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ASYMPTOTIC PROPERTIES
OF SOLUTIONS OF A SECOND ORDER NONLINEAR
DELAY DIFFERENTIAL EQUATION

JAN OHRISKA

1. Introduction

Consider the equation

u'"(t)+p(Du(z(r))=0 (1)
on some half-line [#, «).
For this equation the following conditions are assumed to hold throughout the
paper '
(i) p(t) € Cy, =), p(2) is nontrivial in every neighbourhood of infinity,
(i1) ©(t) € Ciy, =y, T(t)=t, limz(t) =0,

t—

(iii) a=r/s, where r and s are odd natural numbers.

We restrict our attention to solutions of (1) which exist on [f,, ©) and are
nontrivial in every neighbourhood of infinity. A solution is said to be oscillatory if it
has arbitrarily large zeros, otherwise it is said to be nonoscillatory.

It is well known (cf. [2]) that nonoscillatory solutions of equation (1) for p(t)=0
can be of the following three types:

a) lu(t)|—c, u'(t)-0 (0<c) for t—>o,
b) lu(@®)|—>», u'(t)-»c (0<c) for t—o,
c) lu(@®)|—-o», u'(t)-0 for t— o,

Necessary and sufficient conditions for the existence of a nonoscillatory solution
of (1) of the type a) and b) may be found in [2], [S]. For the existence of

a nonoscillatory solution of (1) of the type c¢) we know only the necessary
conditions (cf. [2]) like the conditions

f tp(t) dt=oo, I °()p(t) dt< o forthecase 0<a<l1,
and the conditions
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f t°p(t) dt=°°,f T()p(t) dt < forthecase a>1.

These conditions (for the case 0<a <1) are contained in Theorem 3 of this paper
and in Theorem 1 of [3].

Many authors have studied the asymptotic and oscillatory properties of equation
(1). We shall consider the asymptotic properties of equation (1) for the special case
0<a<1 in part 2 and for the general case a >0 in part 3.

2. Asymptotic theorems for the case 0< a <1

We first mention the following

Definition 1. Let y(t)=sup {s=t|1(s)=t} for t=t,.
From this definition we see that t=y(¢) and 7(y(¢))=t¢. Another quality of
function y(¢) is contained in the following lemma (proved in [3]).

Lemma 1. For every t such that t,=t <, the value y(t) is finite.
Theorem 1. Supposte that 0<a <1 and I 7°(¢)|p(¢t)| dt <. Then for every

solution u(t) of (1) there exists ‘lirgu’(t).

Proof. The proof is obtained by modification of Belohorec [1]. Let us
consider a solution u(¢t) of (1) which satisfies the initial conditions

u(t)=@(t)(=uy), u'(t+0)=u,,
u(t())=@(r(t)) for t(t)<t (ti€lto, ®), 1, =0),

where @(¢) is an initial function and u, is a real number.
Integrating (1) twice from ¢, to t (t=t,) we have

u(t)=uo+u,(t—t)— L' (t=x)p(x)u’(z(x)) dx
and for t—¢#,=1 we get
@1 == e Il + sl + [ 1o luCz)I” ax].
Now for t=y(t, + 1) the last inequality yields

@IS (o) lual+ ]+ [ 1G] (eI d] @
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Raising both sides of the inequality (2) to the power a and multiplying by lp(®)],
we obtain

[0V
[l + il + [ 1@ eI ax]

=7 lp ().

Integrating the last inequality from y(t,+1) to ¢t (¢Zy(t; + 1)) yields

p . 1(1-a)
jwl +lual+ [ o] el e[+ -0 [ @ bl

y(+1)
where

-a

‘ y(t,+1) 1
Ko= [l +lad+ [ lp @) u(re|” dx]
From this we have by (2)

lu(z()|=Kz(t) for t=y(t,+1), (3

where

Y 1/(1—a)
K= [Kl +(1-a) () [p)| dx] R

y(t1+1)

Finally, integrating (1) from ¢, to ¢t (y(t,+1)=t,=t), we get

w(=u'(t)- [ P (Ut (o) dr. @)

According to (3) we obtain

||| pGus ) ax

§K"f °(x) |[p(x)| dx for t=t,.

2

It follows from this that the integral j p(x)u®(r(x)) dx exists. Futher by (4) the

lim u'(t) exists and our proof is completed.

