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ARITHMETIC OF BLOCK MONOIDS

WOLFGANG A. SCHMID

(Commaunicated by Stanislav Jakubec )

ABSTRACT. We investigate block monoids, the monoid of zero-sum sequences,
over abelian groups and their divisor-closed submonoids. We derive some results
that can be used as tools when investigating the arithmetic of such monoids.
Moreover, we investigate block monoids over so-called simple sets, the somehow
simplest kind of sets with the property that the block monoids have non-unique
factorization.

1. Introduction

We are interested in the arithmetic of Krull monoids with finite class group
where every class contains a prime divisor. In particular, the multiplicative
monoids of rings of integers are monoids with these properties. To understand
the arithmetic of such monoids we investigate the arithmetic of block monoids
over the divisor class group and of its divisor-closed submonoids.

Let G be an additively written, abelian group and G|, C G' some subset.
We denote by F(G,) the free abelian monoid with basis G, and we refer to
its elements as sequences. Then B(G,), the block monoid over G, is the set

l
of all zero-sum sequences, i.e. sequences S = ][] g, € F(G,) such that the
! i=1
sum o(S) = > g, =0 € G. Since the embedding B(G,) — F(G,) is a divisor
i=1

homomorphism, every block monoid is a Krull monoid (respectively a semigroup
with divisor theory).

Block monoids were introduced in [Na79] and are used, via the notion of
the divisor class group and appropriate transfer homomorphisms, to investigate
various phenomena of non-unique-factorization for arbitrary Krull monoids and
especially for algebraic number fields (cf. e.g. [Ge-HK92]). In particular, if one
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is only interested in lengths of factorizations, then studying the associated block
monoid is equivalent to studying the Krull monoid itself.

For a detailed description of the notion of the associated block monoid of a
Krull monoid and further examples of Krull monoids respectively the applica-
tion of block monoids we refer to the survey articles [HK97a] and [Ch-Ge97] in
[An97] and the references given there. For the algebraic theory of Krull monoids,
cf. [HK98; Chap. 22, Chap. 23].

In this article we do not investigate a particular phenomenon of non-unique-
factorization in block monoids, but the results we obtain can be seen as tools
suitable for application to different types of problems related to block monoids,
such as half-factorial sets or differences in sets of lengths, cf. [Sch03b].

In particular, we will construct for some given G, C G a set Gj such that
B(G,) and B(G}) have the same arithmetic, but G§ is easier to handle from a
group theoretical point of view (cf. Theorem 3.17).

In Section 4 we investigate the sets of atoms of block monoids over so-called
simple sets (cf. Theorem 4.7). Sets which are simple sets in our terminology
can be found in various contexts in treatise on factorization problems (cf. e.g.
[Ch-SmO03a], [Ga-Ge98b], [Ga-Ge00], [Ge87], [SI76]). Hence, it seems worthwhile
to investigate them independently and beyond the needs of some particular
problem.

2. Preliminaries

In this section we fix some notations and terminology, in particular for
monoids and abelian groups. They mostly will be consistent with the usual
ones in factorization theory (cf. the survey articles [HK97a] and [Ch-Ge97] in
[An97)).

Let @Q denote the rational numbers, Z the integers, N the set of positive
integers, N, = NU {0} and P C N the set of prime numbers. For r,s € Z we
set [r,8]={2€Z: r<z<s}.

For a set P we denote by |P| € N, U {oo} its cardinality. For z € Q let
[z] =min{z € Z: v <z} and |z|] =max{z € Z: = > z}.

A monoid is a commutative cancellative semigroup with identity element and
we use multiplicative notation.

Let A, B be two subsets of some semigroup with operation *, then Ax B =
{axb: a€ A and b€ B}. In particular we will use this for subsets of N, and
addition as operation.

Let H be a monoid with identity element 1, =1 € H. We denote by H*
the group of invertible elements of H, and we call H reduced if H* = {1}. Let
H,,H, C H be submonoids. Then we write H = H, x H, if, for each a € H,
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there exist uniquely determined b € H, and ¢ € H, such that a = bc. For some
subset E C H we denote by [E] C H the submonoid generated by F and we
call H finitely generated, if there exists some finite £’ C H such that [E'] = H.

A submonoid S C H is called divisor-closed if a € S and b,c € H such that
a = bc implies b € S and ¢ € S, i.e. for each a € § all divisors of a in H are
elements of S. An element u € H\ H* is called irreducible (or an atom), if for all
a,b€ H, w=ab implies a € H* or b€ H* and it is called prime (or a prime
element) if for all a,b € H, u = ab implies u | a or u | b. Let A(H) C H denote
the set of atoms and P(H) C H the set of primes. Then P(H) C A(H) and we
call H atomic (respectively factorial) if every a € H \ H* has a factorization
into a product of atoms (respectively primes).

Let «a € H\ H* and a = wu,---u, a factorization of a into atoms
Uy, ..., u, € A(H). Then k is called the length of the factorization and Ly (a) =
{k € N: a has a factorization length £} C N denotes the set of lengths of a.
We set L(a) = {0} for all a € H*. The monoid H is called BF-monoid if it is
atomic and |L(a)| < oo for all a € H, and it is called half-factorial monoid if it
is atomic and |L(a)] =1 for all a € H.

Let H be an atomic monoid. Then L(H) = {L(a) : a € H} denotes the
system of sets of lengths of H.

For a set P we denote by F(P) the free abelian monoid with basis P. Every
a € F(P) has a unique representation in the form

a= ] p*@

peEP
where v, (a) € N, and v, (a) =0 for all but finitely many p € P.

A monoid homomorphism ¢: H — D is called a divisor homomorphism if, for
all a,b € H, ¢(a) | #(b) implies a | b. The monoid H is called Krull monoid if it
has a divisor homomorphism into a free monoid (cf. [HK98; Sec. 22.8, Sec. 23.4]).
Every Krull monoid is a BF-monoid (cf. [Ch-Ge97; Lemma 2.7]).

Let G be an additively written abelian group and G, C G a subset. Then
(G,) C G denotes the subgroup generated by G, where (@) = {0}.

