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Math. Slovaca 38, 1988, No. 3,207—214 

TOTAL DOMATIC NUMBER OF CACTI 

BOHDAN ZELINKA 

The total domatic number of a graph was introduced by E. J. Cockayne, 
R. M. Dawes and S. T. Hedetniemi in [1], By the author of this paper it was 
investigated in [2]. 

All considered graphs are undirected, without loops and multiple edges. All 
of them are finite. 

A subset D of the vertex set V(G) of an undirected graph G is called total 
dominating, if for each vertex xe V(G) there exists a vertex yeD adjacent to x 
in G. A partition of V(G), all of whose classes are total dominating sets in G, is 
called a total domatic partition of G. The maximum number of classes of a total 
domatic partition of G is called the total domatic number of G and is denoted 
by dt(G). 

Instead of a total domatic partition we can speak also about a total domatic 
colouring of G. Such a colouring has the property that each vertex of G is 
adjacent to vertices of all colours of this colouring. The maximum number of 
colours of a total domatic colouring is the total domatic number of G. Evidently 
both definitions are equivalent. 

A cactus is an undirected graph in which each edge belongs to at most one 
circuit. It is a generalization of a tree; every tree is a cactus, but not vice versa. 
The domatic number (a certain analogy of the total domatic number) of cacti 
was studied in [3]. 

Here we shall study the total domatic number of cacti. First let us begin with 
some considerations. 

A cactus will be called round, if any of its edges is contained in exactly one 
circuit. 

The block tree T(G) of a graph G is a tree whose vertex set is the union of 
the set B of blocks of G and the set A of articulations of G and in which a vertex 
aeA is adjacent to a vertex be2? if and only if the articulation a of G belongs 
to the block b of G (no two elements of A and no two elements of B $re adjacent 
in T(G)). 

Evidently T(G) is a tree. Its terminal vertices are in B, therefore its diameter 
is always even. 
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A round cactus G for which the diameter of T(G) is 0 is a circuit. We shall 
prove a theorem. 

Theorem 1. Let C be a circuit. Then dt(C) = 2 if and only if the length ofC is 
divisible by 4; otherwise dt(C) = 1. 

Proof. Let the length of C be k. Denote the vertices of C by t/,, ..., uk so 
that the edges of C are uiui+x for i = 1, ..., k — 1 and ukux. If k is divisible 
by 4, we can define the partition {D,, D2} in such a way that u,eDx if and only 
if i s 1 (mod4) or / = 2 (mod4) and uteD2 otherwise. Evidently {D,, D2} is a 
total domatic partition of C and dt(C) ^ 2. The total domatic number cannot 
exceed the minimum degree of a vertex of the graph [1], therefore dt(C) = 2. 

Now suppose that dt(C) = 2. Then there exists a total domatic partition 
{D,, D2} of C. Without loss of generality suppose that uxeDx. Then exactly one 
of the vertices u2, uk is in D, and exactly one in D2. Without loss of generality 
let u2eDx. Then w3 e D2, u4 e D2 and by induction we may prove that u(eDx if and 
only if / = 1 (mod4) or / = 2 (mod4) and uteD2 otherwise. On the other hand, 
ukeD2, uk_xeD2 and thus neither.k, nor k — 1 is congruent to 1 or 2 modu­
lo 4. Hence k must be divisible by 4. Otherwise dt(C) = 1. • 

Remark . The assertion that the total domatic number of a circuit of a 
length divisible by 4 is equal to 2 was stated in [1] without proof. 

Now we shall prove another theorem concerning the terminal blocks of cacti. 
Theorem 2, Let G be a non-trivial cactus in which at least one terminal block 

is a circuit of a length congruent to 2 modulo 4. Then dt(G) = 1. 
Remark . A non-trivial cactus [3] is a cactus having more than one block. 
Proof. Evidently dt(G) ^ 2. Suppose that dt(G) = 2 and let {D,, D2} be a 

