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ASYMPTOTIC PROPERTIES 

OF SOLUTIONS OF A S E C O N D O R D E R N O N L I N E A R 

DELAY DIFFERENTIAL E Q U A T I O N 

JAN OHRISKA 

1 . Introduction 

Consider the equation 

н " ( 0 + P(0и"(т(0) = 0 (1) 

on some half-line [t0y oo). 
For this equation the following conditions are assumed to hold throughout the 

paper 
(i) P(t)eC[,0,oo), p(t) is nontrivial in every neighbourhood of infinity, 

(ii) T ( 0 e Q,0, oo), T ( t ) ^ f , l imT(0 = °°, 
r-».oo 

(Hi) a = r/sy where r and s are odd natural numbers. 

We restrict our attention to solutions of (1) which exist on [t0, oo) and are 
nontrivial in every neighbourhood of infinity. A solution is said to be oscillatory if it 
has arbitrarily large zeros, otherwise it is said to be nonoscillatory. 

It is well known (cf. [2]) that nonoscillatory solutions of equation (1) for p(0 = 0 
can be of the following three types: 

a) \u(t)\-*c, u'(t)^>0 (0<c) for t->oo, 
b) |w(0|->oo, u'(t)-±c (0<c) for f-*oo, 
c) |w(0l^°°, K ' ( 0 - > 0 for f->oo. 

Necessary and sufficient conditions for the existence of a nonoscillatory solution 
of (1) of the type a) and b) may be found in [2], [5]. For the existence of 
a nonoscillatory solution of (1) of the type c) we know only the necessary 
conditions (cf. [2]) like the conditions 

J tp(t)dt=°°, J ra(t)p(t)dt<co for the case 0 < a < l , 

and the conditions 
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j tap(t)dt=™, J T(OP(t)df<oo for the case a>\. 

These conditions (for the case 0< a < 1) are contained in Theorem 3 of this paper 
and in Theorem 1 of [3]. 

Many authors have studied the asymptotic and oscillatory properties of equation 
(1). We shall consider the asymptotic properties of equation (1) for the special case 
0 < a < 1 in part 2 and for the general case a >0 in part 3. 

2. Asymptotic theorems for the case 0 < a < 1 

We first mention the following 

Definition 1. Let y(t) = sup {s = t0 \ T(S) ^ t} for t = t0. 
From this definition we see that t = y(0 and r(y(t)) = t. Another quality of 

function y(t) is contained in the following lemma (proved in [3]). 

Lemma 1. For every t such that r0 = i1<00, the value y(t) is finite. 

Theorem 1. Supposte that 0 < a < l and J Ta(t)IP(Ol df<oo. Then for every 

solution u(t) of (1) there exists limw'(0-
r-+oo 

Proof. The proof is obtained by modification of Belohorec [1]. Let us 
consider a solution u(t) of (1) which satisfies the initial conditions 

u(tl) = Cp(tl)(=U0), w'(ti + 0 )=W, , 

u(r(t)) = cp(T(t)) for T(0< t i( t ie[/0 , » ) , t i ^ 0 ) , 

where qp(t) is an initial function and ux is a real number. 
Integrating (1) twice from ti to t (t = ti) we have 

u(t) = w0 + Wi(/- t i ) - I (t-x)p(x)ua(T(x))dx 
j t \ 

and for t - tx ^ 1 we get 

M 0 | ^ ( t - O [ k l + k l + | ' \p(x)\ \u(r(x))\a dx] . 

Now for t^y(ti + 1) the last inequality yields 

| W (T ) ) | ^T(0 [ |WO | + |« I | + £ \p(x)\ \u(r(x))\a dx]. (2) 
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, l / ( l - a ) 

Raising both sides of the inequality (2) to the power a and multiplying by \p(t)\, 
we obtain 

| p ( / / ' | M ( T ( f ) ) ' ° =-*."( . ) |p (0 | . 
[|M„| + k | + J(] |P(X)| |«(T(jt))|« dxj 

Integrating the last inequality from y(fi + 1) to t (f^y(/i + l)) yields 

,, r r. T / ( 1 _ a ) 

|uo| + k l + |p(x)| |u(T(x))| 'dx_i K. + a - a ) Ta(x) \p(x)\ dx 
Jt, L Jr('i+i) J 

where 

K, = [|«o| + |«.| + J |p(x)| |«(T(X)) |° dxj . 