The set G, (respectively its elements) is called independent if 0 ¢ G, 0 # G,

and, given distinct elements e,,...,e, € G, and m,...,m_ € Z, > m,e; =0
i=1

implies that m,e; =--- =m_e, = 0. If we say that {e;,...,e,} is independent,

then we will assume that the elements e, ..., e, are distinct.

An element g € G is called torsion element if there exists some n € N such
that ng = 0. If g is a torsion element, then we denote by ord(g) = min{n € N:
ng = 0} its order. G is called abelian torsion group if all elements of G are
torsion elements.

For n € N let C,, denote a cyclic group with n elements. Let G' be a finite
abelian group. Then there exist a uniquely determined r € N and uniquely
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determined ny,...,n,. € Nsuchthat G=C, &---&C, andeither 1 <n, |...
--|n,orr=1and n, =1; r(G) =r is called the rank of G and exp(G) = n,.
is called the exponent of G.

Furthermore if |G| > 1, then there exist a uniquely determined r* € N
and up to order uniquely determined prime powers ¢,-..,q,., such that G' =
C,, ® - ®C,, and r'(G) =r" is called the total-rank of G.

G is called p-group if exp(G) = p* with p € P and k € N and G is called
elementary p-group if exp(G) = p € P. Elementary p-groups are in a natural
way vector spaces over the field F ) with p elements.

An element

1

5=Ls.= [T 69 € #(Gy)

1=1 9€Go

is called a sequence in G, and for g € G, we call v (S) the multiplicity of g
in §. A sequence T is called subsequence of S if T divides S (in F(G,)). Let
T be a subsequence of S, then we denote by T—1S the codivisor of T, i.e. the
sequence T' € F(G,) such that TT' = S. We denote by

e |S|=1€N, the length of S.
!
e 0(S)= 3 g, € G the sum of S.
i=1
e supp(S) = {g;: i €[L,1]} C G, the support of S.
l

e k(S)= Z:l ﬁ(gi) the cross number of S.

Note that the sequence 1, the identity element of F(G,), has length 0,
sum 0, support @ and cross number 0. If we consider |- |, Vg, O and k as maps
from F(G,) to (N;,+), G and (Qs,,+) respectively, then these maps define
monoid-homomorphisms. -

The sequence S is called a zero-sum sequence (a block), if o(S) = 0, and
S is called zero-sumfree if o(T) # 0 for all subsequences 1 # T of S. A zero-
sum sequence 1 # S is called minimal zero-sum sequence if for each proper
subsequence T (i.e. with T'# S), T is zero-sumfree. The empty sequence is the
only zero-sum sequence that is zero-sumfree, but it is not a minimal zero-sum
sequence.

The set B(G|) consisting of all zero-sum sequences in G, is a submonoid
of F(G,), called the block monoid over G. It is a Krull monoid, thus it is a
BF-monoid and its atoms are just the minimal zero-sum sequences. If G, C G,
then B(G,) C B(G,) is a divisor-closed submonoid. For ease of notation, we will
write A(G,) instead of A(B(G,)) and do analogously for P(G,) and L(G,).
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3. Submonoids of B(G)

In this section we will investigate submonoids of B(G). As a first result we
will show that the divisor-closed submonoids of B(G) are just the block monoids
generated by subsets G\, C G. Having this at hand we give methods to find, for
some H = B(G,), related monoids that are easier to handle, yet having the
same systems of sets of lengths.

We start with a definition.

DEFINITION 3.1.

(1) A reduced monoid H is called
(a) minimal non-half-factorial, if H is not half-factorial, but each
divisor-closed submonoid H' C H is half-factorial.
(b) decomposable, if there exist divisor-closed submonoids
{1}#H,,H, G H
such that H = H, x H, (otherwise indecomposable).
(2) A subset G, of an abelian group G is called factorial (half-factorial,
non-half-factorial, minimal non-half-factorial, decomposable, indecom-
posable), if the block monoid B(G,) has this property.

The following lemma will underline the importance of Definition 3.1.

LEMMA 3.2. Let G be an abelian group and let H C B(G) be a submonoid.
Then H is divisor-closed if and only if there exists a subset G, C G such that
H = B(G,). Moreover, if G is an abelian torsion group, then G is uniquely
determined.

Proof. Clearly for each G, C G the monoid B(G,) is a divisor-closed
submonoid of B(G). Let H C B(G) be a divisor-closed submonoid. We set

G, = U supp(B) .
BeH
We will prove that H = B(G,). Obviously H C B(G,). To prove the other
inclusion, we note that for each g € G, there exists some Sg € H such that

1 l
v (S,) > 0.If C = [lg; € B(Gy), then C | ] S, in B(G,), and since
!

[1S,, € H, weobtain C € H.

=1
If G is an abelian torsion group, we have that grd(9) € B(G,)) if and only if
g € G,. Clearly, this implies that G, is uniquely determined. O

In Definition 3.1 we assigned monoid-theoretical properties to subsets of
abelian groups. Next we will characterize subsets with these properties by their
group-theoretical properties.
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PROPOSITION 3.3. Let G be an abelian group and let G, C G a non-empty
subset of torsion elements.

(1) P(Gg) = {9799 = (Gy) = (9) @ (G, \ {g})}-
(2) G, is factorial if and only if G\ {0} is independent.

Proof.

(1) Let g € G, such that (G,) = (9) ® (G, \ {¢9}) and B, B, € B(G,) such
that ¢g°"4(9) | B, B,. Clearly vy(B;) >0 or v,(B,) > 0. Without restriction we
assume v (B;) > 0. We get o(B;) = v (B,)g + h with h € (G, \ {g}), hence
vy(B;)g =0 and ord(g) | v,(B;). Thus g°d(9) | B and we get

{9749 (Go) = (9 @ (Gy \ {g})} € P(Gy).-
Conversely, let P € P(G,). We first prove that |supp(P)| = 1. Assume to the
contrary, there exist distinct elements g, h € G, with g | P and h | P. We
consider Pord(9) = (g¥s(P)eord9)) B with B ¢ B(Gy \ {g})- Clearly P { B and
P f gVs(Plordla) but P | (gvg(P) Ord(g))B = P°rd(9) | which is a contradiction.
Thus P = ¢°'4(9) with some g € G,,.