total domatic partition of G. Let C be the mentioned terminal block of G, let k 
be its length. Let the vertices of C be denoted as in the proof of Theorem 1 and 
in such a way that ak is the articulation of G. (A terminal block is a block 
containing exactly one articulation.) Without loss of generality let uxeDx. If 
u2eDx, then, similarly as in the proof of Theorem 1, uteDx if and only if / = 1 
(mod4) or / = 2 (mod4) and uteD2 otherwise, with a possible exception of uk. 
This implies uk_2eD2, uk_xeDx. If ukeDx, then ux is adjacent to no vertex 
of D2; if uk e D2, then uk _, is adjacent to no vertex of D,. Now if u2 e D2, then 
uteDx if and only if / = 0 (mod 4) or / = 1 (mod 4) and ufeD2 otherwise, with 
a possible exception of uk. This implies uk _ 2 e D,, uk _, e D,. If uk e D,, then uk _, 
is adjacent to no vertex of D2; if ukeD2, then ux is adjacent to no vertex of D,. 
In all the cases we obtain a contradiction with the assumption that {D,, D2} is 
a total domatic partition of G. Therefore dt(G) = 1. 

Now we prove other theorems concerning terminal blocks of cacti. 
Lemma 1. Let G be a non-trivial cactus, let dt(G) = 2, let 2 be a total domatic 

partition ofG. Let C be a terminal block of G of a length k == 1 (mod 4), let a be 
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the articulation contained in C. Then a in C is adjacent only to vertices of the class 
of 9) to which it belongs. 

Proof. Let the vertices of C be denoted as in the proof of Theorem 1, let 
a = uk. Let 2 = {/),, D2} and without loss of generality let ukeDx. Suppose that 
the assertion does not hold; hence at least one of the vertices w,, uk_ x belongs 
to D2. Without loss of generality let uxeD2. Thus u2eD2, u3eDx and, by 
induction, uteD2 if and only if i = 1 (mod4) or i = 2 (mod4) and uteDx 

otherwise. Then uk_2eDx, uk_xeDx and uk_x is adjacent to no vertex of D2, 
which is a contradiction. • 

Lemma 2. Let Gbea non-trivial cactus, let dt(G) = 2, let 2 be a total domatic 
partition ofG. Let C be a terminal block of G of a length k = 3 (mod 4), let a be 
the articulation contained in C. Then a in C is adjacent only to vertices of the class 
ofQ) to which it does not belong. 

Proof. Let again the vertices of C be denoted as in the proof of Theo­
rem 1, let a = uk. Let Q) = {/),, D2} and without loss of generality let ukeDx. 
Suppose that the assertion does not hold; hence at least one of the vertices 
ux, uk _ x belongs to Dx. Without loss of generality let uxeDx. Then u2 e D2, u3 e D2 

and, by induction, u{ e D2 if and only if i = 2 (mod 4) or i = 3 (mod 4) and uteDx 

otherwise. Then uk_2eDx, uk_xeD2 and uk_x is adjacent to no vertex of D2, 
which is a contradiction. • 

Now we prove a theorem. 
Theorem 3. Let G be a round cactus with exactly one articulation. The total 

domatic number of G is 2 if and only if no block of G is a circuit of a length 
congruent with 2 modulo 4 and either there exists at least one block ofG being a 
circuit of a length divisible by 4, or there exists at least one block of G being a 
circuit of a length congruent with 1 modulo 4 and at least one block ofG being a 
circuit of a length congruent with 3 modulo 4. 

Proof. In G all blocks are terminal, therefore by Theorem 2 none of 
them can be a circuit of a length congruent with 2 modulo 4. Suppose that there 
exists a block C of G being a circuit of a length divisible by 4. Then there exists 
a total domatic partition of C with two classes and thus a total domatic 
colouring of C by the colours 1 and 2. It may be chosen so that the unique 
articulation a of G has the colour 1. In such a way we may take the total domatic 
colourings of all blocks of G being circuits of lengths divisible by 4. If there exists 
a block of G being a circuit of a length congruent to 1 modulo 4, then let its 
vertices be denoted as in the proof of Theorem 1 and so that ux = a. Colour all 
vertices u{ for i = 1 (mod 4) or i = 2 (mod 4) by 1 and all the others by 2. If there 
exists a block of G being a circuit of a length congruent with 3 modulo 4, we 
denote its vertices again as in the proof of Theorem 1 and so that ux = a. We 
colour all vertices w, for i = 0 (mod 4) or i = 1 (mod 4) by 1 and all the others 
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by 2. The colouring obtained in this way is a total domatic colouring of G by 
two colours and thus dt(G) = 2. 