From this we have by (2) 

\u(T(t))\^KT(t) for t^y(fi + l ) , (3) 

where 

tf-Jtf. + a - c O f " T"(X) |p(x)| dxl' 
L JYOI + D J 

Finally, integrating (1) from t2 to t (y(ti + l)-^t2 = 0> w e get 

M ' (0 = M'(fe)- f pWwa(r(jc))djc. (4) 
Jt2 

According to (3) we obtain 

\f p(x)ua(T(x))dx\^Ka\ Ta(x) \p(x)\ dx for t^t2. 
I Jt2 I J'2 

It follows from this that the integral I P(X)U°(T(X)) dx exists. Futher by (4) the 
J'2 

lim u'(t) exists and our proof is completed. 
, - • 0 0 

Theorem 2. Suppose that 0 < a < l and J tra(t) |p(t)| dt<oo. Then any solu­

tion u(t) of (1) is of the form 

u(t) = c2t + Ci + o(l)y 

where cx and c2 are suitable constants. 

85 



Proof. The proof is obtained again by modification ofBelohorec[ l ] . Let us 
suppose that 

j txa{t) \p(t)\ át < o o . 

Then according to Theorem 1 the lim u'(t) exists. Denote it by c2. Let tx e \t0, oo), 
r-^oo 

tx=0 such that for t = tx the inequality (3) holds. 
Integrating (1) from s to oo (s<=tx) and then from tx to t (t=^tx), we get 

u(t) = c2t + u(tx) - c2tx + 
(5) 

+ [ (x-tx)p(x)ua(T(x))dx+ [ (t-x)p(x)ua(T(x))dx. 

Now, using (3) and the assumption of the theorem, we have 

If (x-tx)p(x)ua(T(x))dx\=Ka[ XTa(x) \p(x)\dx<™, t = tx. 

From this we see that | (x - tx)p(x)ua(T(X)) dx exists and that 
J'. 

[ (t-x)p(x)ua(T(x))dx = o(\). 

If we put 

cx = u(tx) - c2tx + I (x - tx)p(x)ua(r(x)) dx, 

then from (5) we have 

u(t) = c2t + cx + o(\) 

and the theorem is proved. 
We shall assume in the sequel that p(t)l=0. 

Theorem 3. Let 0 < a ^ l and p(t) = 0. Let 

[ tp(t)dt<™. (6) 

Then any nonoscillatory solution u(t) of (1) is either bounded or of the form 
u(t)~ct (c^-0). 

Proof. The proof is obtained again by modification ofBelohorec[l] . Let u(t) 
be a nonoscillatory solution of (1). We may assume that u(t)>0 for t=^t*=^t0, 
since a parallel argument holds if u(t) < 0. Then u(r(t)) > 0, u\ (t) = 0, u'(/) > 0 for 

t = T=t*, and lim u'(t) = 0 (cf. [4]). 
t—»oo 
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Assume that u(t) is an unbounded solution of (1). Then there exists U = T, U >0 
such that u(t)>\ for t = U. 

Let us take an arbitrary £ such that 0 < e < l / 6 . Then by the condition (6) we 
know that there exists t2 = T such that 

xp(x) dx<e. (1) 
Jt2 

Let f3 = max {tu t2}. Integrating (1) from s to t (t = s = t3) and then from t3 to t 
(with respect to 8), we get 

u(t) = u(t3) + (t-t3)u'(t)+ I (x-t3)p(x)ua(T(x))dx9 
Jt3 

whence 

«<$^*j>>"- <*> 
because u(x) > 1 and U°(T(X)) = ua(x) = u(x). Now it follows from (7) and (8) that 

u(t) u(t) ' Г - ř з ' 

whence 

l i m i n f ^ ^ = l - 2 e . 
/-« u(t) 

From the last inequality we know that there exists t4=73 such that 

tu'(t) = (l-3e)u(t) for t = U. (9) 

Integrating (1) from U tot(t = U), using (9) and the fact that U°(T(X)) = u(x), we 
see that 

(l-3e)(u'(u)-u'(t))=\ xp(x)u'(x)dx = 

= u'(u)\ xp(x)dx<eu'(U), 
jtA 

whence 

Q<\^eu'(u)<u'(t). 

The last inequality implies lim u'(t) = c >0, i.e. u(t) ~ ct. The theorem is proved. 
t—»oo 
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3. Asymptotic theorems for the case a > 0 

In this section we shall state conditions which imply that a nonoscillatory solution 
of (1) is one of the types b), c) or a), c). 

Theorem 4. Let a>0 and p(0 = 0. Let either lim sup t\ p(x) dx = & or 
'-— J. 

tp(t) dt= oo. Then for every nonoscillatory solution u(t) of (1) the condition 

lim |w(/)| = oo holds true. 
, - * o o 

Proof. Let u(t) be a nonoscillatory solution of (1). We may assume that 
w(0>0 and also M(TT(0)>0 for t^T^t{). Then u (0 = 0, u'(t)>0 for l^Fand 
l imu'(0-t=0. 