It remains to verify that (g) N (G, \ {g}) = {0}. Assume to the contrary,
that there exists some n € [1,0rd(g) — 1] and some h € (G, \ {g}) such that
ng+h = 0. Then there is some S € F(G, \ {g}) such that o(S) = h. Thus we
obtain g"S € B(G,), P1g"S, but P | (g"S)°r49)  a contradiction.

(2) Clearly, we have {g°49) : ge G} c A(G,) and

AG,) {979 1 g e G}
if and only if G \ {0} is independent. Since block monoids are atomic, B(G,)
is factorial if and only if A(G,) = P(G,). Consequently, if B(G,) is factorial,
then by (1),
A(Gy) =P(G,) C {g”9): geG,},
hence G \ {0} is independent. Conversely, if G, \ {0} is independent, then
(Gy) = (9) ® (G, \ {g}) for every g € G, hence P(G,) = A(G,). O

For a further characterization of factorial sets, cf. [Ge-HK92; Proposition 3].
At this point we give a group-theoretical characterization of half-factorial sets.

The structure of half-factorial sets is in general not known (cf. [Ga-Ge98b] for
various results on half-factorial sets). The fact that the characterization of half-

factorial sets involves the cross numbers of atoms may serve as motivation for
the investigations on atoms of simple sets. Moreover, we give some results on
minimal non-half-factorial subsets.

The first part of the following proposition was obtained independently by
several authors (cf. [Sk76; Theorem 3.1], [SI76; Lemma 2] and [Za76; Proposi-
tion 1]).
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PROPOSITION 3.4. Let G be an abelian group and G, C G a non-empty
subset of torsion elements.
(1) The following conditions are equivalent:
(a) G, tis half-factorial.
(b) k(A) =1 for each A € A(G,).
(2) The following conditions are equivalent:
(a) G, is minimal non-half-factorial.
(b) G, is not half-factorial and every proper subset G, C G, is half-
factorial.

(c) There exists some A € A(G,) with
k(A) #1 and supp(A) =G,
and for each U € A(G,) with supp(U) € G|,
k(U)=1.

(3) Ewvery minimal non-half-factorial set is finite.
(4) Every non-half-factorial set contains a minimal non-half-factorial subset.

Proof.

(1) cf. [Ch-Ge97; Proposition 5.4] for a proof in the terminology of this article.

(2) (a) = (b): Clearly, G, is not half-factorial. Let G; C G,. Then
B(G,) € B(G,) is a divisor-closed submonoid, hence it is half-factorial and
consequently G is half-factorial.

(b) = (c): For each U € A(G,) with supp(U) € G, we get that supp(U)
is half-factorial. Since U € A(supp(U)), we get k(U) = 1. Since G, is not
half-factorial, there exists some block A € A(G,) with k(A) # 1 and clearly
supp(4) = G,,.

(c) = (a): If A € A(G,) with k(A) # 1, then B(supp(A)) is non-half-
factorial. Therefore G|, is not half-factorial. Let H C B(G,) be a divisor-closed
submonoid. By Lemma 3.2 there exists some G, C G, such that H = B(G,).
Let U € A(G,). Clearly supp(U) C G; € G,, hence k(U) = 1 and H is
half-factorial.

(3) follows immediately from (2)(c).

(4) is obvious for finite sets and clearly every non-half-factorial set contains
some finite non-half-factorial set, e.g. supp(A) for some atom A with k(A) # 1.
O

Proposition 3.4 can be used to determine all abelian torsion groups G that
are half-factorial respectively factorial. This result was obtained in [Car] as result
on number-fields and in [Za76; Theorem 8] it is formulated for Krull domains. In

[Sk76; Proposition 3.2] the result was formulated for monoids. For convenience
we state the proof.
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PROPOSITION 3.5. Let G be an abelian torsion group. Then the following
statements are equivalent:

(1) G is factorial.
(2) G is half-factorial.
(3) |G| <2.

Proof.

(1) = (2): Obvious.

(2) = (3): Let G be half-factorial. By Proposition 3.4.(1), k(A) = 1 for
each A € A(G). Assume there exists some g € G with ord(g) = n > 2, then
—gg € A(G) and k(—gg) = 2 # 1. Thus ord(g) < 2 for each g € G. Assume
there exist two independent elements g,h € G, then (g + h)gh € A(G) and
k((g+ h)gh) = 2 # 1. Consequently, if G is half-factorial, then |G| < 2.

(3) = (1): Let |G| < 2. By Proposition 3.3.(2) we get that G is factorial.

0

Next we investigate decomposable and indecomposable monoids respectively
sets.

LEMMA 3.6. ([Ge94; Lemma 2]) Let H be a reduced atomic monoid.

(1) If P = P(H) is the set of all primes of H and T C H the set of all
b€ H satisfying ptb for each p € P, then H=F(P) xT.

(2) Let H,H, C H be two submonoids. If H = H, x H, and a = a,a, € H
with a, € H, and a, € H,, then

Ly(a) =Ly, (a;) + Ly, (ay) -
(3) If H=H, x H,, then H 1is half-factorial if and only if H, and H, are
half-factorial.
(4) If H is minimal non-half-factorial, then H is indecomposable.

Proof.

(1) Cf. [Ge94; Lemma 2].

(2) From the definition of x it follows that for each a € H there exist
uniquely determined a, € H, and a, € H, such that a = a,a, and we obtain
A(H) = A(H,)UA(H,). Thus the statement follows easily.

(3) follows immediately from (2).

(4) Let H be minimal non-half-factorial and assume to the contrary that
there exist {1} # H,, H, C H such that H = H, x H,. If H; and H, are half-
factorial, then, by (3), H is half-factorial, which is a contradiction. However,
if H, is not half-factorial for some i € [1,2], then H is not minimal non-half-

factorial, since H; is a proper divisor-closed submonoid, which is a contradiction.
Consequently, H is indecomposable. O
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This lemma implies that, for almost all problems concerning sets of length,
one can restrict to monoids without prime elements. In particular, for any
G, C G with 0 € G, we get that by Proposition 3.3.(1), 0 € P(G,). Con-
sequently, it is sufficient to investigate subsets not containing the 0 element.