If there is no block of G being a circuit of a length divisible by 4, but there 
exists at least one of a length congruent with 1 modulo 4 and at least one of a 
length congruent with 3 modulo 4, then we proceed in the same way. The ver­
tex a is adjacent to vertices coloured by 1 (or by 2) in the circuits of the lengths 
congruent with 1 (or with 3 respectively) modulo 4. Also other vertices are 
adjacent to vertices of both the colours, therefore we have a total domatic 
colouring by two colours and dt(G) = 2. 

The remaining cases are those when all blocks are circuits of lengths con­
gruent with 1 modulo 4 and when all blocks are circuits of lengths congruent 
with 3 modulo 4. Let the first case occur and let {£>,, £>2} be a total domatic 
partition of G. Without loss of generality let ae£>,. According to Lemma 1 the 
vertex a is adjacent only to vertices of £>, and {£>,, £>2} is not a total domatic 
partition, which is a contradiction. Similarly in the second case according to 
Lemma 2 the vertex a would be adjacent only to vertices of £>2, which is again 
a contradiction. • 

A graph G is said to be uniquely totally domatic if in G there exists exactly 
one maximal total domatic partition of G, i.e., a domatic partition of G with 
dt(G) classes. 

Theorem 4. £et G be a round cactus with exactly one articulation, let dt(G) = 
= 2. The graph G is uniquely totally domatic if and only if it contains no circuit 
of a length divisible by 4. 

Proof. If G contains no circuit of a length divisible by 4, then all of its 
blocks are circuits of lengths congruent with 1 or with 3 modulo 4. Then for each 
vertex it is uniquely determined, whether it belongs to the same class of a 
maximal total domatic partition of G as the articulation, or not. This follows 
from Lemma 1 and Lemma 2 and from the fact that any vertex of degree 2 must 
be adjacent to exactly one vertex of each class of a maximal total domatic 
partition. Hence G is uniquely totally domatic. 

Now let G contain a circuit C of a length k divisible by 4. Let its vertices be 
denoted as in the proof of Theorem 1 and so that uk is the articulation of G. 
Suppose that there is a total domatic partition {£>,, £>2} of G. Now we construct 
another partition {£>{, £>2} in the following way. If a vertex x does not belong 
to C, then xeD\ if and only if xe£>,; otherwise it is in £>2. For each / = 1, ..., 
k — 1 let the vertex ut be in D\ if and only if uk_ieDl; otherwise let it be in £>2. 
If ukeDu then let ukeD\\ otherwise let ukeD2. Evidently {£>{, £>2} is also a total 
domatic partition of G. Exactly one of the vertices w,, uk_, is in the same class 
of {£>,, £>2} as uk; this vertex is in the other class of {£>{, £>2}, then uk and thus 
{£>{, £>2} T* {£>,, £>2} and G is not uniquely totally domatic. • 
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Before formulating a theorem concerning other cacti than those with one 
articulation, we shall proceed with some considerations on the tree T(G). 

Let G be a round cactus such that the diameter of T(G) is greater than 2. 
Let P be a diametral path in T(G). The terminal vertices of P are evidently 
blocks of G. Let a be a vertex of P adjacent to one of the terminal vertices 
of P; this is an articulation of G. The articulation a has the property that it is 
contained in exactly one non-terminal block of G (otherwise there would exist 
a path longer that P in T(G)). We introduce some notation. By G'(a) we denote 
the subgraph of G consisting of all terminal blocks containing a, by G"(a) the 
graph obtained from G by deleting all vertices of G'(a) except a. In G"(a) the 
vertex a has evidently the degree 2; let vx, v2 be the vertices adjacent to a in G"(a). 
By G~(a) we denote the graph obtained from G"(a) by deleting the vertex a and 
adding the edge e"(a) joining vx and v2. By G+(a) we denote the graph obtained 
from G"(a) by replacing a by two adjacent vertices a,, a2 and joining ax with vx 

and a2 with v2 by an edge. Obviously all the mentioned graphs are cacti. 
Consider the following three assertions: 
A. The graph G"(a) has the total domatic number equal to 2. 
A~. The graph G~(a) has a total domatic partition with two classes such that 

the end vertices of e~(a) belong to the same class. 
A+. The graph G+(a) has a total domatic partition with two classes such that 

the end vertices of e+(a) belong to the same class. 
The next theorem will enable us to determine the total domatic number of a 

round cactus recurrently by means of that of a round cactus for which the 
diameter of the block tree is smaller. 