Theorem 2. Suppose that 0<a <1 andf tt°(¢) |p(t)| dt <. Then any solu-
tion u(t) of (1) is of the form
u(t)=cit+c,+o(1),

where ¢, and c, are suitable constants.
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Proof. The proof is obtained again by modification of Belohorec [1]. Let us
suppose that

fmtt“(t) lp(0)] dt<oo.

Then according to Theorem 1 the !im u'(t) exists. Denote it by c,. Let ¢, € [£o, ),

t, =0 such that for t=¢, the inequality (3) holds.
Integrating (1) from s to « (s=¢,) and then from ¢, to ¢ (t=1t,), we get

u(t)= Cat + u(tl)_C2t1 +

- - (5)
+ f (x — 1,)p ()u(z(x)) dx + f (t - x)p(x)u®(z(x)) dx.
Now, using (3) and the assumption of the theorem, we have
U (x—t)p(x)u”(r(x)) dx éK"I xt(x) [p(x)| dx <o, t=t,.
From this we see that f (x = t)p(x)u”(r(x)) dx exists and that
| =opeoua) dr=o).
If we put
e=ult) - e+ [ (x-0)p(ou(r(x)) dx,
then from (5) we have
u(®)=cit+ci+o(1)
and the theorem is proved.
We shall assume in the sequel that p(¢)=0.
Theorem 3. Let 0<a=1 and p(t)=0. Let
f tp(t)ydt< . (6)

Then any nonoscillatory solution u(t) of (1) is either bounded or of the form
u(t)~ct (c#0).

Proof. The proof is obtained again by modification of Belohorec[1]. Let u(¢)
be a nonoscillatory solution of (1). We may assume that u(¢)>0 for t=t*=¢,,
since a parallel argument holds if u () <0. Then u(z(¢))>0, u|(t)=0, u'(¢)>0 for

t=T=r*, and !Lrg u'(t)=0 (cf. [4]).
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Assume that u(¢) is an unbounded solution of (1). Then there exists £, =T, t, >0
such that u(t)>1 for t=1¢,.

Let us take an arbitrary € such that 0<e <1/6. Then by the condition (6) we
know that there exists t,= T such that

J-mxp(x) dx<e. @)

Let t;=max {4, t,}. Integrating (1) from s to ¢ (t=s=t¢;) and then from #; to ¢
(with respect to s), we get

w(t)=u(ts) + (t— t)u' (1) + f " (¢ - ) () (x(x)) dx,,
whence |

1<u7((5t3))+‘%’((t_t))+ ,: xp(x) dx 8)

because u(x)>1and u®(1(x))=u”(x)=u(x). Now it follows from (7) and (8) that

u(t)  w'(y)
1= e<%0 T utn

t=ts,
whence

lim int 0 =>1 _2¢ |
—® u(t)

From the last inequality we know that there exists t,=¢; such that
w' (=1 -38)u(t) for t=t,. 9)

Integrating (1) from ¢, to ¢ (¢ =t,), using (9) and the fact that u*(7(x)) = u(x), we
see that

a —3£)(u'(t4)—u’(t))§f p ()’ (x) dx =

éu’(t4)[mxp(x) dx <eu'(ts),

whence

1-4¢

0<1=3

u'(t)<u'(t).

The last inequality implies !irg u'(t)=c>0,i.e. u(t)~ ct. The theorem is proved.
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3. Asymptotic theorems for the case a >0

In this section we shall state conditions which imply that a nonoscillatory solution
of (1) is one of the types b), c¢) or a), c).

Theorem 4. Let a>0 and p(t)=0. Let either lim sup tf p(x)dx=o or
f tp(t) dt = . Then for every nonoscillatory solution u(t) of (1) the condition

lim |u(¢)| = holds true.

Proof. Let u(t) be a nonoscillatory solution of (1). We may assume that
u(t)>0 and also u(z(t))>0 for t=T=+¢,. Then u (£)=0, u’(t)>0 for t=T and

lim u'() =0.

t—®

Integrating (1) from ¢, to ¢ (y(T)=t,=t), we have
u{ty—u'(t)+ f p(x)u’(t(x)) dx=0.