The following result gives a characterization of indecomposable sets. Using
this we will prove that every finitely generated, divisor-closed submonoid of B(G)
can be uniquely written as product of indecomposable submonoids (cf. The-

orem 3.11).

PROPOSITION 3.7. Let G be an abelian group and G, C G a non-empty
subset of torsion elements. Then the following conditions are equivalent:
(1) G, is decomposable.
(2) G, has a partition G, = G,UG, with non-empty sets G|, G, such that
B(G,) = B(G,) x B(Gy). |
(3) G, has a partition G, = G,UG, with non-empty sets G, , G, such that
(Gy) = (G)) & (Gy)-

Proof. (1) and (2) are equivalent by Lemma 3.2, and clearly (3) implies
(2). It remains to prove that (2) implies (3). Let G, = G;UG, be a partition
with non-empty subsets G,,G, C G, such that B(G,) = B(G,) x B(G,). We
have to verify that (G,) N (G,) = {0}. Let

g = Z n,g = Z (_ng)g €(G,) N(G,)

9€G, geG2

with n, € Ny for each g € G, and n, = 0 for all but finitely many. (To consider
just non-negative n  is no restriction, since the order of all elements is finite.)

Then B = [] g™ € B(G,) has a factorization of the form B = B, B,

g€Go
with B; € B(G,;) for each i € [1,2]. Obviously, we have B, = [] g"¢, hence
geG;
g* = Z ngg = 0‘ D

9€G

DEFINITION 3.8. Let G be an abelian group and G, C G a non-empty subset
of torsion elements. A non-empty subset G, C G, is called a component of G,

if (Go) = (G1) ® (G \ Gy).

LEMMA 3.9. Let G be an abelian group and let G, C G be a subset of torsion
elements.

(1 ) f|G,| =1, then G is indecomposable.
(2) If |Go| > 1 and P(G,) # 0, then G, is decomposable.
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Proof. The first part of the lemma is obvious. Let |G,| > 1 and P € P(G,).
From Proposition 3.3.(1) we know that P = g°"(9) with some g € G, such that
(Gy) = (9)®(G,\{g}), hence setting G, = {g} we get that G, is decomposable

a

PROPOSITION 3.10. Let G be an abelian group and G, C G a non-empty and
finite subset of torsion elements. Then there exist a uniquely determined d € N

and (up to order) uniquely determined indecomposable sets O # G,,...,G, C G,
such that
. d d
Go={J_ G and (Gy)=(P(G))

Proof. We prove the existence of such sets via induction on |G,|. For
|G,| = 1 it is obvious that G| is indecomposable, hence we set d = 1 and
G, =G,. Let |G,| > 1.If G, is indecomposable, we set d =1 and G, = G,.
Let G, be decomposable. Hence there exists some 0 # G C G, such that

(Go) = (Go) & (G \ Gp) -

Since |Gg| < |G,| and |G, \ G| < |G|, we get that there exist d’,d” € N and
indecomposable sets § # G1,..., G, C Gy, such that

dl

(Go) = Plary,

i=1

as-well as indecomposable sets § # GY,..., G, C G, \ Gy such that
dll

G \G/ @(G”

. d' Lo d
Clearly, G, = U,-,G;UU,_, G and
d/l

)
- ey o el

It remains to prove uniqueness. We proceed by induction on the minimal
number d* for which there exist non-empty, indecomposable sets G,,...,G,.
having the required properties. If d* = 1, then G|, is indecomposable and the
assertion follows. Suppose d* > 1 and let

0#G,,....,Gu CG,

be indecomposable sets with the required properties. Furthermore, let d € N
and
] #Hl,.,.,Hd-CGO
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be indecomposable sets with

d

- d
G, = Uilel. and (Gy) = @(H,).

i=1

We assert that there exists some j € [I,J] such that G ;. = H,;. We have

. d .4
Gy =GunNGy=Gypn (Uilei) =U_ Gy nH)

d
and hence (G,.) = @(Gd, NH,). Since G,. is indecomposable, Proposition 3.7
=1

implies that there is some j € [1,d] such that G,. = G, NH; and G,.NH,; = 0
for each i € [1,d] \ {j}. Consequently, G,. C H;.
Similarly, we obtain H; C G for some k € [1,d"]. This implies that G,. C
H, C G, and hence k =d* and G,;. = H;.
cd*—1
We consider the set Gy \ G,. = [J;—; G;. By induction hypothesis we get

that d* —1 = d — 1 and that the indecomposable sets are uniquely determined.
d

THEOREM 3.11. Let G be an abelian torsion group and let {1} # H C B(G)
be a finitely generated, divisor-closed submonoid. Then there exist a uniquely

determined d € N and up to order uniquely determined indecomposable, divisor-
closed submonoids {1} # H,,...,H; C B(G) such that H =H, x---x H,.

Proof. By Lemma 3.2 there exists a uniquely determined subset G, C H
such that H = B(G|)) and, since {1} # H and H is finitely generated, we have
that 0 < |G| < oo. By Proposition 3.10 we obtain that there exist a uniquely
determined d € N and (up to order) uniquely determined indecomposable sets
0#G,,...,G; C G, such that

. d d
Go=U_,G; and (Go) = @(Gz) .

1=1

- d
By Proposition 3.7 and induction on d we obtain B(UizlGi) = B(G,) x

-x B(G,). Clearly, B(G,) is indecomposable for each ¢ € [1,d], which proves
the existence of the decomposition.

Conversely, for any decomposition d’ € N and indecomposable, divisor-closed
submonoids {1} # H{,...,H; C H such that H = H| x---x H},, we obtain by
Lemma 3.2 that for each j € [1,d'], Hf = B(G’.) with some uniquely determined

indecomposable set G’; # 0. Clearly, G U:i ,G; and again by induction on d'
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dl
and Proposition 3.7 we obtain that (G,) = € (G}). By Proposition 3.10 we have
=1
d' = d and for each i € [1,d] there exists some j € [1,d] such that G, = G
and thus H, = H}. i

In the sequel we recall the notion of transfer homomorphisms (cf. [HK97a]
for a detailed treatment). We will apply transfer homomorphisms to construct,
for some set G, C G, an associated subset that has an easier structure, yet the
same system of sets of lengths (cf. Lemma 3.15 and Theorem 3.17). Moreover,
we will show how this procedure can be used to construct sets with prescribed
properties (e.g. half-factorial sets).