Theorem 5. Let G be a round cactus such that the diameter of T(G) is at 
least 4. The cactus G has the total domatic number equal to 2 if and only ifG'(a) 
contains no circuit of a length congruent with 2 modulo 4 and at least one of the 
following cases occurs: 
(a) G'(a) contains a circuit of a length divisible by 4 and either A, or A~, or A+ 

holds. 
(b) G'(a) contains a circuit of a length congruent with 1 modulo 4 and a circuit of 
a length congruent with 3 modulo 4 and either A, or A~, or A+ holds. 
(c) G'(a) consists of circuits of lengths congruent with 1 modulo 4 and either A, 
or A+ holds. 
(d) G'(a) consists of circuits of lengths congruent with 3 modulo 4 and either A, 
or A~ holds. 

Proof. The assertion concerning the circuit of a length congruent with 2 
modulo 4 follows from Theorem 2. Suppose that dt(G) = 2. In the case (a) there 
exists a total domatic partition {Z>,, D2} of G with the property that a is adjacent 
to vertices of both the classes in a circuit of G'(a) whose length is divisible 
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by 4. If in G"(a) it is also adjacent to vertices of both classes, then evidently the 
restriction of {/),, D2} onto G"(a) is a total domatic partition of G"(a) and A 
holds. If in G"(a) the vertex a is adjacent only to vertices of its own class, then 
we may take the restriction of {/),, D2} onto the vertex set of G~(a); this is 
evidently a total domatic partition of G~(a) in which the end vertices of e~(a) 
belong to the same class and A~ holds. If in G"(a) the vertex a is adjacent only 
to vertices not belonging to its own class, then we may take the partition of the 
vertex set of G+(a) obtained from the restriction of {/),, D2} onto G"(a) by 
replacing a by a,, a2 and putting a,, a2 into the class in which a was; this is 
evidently a total domatic partition of G+(a) in which the end vertices of e+(a) 
belong to the same class and A+ holds. In the case (b) there also exists a total 
domatic partition {/),, D2} of G with the property that a is adjacent to a vertex 
of its own class in a circuit of a length congruent with 1 modulo 4 and to a vertex 
of the other class in a circuit of a length congruent with 3 modulo 4 in G'(a). 
The rest of the proof is now the same as in the case (a). In the case (c) the 
vertex a is adjacent in G'(a) only to vertices of its own class. Then in G"(a) the 
vertex a must be adjacent either to vertices of both the classes, or only of the 
class other than its own. Analogously as above we prove that A or A+ holds. 
In the case (d) the vertex a is adjacent in G'(a) only to vertices of the class other 
than its own. Then in G"(a) the vertex a must be adjacent either to vertices of 
both the classes, or only of its own class. Analogously as above we prove 
that A or A~ holds. 

Now suppose that the conditions are satisfied. Let (a) occur. Then we take 
a total domatic colouring of G'(a) described in the proof of Theorem 3. If A 
holds, we take a domatic colouring of G"(a) by two colours such that a has the 
same colour in both the colourings. Both the colourings together give a total 
domatic colouring of G by two colours. If A~ holds, we take a total domatic 
polouring of G~ by two colours such that the end vertices of e~(a) have the same 
colour and this colour is the same as that of a in the colouring of G'(a). Then 
we colour G"(a) so as G~(a); we obtain a total domatic colouring of G by two 
colours. If A+ holds, we take a total domatic colouring of G+(a) by two colours 
such that the end vertices of e+(a) have the same colour and this colour is the 
same as that of a in the colouring of G'(a). We colour G"(a) so as G+(a); to a 
we assign the colour of a, and a2. We obtain again a total domatic colouring of 
G by two colours. In the case (b) we proceed quite analogously. In the case (c) 
we colour G'(a) in such a way that a is adjacent only to vertices of its own class 
and all other vertices are adjacent to vertices of both the classes (as in the proof 
of Theorem 4). Then in the cases A and A+ we proceed analogously as above. 
In the case (d) we colour G'(a) in such a way that a is adjacent only to vertices 
not belonging to its own class and all other vertices are adjacent to vertices 
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of both the classes. Then in the case A and A~ we proceed analogously as 
above. • 

Remark . If the block of C"(a) containing e"(a) has the length divisible 
by 4 and dt(G~(a)) = 2, then always there exists the required colouring. If its 
length is congruent with 1 or 3 modulo 4, it is not always so (see Lemma 1, 
Lemma 2, Theorem 4). Analogously for G+(a) and e+(a). 