From this we see that there exists f p(x)u“(t(x)) dx and thus we can integrate (1)
0

from ¢ to o (¢=¢,). It follows that

u'()= rmp(x)u“(r(x)) dx.

Integrating the last inequality from ¢, to ¢ (¢=¢,) we get

u(t)Zu(t)+ f (x—t)p()u’(r(x)) dx + (¢t — t,)rp(x)u“(r(x)) dx. (10)

Since u(t) is an increasing function and t(x)= T for x =¢, = y(T), it is clear that
(10) yields

u()Zu(t)+ u"(T)U (x=t)p(x)dx+(t— tl)f p(x) dx].
Since the functions u(¢) and F(¢) =f (x = t,)p(x) dx are increasing, lim sup u(f)
= y_m u(t)and !‘ﬂ} sup F(t) = !Lrg inf F(¢). Now from the last inequality we have

,ILIE u(t)Zu(n)+ M"(T)Um (x—t)p(x) dx +1im sup (t—tl)fmp(x) dx].

This completes the proof.
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Example 1. The hypotheses of Theorem 4 are satisfied for the equation

ul! (t)+ 7/3(t3/7) 0

1/2

This equation has a nonoscillatory solution u(t) = ¢'*. Analogously the hypotheses

of Theorem 4 are satisfied for the equation

"(t)+ 3/5(t1/2)=0.

1
16 t59/40 u
This equation has a nonoscillatory solution u(¢)=£".

Theorem 5. Let a >0 and p(t)=0. Let there exist a number $ =1 such that the
function P(t) = p(t)t°(t)¢t® is nondecreasing (for all sufficiently large t). Then for

every nonoscillatory solution u(t) of (1) the condition ‘lirg u'(t)=0 holds true.

Proof. Let u(t) be a nonoscillatory solution of (1). As before we may assume
that u(¢)>0 and also u(7(¢))>0 for t=T=t,. Then u"(t)=0, u'(t)>0for t=T

and Eirg u'(1)=0.
Suppose that the assertion of the theorem is not valid. Then lim u'(t) = b>0

and u'(¢)=b for t=T. It follows from this that u(¢t)—u(T) = b(¢t— T), respec-
tively
u(t)>— t for t=2T.

This means that for t=y(2T) we have

u(r(t))zg (1)

and also
- ()= pOu G (3) PO,

Let us choose t,=y(2T) such that P(t,)#0 (it is clear that then P(¢,)>0).
Integrating the last inequality from ¢, to ¢ (¢=t,) we get

w'(t) - u’(t)é(g)aﬂ p(x)T°(x) dx =
= (é—’)afl: P(x)x™* dxé(g)aP(tl)J:, x P dx

W () Su'(n)— (g)ap(n)ﬁ: x~* dx. (11)

or
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The function on the right-hand side of (11) is decreasing and tends to — « as
t— . From this we see by (11) that there exists a value £, = ¢, such that u'(¢)<0
for t=t,, which yields a contradiction and completes the proof of the theorem.

Example 2. Consider the equation

2710 /1
u(t)-}-Ttnsu/s(zt):O.

The function P(t)=p(t)t°(¢)t" is nondecreasing if f=9/10. This equation has
a nonoscillatory solution u(t)=¢"*
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ACUMIITOTUYECKUE CBOWCTBA PEUMIEHUN HEJIWHEWHOTO
INP®PEPEHUUVAIIBHOI'O YPABHEHHS BTOPOI'O ITOPSAOKA
C 3AMIA30bIBAIOIIMM APTYMEHTOM

SIn Orpucka
Pesome

B paGore paccmatpuBaetcs guddepeHumanbHOe ypaBHEHUE

w'(t)+p(t)u®(z(1))=0. (1)
IMpepnonaraercs, 4ToO

p(’) € CI'()- )y t(’) € Cllo. ®)» T(’) = L !HE t(’) =®,
B npepnaraemoi cratbe C(I)OpMleHpOBaHbl AHAJIOTH HEKOTOPLIX TEOPEM 1. Benoropua gns HenuvHe#n-

Horo auddepenunanbHoro ypasueHus (1) B cnyyae 0 <a <1, 1 npuBeeHbI HEKOTOPBIE PE3yAbTATHI,
KacarolUecss aCUMIITOTHYECKOTO NMOBeeHus peleHnii ypasHeuns (1) ans a >0.
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