We demonstrate this procedure in a simple special case.

EXAMPLE 3.12. Let pe P, G = ng, {e,,e,} be an independent generating
subset of G and G, = {e; + e,, pe;, pe,}. Then
A(Gy) = {(e; +€,)P(pe,)P I (pey)? ™ = j € [1,p]} U {(pe,)?, (pe,)P} .
In particular, for each B € B(G,) we get p | v (B). Hence for G§ =
{p(e1 + 62),p€1,p€2} the map
| { B(G,) - B@Y),
| (e )P ey) (pey)T o (pley +ey)) 7 (pey)¥ (pey)*

is an isomorphism.

e1tez

DEFINITION 3.13. A monoid epimorphism ©: H — B of reduced monoids is
called a transfer homomorphism if the following two conditions are satisfied:
(1) ©71(1) ={1}.
(2) If a € H and O(a) = By with 3,7 € B, then there exist b,c € H such
that a = be, O(b) = 3 and O(c) = 7.

LEMMA 3.14. Let ©: H — B be a transfer homomorphism of reduced atomic
monoids.

(1) Ly(a) =Lg(O(a)) for each a € H.

(2) H is half-factorial if and only if B is half-factorial.

(3) If H is minimal non-half-factorial, then B is minimal non-half-factorial.

Proof.
(1) is proved in [HK97; Lemma 5.4].
(2) is obvious from (1).
(3) Let H be minimal non-half-factorial. Clearly B is not half-factorial. Let
B' C B be a divisor-closed submonoid. We need to prove that B’ is half-factorial.
We show that
H =0"Y(B)CcH
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is a proper divisor-closed submonoid. Thus H’ is half-factorial, hence by (2),
B' = ©(H’) is half-factorial.

Since © is surjective, we get H' C H, and since © is a homomorphism, we
get H' is a submonoid of H. It remains to prove that H’ is divisor-closed. Let
a € H' and a = bec. We get O(a) = O(b)O(c) € B'. Since B’ is divisor-closed,
we get ©(b), ©(c) € B, consequently b, ¢ € H' and H' is divisor-closed. ]

LEMMA 3.15. Let G be an abelian group, G, C G a non-empty subset of
torsion elements, g € G, and m = min{m’ € N: m/g € (G, \ {g})}. Then
m | ord(g) and

Vq(B)

B ;_)g—Vg(B)(mg) m B

0=0,,: { 860 =BG\ (o0 fna),

is a transfer homomorphism.

Proof. Let n = ord(g) and G§ = G, \ {g} U {mg}. Since 0 = ng €
(Gy\ {g}), we get m € [1,n].

If m =1, weget G, =G, © = idg(g,) and the statement is obvious.
Suppose that 1 < m < n. First we prove that © is well-defined. This means we
need to prove that for any B € B(G) we get m | v (B).

Let B € B(G,). Since B has sum zero, it follows that v (B)g € (G, \ {g}).
If 2,y € Z with zm + yv (B) = ged(m,v,(B)), then

ged(m,v,(B))g = z(mg) + y(v,(B)g) € (G, \ {g}).

Thus the minimality of m implies that m = gcd(m,vg(B)). Setting B = g" we
infer that m | n.

Obviously © is an epimorphism and ©~!(1) = {1}.

Let B € B(G,) and C,C,,C, € B(G}), such that ¢(B) = C and C = C,C,.
We need to prove that there exist B, B, € B(G,), such that ©(B,) = C, for

each i € [1,2] and B = B,B,. Weset t = min{vmg(Cl), Vgr(nB) } Then

v, (B)
Vmg(clc2) = Vmg(B) + m
implies that
vy(B) vy(B)
Vmg(cg) :Vmg(‘B)+ gm —vmg(Cl)Z gm —t.

Thus
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and Vo
B, = ¢'sB=mt(mg)=~5 0, € B(G,)
have the required properties.
Consequently, © is a transfer homomorphism. O

The converse of Lemma 3.14.(3) is not true, as the following example will
show.

EXAMPLE 3.16. Let p € P and G = C. with generating element e and let
G, = {e,pe,2pe}. The set G, is not minimal non-half-factorial. since the proper

subset {pe,2pe} is non-half-factorial. If we consider g = e, using the notation
of Lemma 3.15, we get m = p and

Gp = Gy \ {e} U {pe} = {pe, 2pe} .

Clearly, Gj is a minimal non-half-factorial set.

THEOREM 3.17. Let G' be an abelian group and let G, C G a non-empty,

finite subset of torsion elements. Then there exists a non-empty, finite subset
Gj C G, such that

g€ (Gy\{g}) for each g€ Gj
and a transfer homomorphism ©: B(G,) = B(GY}).
Proof. We proceed by induction on I(G,) = ). ord(g) € N.

g€Go

If I(Gy) =1, then Gy = {0} and 0 € (G, \ {0}), hence the assertion holds
with G§ = G,

Suppose that I(G,) > 1 and assume that the assertion holds for all 0 #

Gy C G of torsion elements with I[(G) < I(G,). If g € (G, \ {g}) for all
g€ Gy, weset Gy =G,.

Suppose there exists some g € G, with g ¢ (G, \{g}). By Lemma 3.15 there

exists some m € N, with m | ord(g) and a transfer homomorphism
0,: B(G,) — B(Gy)

with Gy = Gy \ {g} U {mg}.

Since

I(Gy) = U(G,) — ord(g) + ord(myg) < U(G,),
there exists some non-empty, finite set G such that g € (G \ {g}) for each
g € G§ and a transfer homomorphism
0,: B(Gy\ {9} U {mg}) — B(G}).

Since the composition of transfer homomorphisms is again a transfer homomor-
phism, we get

0,00, : B(Gy) = B(G)

is a transfer homomorphism.
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LEMMA 3.18. ([Ga-Ge98; Lemma 3.3]) Let G be an abelian torsion group,
G, C G a half-factorial set and g € G\ (G,) such that pg € G, for some

p € P. Then G, U {g} is half-factorial.

