a graph
isomorphism of ¥ onto %,. Then the conditions (a;) and (a.) are equivalent.

Let 7 =(T; =) be a sublattice of a lattice £= (L ; =). Assume that there exists
an isomorphism @ of C onto J such that ¢(u) < @(x1))<@(v), (u)<@(y)<
@(v), e(x)< @(z) and @(y) < @(z). Then T will be called a C,-sublattice of £. If,
. moreover, @(x1)<@(x), e(v)<@(z) and @(y:)<@(y), then T is said to be
a G;-sublattice of <.

Let 1 =(L,; =) be a lattice and let h: £— %, be a bijection. Consider the
following conditions (i=1, 2):

(a) All Gi-sublattices of £ are preserved under h and all C -sublattices of %,
are preserved under h~". _

Let u, v, x1, X2, ..., Xm, Y1, ¥2, ..., Y= be distinct elements of L such that
U<x1<x< ... <xp<v,u<y;<y,< ... <y, <wv and either (i) x;v y, = v, or (ii)
Xm A Y. =u. Then the set {u, v, x1, ..., Xm, Y1, ..., ya} is said to be a cycle in &; if
moreover, m>1 or n>1, then this cycle is called proper.

From [6] (Thm. 3.7 and Lemma 2.3) we obtain:

5. Lemma. Let ¥ and &, be lattices and let h be a graph isomorphism of < onto
%,. Then the condition (a) is equivalent with the condition

(as) if C, is a proper cycle of ¥ (of &), then C, is either preserved or reversed
under h (or h™', respectively).

6. Lemma. Let &£ and % be semimodular lattices and let h be a graph
isomorphism of & onto %,. Then (a11) = (a3).

Proof. In establishing the proof of Theorem 2 in [4] the condition (o) was used
in the proofs of the lemmas 9 and 10 only; now for proving that (a:1) = (a2) is
valid it suffices to replace the expresion ‘a lattice of type C’ by ‘a C;-sublattice’ in
these lemmas.

7. Lemma. Let ¥ and &, be semimodular lattices and let h be a graph
isomorphism of ¥ onto %,. Then (az) = (a1).
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Proof. According to Lemma 3 we have () = (), and clearly (o) = (o).

Alternative proof: Let J be a C;-sublattice of . Under the denotations as
above, there exist elements ao, ai, ..., Gm, bo, b1, ..., b, € L such that ¢(x,)=ao<
a<..<an=@x), p(y1))=be<b<b:< ... <b,=@(y). Then {@(u), ¢(z),
o, Ay, ..., Am, bo, by, ..., b, } is a proper cycle in & (because a,. A b, = @(u)). Hence
in view of Lemma 5, the interval J =[@(u), @(z)] is either preserved or reversed
under h. If J is reversed under h, then we easily obtain from () that k|, is a dual
isomorphism of J onto the interval [A(®(2)), h(@(u))] of %, but this interval fails
to be semimodular ; thus %, is not semimodular, which is a contradiction. Hence T
is preserved under h. Analogously we verify that each C,-sublattice of ¥, is
preserved under h™'.

Theorem 4, Lemma 6 and Lemma 7 yield:

8. Corollary. Let £ and ¥, be semimodular lattices and let h be a graph
isomorphism of ¥ onto ¥,. Then (02) <> (0t11)<> ().

The following question remains open:

Let ¥, &% and h be as in Corollary 8; are the conditions (a,) and (w:2)
equivalent?
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N30MOPPU3MEBI TPA®OB MONYIENEKUHIOBBIX PEHNIETOK
Jan Jakubik

Pesome
B craThe aBTOpa [4] HalIEHO JOCTATOYHOE YCIOBHE, IPH KOTOPOM TOJIYAEAE€KHHOBLI peLIETKH £ U
%\ NOKaNILHO KOHEYHOH MIWHBI ¢ U30MOP(HBIMH rpadaMu OTIMYAKOTCS TOJBLKO JBOMCTBEHHOCTBHIO

HEKOTOPOTO MPSAMOTO0 COMHOXMUTEJIA ; B MPeAiaraeMoi 3aMeTKe OKa3aHOo, YTO 3TO YCJIOBHE ABJIAETCS
TOXE HEOOXOAHUMbIM.
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