From the cacti which are not round we shall study only the simplest, namely 
those consisting of two circuits and a path connecting a vertex of one of them 
with a vertex of the other. 

Theorem 6. Let G be a cactus consisting of two circuits C,, C2 of the lengths 
cX9 c2 respectively and a path P of the length p connecting a vertex of C, with a 
vertex of C2. Then dt(G) = 2 if and only if one of the following cases occurs: 
(a) c, = 0(mod4). 
(a') c2 = 0(mod4). 
(b) c, = c2 = 1 (mod 4), p = 1 (mod 2). 
(c) c, = c2 = 3 (mod 4), p = 1 (mod 2). 
(d) c! = 1 (mod 4), c2 = 3 (mod 4), p = 0 (mod 2). 
(d') c, = 3 (mod 4), c2 = 1 (mod 4), p = 0 (mod 2). 

Proof. From Theorem 2 we have c! # 2 (mod4), c2 # 2 (mod4). Let the 
vertices of P be v09..., vp9 let its edges be vtvi+x for / = 0, ...,p — 1. Let v0 belong 
to C, and vp to C2. Let (a) occur. If c2 = 1 (mod 4), we colour C2 by the co­
lours 1 and 2 so that vp has the colour 1 and so have the vertices adjacent to it 
and any vertex distinct from vp is adjacent to vertices of both the colours (see 
the proof of Theorem 3). The vertices of P will be coloured so that vt has the 
colour 1 if and only if / = p (mod 4) or i = p + 1 (mod 4); otherwise it has the 
colour 2. Then we take a total domatic colouring of C, by the colours 1 and 2 
in which v0 has the same colour as in the colouring of P. We obtain a total 
domatic colouring of G by two colours. If c2 = 3 (mod 4), then we colour C2 in 
such a way that vp has the colour 1 and the vertices adjacent to it have the 
colour 2 and any vertex distinct from vp is adjacent to vertices of both the 
colours. The vertices of P will be coloured so that vt has the colour 1 if and only 
if i = p (mod 4) or i = p — 1 (mod 4); otherwise it has the colour 2. The vertices 
of C, will be coloured as in the preceding case. If c2 = 0 (mod 4), we take total 
domatic colourings of both C,, C2 by two colours and we colour the vertices 
of P in an arbitrary one of the described ways. The case (a') is analogous. In the 
case (b) we take the colourings of Cx and C2 such as for C2 in the case (a) for 
c2 = 1 (mod 4), and such that v0 is coloured by 1. Then we must colour the 
vertices of P so that vx has another colour than v0 and vp_ x has another colour 
than vp. If p is odd, this is possible in such a way that vt has the colour 1 if and 
only if i = 0 (mod 4) or i = 3 (mod 4) and it has the colour 2 otherwise. If p is 
even, this is evidently not possible. In the case (c) we take the colourings of C, 
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and C2 such as for C2 in the case (a) for c2 == 3 (mod 4) and so that v0 is coloured 
by 1. Then we must colour the vertices of P so that vx has the same colour 
as v0 and vp_, has the same colour as vp. If p is odd, this is possible in such a 
way that vt has the colour 1 if and only if i == 0 (mod 4) or / = 1 (mod 4) and it 
has the colour 2 otherwise. If p is even, this is evidently not possible. In the case 
(d) we proceed analogously. The vertices of P must be coloured so that vx has 
another colour than v0 and vp_x has the same colour as vp. If p is even, this is 
possible in such a way that vf has the colour 1 if and only if i = 0 (mod 4) or / = 3 
(mod 4) and the colour 2 otherwise. If p is odd, this is evidently not possible. The 
case (d') is analogous. Thus we have exhausted all cases and the assertion is 
proved. • 
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ТОТАЛЬНОЕ ДОМАТИЧЕСКОЕ ЧИСЛО КАКТУСОВ 

Вопдап 2 е П п к а 

Р е з ю м е 

Подмножество В множества У(0) вершин неориентированного графа С называется 
тотальным доминантным, если для каждой вершины х е У(0) существует вершина у е Д 
смежная с х в О. Максимальное число классов разбиения множества У(0), все классы 
которого являются тотальными доминантными множествами в (7, называется тотальным 
доматическим числом графа О. Здесь оно исследуется для кактусов, то есть графов, в кото­
рых каждое ребро принадлежит по крайней мере одному контуру. 
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