Proof. Since g ¢ (G,) and p is prime, we get that p = min{m’ € N:
m'g € (G,)}. Consequently, by Lemma 3.14.(2) and Lemma 3.15, G, U {g} is
half-factorial if and only if G, \ {g} U {pg} = G, is half-factorial. a

4. Simple sets

Let G be an abelian torsion group and G, C G a non-empty subset. By
Proposition 3.3.(2) we know that B(G,) is factorial if and only if G \ {0} is
independent. Thus a subset G, C G'\ {0} for which B(G,,) is not factorial, but
is most simple from a group theoretical point of view consists of independent
clements and one additional element.

As mentioned in the Introduction such sets have been frequently investi-
gated. In particular, they are used as examples for minimal non-half-factorial
sets (cf. [Ga-Ge00; Proposition 5.2]). However, there are several classes of groups,
for example cyclic groups of prime power order (cf. [Ge87; Proposition 6]) and
elementary p-groups with p < 7 (cf. [Na79; Problem II] for p = 2 and [Sch03a]),
in which every minimal non-half-factorial set is of this type.

This motivates the following definition.

DEFINITION 4.1. Let G be an abelian group. A non-empty set G, C G'\ {0}
of torsion elements is called simple if there exist some g € G, such that G, \ {g}

is independent, g € (G, \ {g}), but g ¢ (G,) for any G, C G, \ {g}.

In the following lemma we prove some basic results on simple sets.

LEMMA 4.2. Let G be an abelian group and G, C G a simple set.

(1) 2< |Gyl < o0.

(2) If G is finite, then |G| < r*(G) + 1. In particular, if G is cyclic of
prime power order, then |G| = 2.

(3) G, is indecomposable.

Proof.
(1) The set Gy, \ {g} is independent hence non-empty. Since g € G, we get

|G| > 2. By definition g € (G, \ {g}), but g ¢ (G,) for any G, C G, \ {g}.

Hence
s= ¥
h€Go\{g}
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with z, € Z for all h € G\ {g} and z, = 0 for all but finitely many. However,
g ¢ (G,) for any G; C G\ {g}. Consequently, z, # 0 for all h € G, \ {g}.
This means that G, \ {g} must be finite.

(2) Let G be finite. Any independent subset of G has not more than r*(G)
elements, hence |G, \ {g}| < r*(G). If G is cyclic of prime power order, then
r*(G) =1.

(3) Assume to the contrary that G| is decomposable. By Proposition 3.7
there exist non-empty subsets G,,G, C G, such that G, = G,UG, and
B(G,) = B(G,) x B(G,). Since g € (G, \ {g}), there exists some A € A(G,)
with v (A) = 1. Since A(G,) = A(G,)UA(G,), we may suppose without re-
striction that A € A(G,). This implies that g € (G, \ {g}), a contradiction.

O

The arithmetic of block monoids generated by simple sets is not as simple,
as one might expect. We start with an example.

EXAMPLE 4.3.

(1) Let G = (Z/4Z)? with independent and generating elements {e,, e,,e;}.
Then G, = {g,e,,e,,€;} With g = —(2e; +e,+e;) is simple. Since U =
g?e2e? is an atom with k(U) = 2 and supp(U) ¢ G, Proposition 3.4.(1)
shows that G| is non-half-factorial, but not minimal non-half-factorial.

(2) Let G = Z/30Z and G, = {1+30Z, 6+30Z, 10+30Z, 15+30Z} . Then G,
is simple and minimal non-half-factorial.

However, if G is an elementary p-group, then simple subsets of G are either
half-factorial or minimal non-half-factorial.

LEMMA 4.4. Let G be an elementary p-group.
(1) Let G, C G be independent, g € G\ G, and G, = G, U{g}. Then the
following conditions are equivalent:
(a) G, is indecomposable.
(b) G, 1is simple. In particular, if G, is minimal non-half-factorial,
then G is simple.
(2) Let G, C G be simple. Then for every h € G, the set G, \ {h} is
independent, h € (G, \ {h}) and h ¢ (G,) for every G, C G\ {h}.

(3) Every simple set is either half-factorial or minimal non-half-factorial.

Proof.

(1) (a) => (b): Let G be indecomposable. Then g # 0 and G| is not
independent. Hence (g) N (G;) # {0} and consequently g € (G,). Assume
g € (G,) for some G, C G,. Then G, U {g} is a component of G, which is a
contradiction. Consequently, G, is simple.
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(b) = (a):Let G, be simple, then G, is indecomposable by Lemma 4.2.(3).
If G, is minimal non-half-factorial, then it is indecomposable by Lemma, 3.6.(4)
and hence simple.

(2) Let g € G, such that Gy \ {g} = {e;,...,e.} is independent, g €

(Go\ {g}) and g ¢ (G,) for every G, € G, \ {g}. Then g = 3 a,e, with
i=1

a, € [1,p—1]. We consider G as a F, -vector space and by linear algebra we infer

that dimg_(G,) = |G,|—1 and for every h € G, we have (Go) = (Gy\{h}). Thus

G, \ {h} is independent, h € (G \ {h}) and h ¢ (G}) for every G| C G\ {h}.

(3) Suppose G, is simple. By (2) every proper subset of G, is independent

and consequently half-factorial. Thus if G|, is not half-factorial, then G, is
minimal non-half-factorial. O

The following theorem will prove that the notion of simple sets is not too
restrictive.

THEOREM 4.5. Let G be an abelian group, G, C G be a subset of torsion
elements and g € G, be such that G, = Gy U {g} with Gy C G independent.
Then there exist a set G5 C G and a transfer homomorphism

0: B(G,) — B(Gy),
where G§ \ {0} is simple or empty.