Integrating (1) from tx to t (y(T) = ti-§0» w e n a v e 

w ' ( 0 - « ' ( ' - ) + f F(jc)wa(T(jc))dx = 0. 
Jn 

From this we see that there exists P(X)UU(T(X)) dx and thus we can integrate (1) 

from t to oo (t^ti). It follows that 

u'(t)^jf p(x)ua(T(x))dx. 

Integrating the last inequality from tx to t (t^t}) we get 

u(0-=w('.) + | (x-U)p(x)ua(T(x))dx + (t-U)[ p(x)u\T(x))dx. (10) 

Since u(t) is an increasing function and T(JC) = T for x S/, ^ y(T), it is clear that 
(10) yields 

i i(0-S«(/,) + M a (T) [ | U - ^ ) p U ) d x + ( t - l 1 ) f p(Jc)dxl. 

Since the functions u(t) and F(t) = (JC - u)p(x) dx are increasing, lim sup u(t) 
Jtl 

= lim u(t) and lim sup F(0 = lim inf F(t). Now from the last inequality we have 
r-K» r-»oo r-»°° -1 -r 

H m H ( 0 ^ w ( i i ) + « a ( T ) [ ! ( jc-/,)p(*)djc +Jim sup (.•-»",) J p(jc)djcl. 

This completes the proof. 
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Example 1. The hypotheses of Theorem 4 are satisfied for the equation 

u " ( 0 + ^ p " 7 , V 7 ) = o . 

This equation has a nonoscillatory solution u(t) = tl/2. Analogously the hypotheses 
of Theorem 4 are satisfied for the equation 

uV) + ̂ ?Lu3/5(tl/2) = 0. 

This equation has a nonoscillatory solution u(t) = t34. 

Theorem 5. Let a>0 andp(t) =50. Let there exist a number (5 = 1 such that the 
function P(t) = p(t)ra(t)tp is nondecreasing (for all sufficiently large t). Then for 

every nonoscillatory solution u(t) of (1) the condition lim u'(t) = 0 holds true. 
t—*oo 

Proof. Let u(t) be a nonoscillatory solution of (1). As before we may assume 
that u(t)>0 and also u(r(t))>0 for t^T^t0. Then u"(t)^0, uf(t)>0 for t^T 

and limu'(t) = 0. 
f-»oo 

Suppose that the assertion of the theorem is not valid. Then lim u'(t) = b >0 
f—»oo 

and u'(t)=^b for t = T. It follows from this that u(t)-u(T) 5 b(t-T), respec­
tively 

u(t)^t for t_52T. 

This means that for t^y(2T) we have 

U(T(t))^T(t) 

and also 

-u'\t) = p(t)ua(T(t))^($p(t)Ta(t). 

Let us choose t,^y(2T) such that P(/i)=£0 (it is clear that then P(t!)>0). 
Integrating the last inequality from tx to t (*f = /i) we get 

oг 

u'(tl)-u'(t)^(^a[P(x)Ta(x)dx = 

. ( § ) " ( F ( x ) x - c l x s ( f ) V ( . I ) ( x - d x 

u'(t)^u'(u)-(f)"-'('.) f x-f dx. (11) 
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The function on the right-hand side of (11) is decreasing and tends to - oo as 
/—>oo. From this we see by (11) that there exists a value t2 = tx such that ^ ' ( l)<0 
for lSl2, which yields a contradiction and completes the proof of the theorem. 

Example 2. Consider the equation 

ыw+V?^м 7 / 5(j ř)= 0-
The function P(t) = p(t)ra(t)tp is nondecreasing if /J = 9/T0. This equation has 
a nonoscillatory solution u(t) = t12. 
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АСИМПТОТИЧЕСКИЕ СВОЙСТВА РЕШЕНИЙ НЕЛИНЕЙНОГО 
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА 

С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ 

Ян Огриска 

Резюме 

В работе рассматривается дифференциальное уравнение 

u"(t) + p(t)ua(r(t)) = 0. (\) 

Предполагается, что 

р(0бС„0.оо„ т(0еС1 1 0,.„ T(t)^t, К т т ( 0 = °°. 

В предлагаемой статье сформулированы аналоги некоторых теорем Ш. Белогорца для нелиней­
ного дифференциального уравнения (1) в случае 0 < а < 1 , и приведены некоторые результаты, 
касающиеся асимптотического поведения решений уравнения (1) для а > 0 . 
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