Proof. If G, \ {0} is independent, then by Proposition 3.3.(2), G, is fac-
torial. In this case we set G = {0} and the map

o { B(Gy) — B(GY),
| B s 0K(®)
is a transfer homomorphism.
Hence we may suppose without restriction that G\ {0} is not independent.
Thus we get (g) N (G, \ {g9}) # {0}. Let m € N be minimal such that mg €
(G \ {9})- By Lemma 3.15 there exists a transfer homomorphism

0,: B(Gy) - B(Gy \ {g} U {mg}).
Thus from now on we may suppose that m = 1.

Let G, C G, be a minimal subset such that g € G, and g € (G, \ {g})-
Thus G, is simple. If G; = G, we set G = G, and are done. Suppose that
G, =Gy \ G, #0. Since G, \ {g} is independent and g € (G, \ {g}), it follows
that (G,) N (G,) = {0}. Proposition 3.7 implies that B(G,) = B(G,) x B(G,).
Since G, is independent and B(G,) is factorial, the map

o B(G,) = B(G,) x B(G,) — B(G,u{0}),
>"| B=B,B, s B, 0K(B2)
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is a transfer homomorphism. Hence we set G§ = G, U {0} and are done. i

In the last part of this section we study the set of atoms A(G,) for simple
sets G, C G. For simple sets consisting of two elements, this set was determined
in [Ge87] and [Ch-Sm03a] (cf. Proposition 4.8).

DEFINITION 4.6. Let G be an abelian group and G, C G be a simple set.
Suppose that G, = G, U {g} with G| = {e,..., e} independent, ord(e;) = n,
for each i € [1,7] and g = — ) b.e; with b, € [1,n,—1] for each i € [1,7].
i=1
(1) For j € N let W,(G,,9) = W, € B(G,) denote the unique block
with v (W;) = j and v, (W;) € [0,n,—1] for each i € [1,7r] (clearly,
v, (W;) = jb, mod n;).
(2) i )_{jeN: W, € A(G,)}.
THEOREM 4.7. Let G be an abelian group, r € N, G, = {e;,...,e.} be
an independent set with ord(e;) = n, for each i € [1,7], g = — 3 be; with
b, € [1,n,—1] for each i € [1,r] and G, =G, U{g}. =
(1) A(Gy) ={el: iel,r]} U {Wj : j€I(G,9)}.
(2) i(Gy,9) = {5 € [L,ord(9)] : W, t W, foreach k € [1,j-1]}. In
particular, {1,0rd(g)} Ci(Gy,g) C [1,0rd(g)].
(3) Let I ={i€[l,r]: b, #n,—1} and N = max({0}U{n, : i € [1,r]\I}).

Then
NuJi({e;}, —be;) Ci(Gyr9),
i€l
and if n; =---=mn_ and b, =--- =b,, then equality holds.

(4) min(i(Gy,9) \ {1}) = min{[%ﬂ s ie(1,r]}.

(5) i(Gy,9) = {1,0rd(g)} if and only if ord(g) | n, and b, =
i€ [1,7].

(6) Ifi(G,,9) # {1,0rd(9)}, then min(i(G,,g)\ {1}) <[22,

Thus in an important special case, i(G;, ¢) (and hence A(G,)) is completely
determined by associated i(-,-) for sets G|, with |G{| = 2. We mentioned already
that for these sets two descriptions are known. We cite the description given in
[Ch-Sm03; Theorem 2.1] (cf. [Ge87; Lemma 1] for a similar description).

PROPOSITION 4.8. ([Ch-Sm03; Theorem 2.1]) Let G be an abelian group,
e € G with ord(e) =n >3, a € [2,n—1] and d = ged(a,n). For k € [1, %] let
q, €N, and r, € [0,a—1] such that kn = q,a+ 1, . Then
i({e},ae) = [1, (2] 1] U{g,: 7, <r; for each i€ [1,k—1]}.
Now we formulate a corollary to Proposition 4.8, which we need in the proof
of Theorem 4.7. For convenience we will give an independent proof for it.

Ord( for each
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COROLLARY 4.9. Let G be an abelian group, e € G with ord(e) = n > 3,
be1,n—2], d=ged(b,n) and b’ € [1,ord(—be) — 1] such that bb’ = d mod n.

Then
{1510} Ci({e}, —be).

Proof. Obviously, {—be,e} is a simple set. In order to show that b’ €
i({e}, —be), we have to verify that W, = (—be)’e? is an atom. Since for
every B € B({-be,e}) we have d | v,(B), and because b = min{v € N :
o((—be)ve?) =0}, it follows that W,, is an atom.

In order to show that [%] € i({e}, —be), we have to verify that

Wiay = (—be)lETelE10-n

is an atom. Since for each j € [1,[%]-1] we get W, = (—be)/e/® and because

[%Wb —n < b, it follows that W[%] is an atom. O

In [Ge87; Proposition 10] a more explicit description of i(-,-) for simple sets
with two elements is given. It uses continued fraction expansions and is quite
complicated to formulate. Since we will not need this explicit description, we do
not cite this result. However, we give as an example the two easiest cases.
EXAMPLE 4.10. Let e € G with ord(e) =p € P and b € [2,p—2].

() Ifb|p+1,say gp=p+1, then i({e},—be) ={1,q,p}.

(2) Let ¢ = [2] and r = [B] —p. If r | b+ 1, say sr = b+ 1, then

i({e}, —be) = {1,¢,59—1,p}.

Next we give some lemmata that will be used in the proof of Theorem 4.7.
Let all notations be as in Theorem 4.7.

LEMMA 4.11. ([Ga-Ge02; Lemma 2.2]) We have

ord(g) = 1cm({m Qe [1,4}) .

LEMMA 4.12. Let j € N.
(1) If W € B(Gy) with v (W) = j, then W, | W.
(2) If A€ A(G,) with v (A) =j, then W, = A.
(3) If W; ¢ A(G,), then there ezists some k € [1,7—1] such that
W, =W, W,_,.
Proof.
(1) Let W € B(G,y) with v (W) =j. Then

T T

DoV (W), = —jg = v, (W))e;.

i=1 =1
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Since G, is independent, it follows that for all ¢ € [1,r] there are k; € Z such
that v, (W) = v, (W) + k;n,. Since v, (W) € Ny and v, (W;) € [0,n, — 1], it
follows that k, E N for all i G (1,7]. Hence we obtain that W, | W.

(2) follows 1mmed1ately from (1).

(3) Suppose that W, ¢ A(G,). Then there exists some A € A(G,) with
A | W,. Clearly, v (A4) < j and by (2), v o(A) # j. Assume v ,(4) =0, then
A € A(G,). Since G, is independent, we get A = el for some i € [1,7].
However, we know v, (W;) <n, and A{W,. Thus v (4) € [1,j—1] and by (2)
we get A = W, for some k € [1,j—1]. Clearly, vg(Wk_le) =j—k>0and
v, (Wi'W,) <, forall i € [1,7], hence W 'W, =W,_,. O

LEMMA 4.13. Letr>2, ¢ = — Z be,, Gy ={ey,...,e,_;} and {g}UG,
be a simple set. Then

i(G,9") Ci(Gy,9),
and equality holds if there exists some i' € [1,7—1] such that n, = n, and
b, =b,.

Proof. We set W; = W,;(G},g') for each j € N. Let k € i(G},g') and
assume k ¢ i(Gy,g). Then W, ¢ A(G,) and by Lemma 4.12.(3) there exists
some ! € [1,k—1] such that W, | W, . This implies W] | W, , a contradiction.
Hence k € (G, g) and i(G},¢') Ci(Gy,9).

Let i’ € [1,r—1] such that n, = n, and b, = b.. Let k € N with k ¢
i(G},¢'). There exists some [ € [1,k—1] such that W] | W/ . Consequently, we
obtain that

v, W) =v,, (W) <v,, (W' ) =v, (W),
which implies that W, | W, and k ¢i(Gy,g). Thus i(G,g") =i(Gy,9). m
LEMMA 4.14. Let b, =n, — 1 for some i’ € [1,7]. Then

1,n,] Ci(Gy,9)-
Proof. Let j €[1,n,]. Clearly v, (W;) = n; —j, hence W, 1 W, for each
k €[1,j—1]. Thus W; is an atom. |

Proof of Theorem 4.7.
(1) Let A € A(G,) with v (4) > 0. Then Lemma 4.12.(2) gives immediately

Ae {W j€i(Gy,9)}.

Let A" € A(G,) with v (A’) = 0. Then supp(4’) C G, and since G, is in-
dependent, we get from Proposmon 3.3.(2) that G, is factonal and A(G,) =

{er: i€e[1,r]}.
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(2) Let j > ord(g). Then g°rd(9) | W, hence j ¢ i(G,,g) and i(G,,g) C
[1,0rd(g)] . The other statements follow from (1) and Lemma 4.12.(3).

(3) First we show that [1,N] C i(Gy,g). If I = [1,r], then N = 0 and
[1,N]=0.If I C[1,7], then Lemma 4.14 implies the assertion.

Suppose that I # @ and let ¢ € I, say i = 1.

We have to show that i({e,}, —b,e;) Ci(G,,g). For s € [1,7] we set

S
g(s) =—Zbi€i and G(15) :{61""’63}’
i=1

hence G(()s) =G\Yu {g®)} is simple.

We assert that i({e;}, —b,e;) C i(G(ls),g(s)) for every s € [1,7]. We proceed
by induction on s. For s = 1 the assertion is clear. Suppose that s > 1 and that
i({e,}, _b181) C i(Ggs_l),g(s_l)). Since G§~! is simple, Lemma 4.13 shows that
i(Ggs_l),g(s“l)) C i(G(ls), 9, hence the assertion follows.

Now let b, = --- =b,  and n; = --- =n_ . If b, = n;, — 1, then we get,
applying Lemma 4.12.(3), [1,n,] C i(G},9) C [1,n4]. If b; < n; — 1, we start
with the set {—b,e;,e,;} and apply r — 1 times Lemma 4.13.

(4) Corollary 4.9 and (3) imply that

{{#]: i€} Ci(Gy,9)\ {1}
Hence it suffices to verify that W; ¢ A(G,) for j € [2,m—1], where m =
min{l—’;—:] : i €[1,7]}. Let j € [2,m—1]. Since jb, < n; for each i € [1,7], we

obtain .
. b
W,=¢ H e’ .
i=1

Therefore W, | W; and W; ¢ A(G,).
(5) If ord(g) | n; and b, = ﬁf(’g—) for each i € [1,7], then (4) implies that
min(i(G,, g) \ {1}) = ord(g), hence i(G,,g) = {1,0rd(g)} by (2).

Conversely, let i(G,,9) = {1,ord(g)} and let i € [1,7]. Then (4) and
Lemma 4.11 imply that

m < lcm({ﬁn—u) c Ve [l,r]}) = ord(g)
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which is a contradiction. Thus b, | n; and ord(g) = §*.
(6) Let m = min(' 9) \ {1}) and suppose m < ord(g). We need to
show that m < [Ord 1. By (4) we have m = min{[3*] : i € [1,7]}, hence

we may suppose without restriction that m = [Z—H . By Lemma 4.11 we have

ord(g) = lcm({ﬁﬂ Ve [1,r]}) , hence ord(g) is a multiple of
If ord(g) > 2 then

ged( b ny)”
n
ged(by,ny)?
U3 L3\ ord(g)
=[] < <
" [bl E gcd(b,ny) = 2
Suppose that ord(g) = —1—— CIf ged(by,ny) = b1» then m = 1 = ord(g),

ged(by,n1) b1

which is a contradiction. Thus 2ged(b;,ny) < by and 31 < 5il—— = 0",12(9) ,

hence m = ]";—111 < [@é@]. O

In general, equality does not hold in Theorem 4.7.(3). We will illustrate this
by the following example.

EXAMPLE 4.15. Let all notations be as in Theorem 4.7. Suppose that r = 2,
n, =n,=n>3 areodd and g =2e; —2e,. Then I = {i €[1,2]: b, #n—1}
=[1,2], N =0 and

i({e;},2¢,) = [1, l%” u{n} and  i({e,},—2¢;) = {1, {%J+1,n}.

However, for j € [1,|2]] we get

IV =g en 2j 2] and w — gj-i—LgJe?lz—l—Zje‘;j—l ’

Lzl T
hence i({e;, ey}, 9) = [1,n].
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