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TOTAL DOMATIC NUMBER OF CACTI
BOHDAN ZELINKA

The total domatic number of a graph was introduced by E. J. Cockayne,
R. M. Dawes and S. T. Hedetniemi in [1]. By the author of this paper it was
investigated in [2].

All considered graphs are undirected, without loops and multiple edges. All
of them are finite.

A subset D of the vertex set V(G) of an undirected graph G is called total
dominating, if for each vertex x € V(G) there exists a vertex ye D adjacent to x
in G. A partition of V(G), all of whose classes are total dominating sets in G, is
called a total domatic partition of G. The maximum number of classes of a total
domatic partition of G is called the total domatic number of G and is denoted
by d,(G).

Instead of a total domatic partition we can speak also about a total domatic
colouring of G. Such a colouring has the property that each vertex of G is
adjacent to vertices of all colours of this colouring. The maximum number of
colours of a total domatic colouring is the total domatic number of G. Evidently
both definitions are equivalent.

A cactus is an undirected graph in which each edge belongs to at most one
circuit. It is a generalization of a tree; every tree is a cactus, but not vice versa.
The domatic number (a certain analogy of the total domatic number) of cacti
was studied in [3].

Here we shall study the total domatic number of cacti. First let us begin with
some considerations. A

A cactus will be called round, if any of its edges is contained in exactly one
circuit.

The block tree T(G) of a graph G is a tree whose vertex set is the union of
the set B of blocks of G and the set 4 of articulations of G and in which a vertex
ae A is adjacent to a vertex be B if and only if the articulation a of G belongs
to the block b of G (no two elements of 4 and no two elements of B are adjacent
in 7(G)).

Evidently T(G) is a tree. Its terminal vertices are in B, therefore its diameter
is always even.
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A round cactus G for which the diameter of T(G) is 0 is a circuit. We shall
prove a theorem.

Theorem 1. Let C be a circuit. Then d,(C) = 2 if and only if the length of C is
divisible by 4; otherwise d,(C) = 1.

Proof. Let the length of C be k. Denote the vertices of C by u,, ..., 4, so
that the edges of C are w,u; , fori=1, ..., k — 1 and wu,. If k is divisible
by 4, we can define the partition {D,, D,} in such a way that ;e D, if and only
ifi=1 (mod4) or i = 2 (mod 4) and ;e D, otherwise. Evidently {D,, D,} is a
total domatic partition of C and d,(C) = 2. The total domatic number cannot
exceed the minimum degree of a vertex of the graph [1], therefore d,(C) = 2.

Now suppose that d,(C) = 2. Then there exists a total domatic partition
{D,, D;} of C. Without loss of generality suppose that u, € D,. Then exactly one
of the vertices u,, u, is in D, and exactly one in D,. Without loss of generality
let u,e D,. Then u,e D,, u,€ D, and by induction we may prove that ;€ D, if and
onlyif i = 1 (mod4) or i = 2 (mod 4) and u;e D, otherwise. On the other hand,
u,€D,, u, _,€ D, and thus neither.k, nor £ — 1 is congruent to 1 or 2 modu-
lo 4. Hence k must be divisible by 4. Otherwise d,(C) = 1. [J

Remark. The assertion that the total domatic number of a circuit of a
length divisible by 4 is equal to 2 was stated in [1] without proof.

Now we shall prove another theorem concerning the terminal blocks of cacti.

Theorem 2. Let G be a non-trivial cactus in which at least one terminal block
is a circuit of a length congruent to 2 modulo 4. Then d,(G) = 1.

Remark. A non-trivial cactus [3] is a cactus having more than one block.

Proof. Evidently 4,(G) < 2. Suppose that 4,(G) = 2 and let {D,, D,} be a
total domatic partition of G. Let C be the mentioned terminal block of G, let k
be its length. Let the vertices of C be denoted as in the proof of Theorem 1 and
in such a way that g, is the articulation of G. (A terminal block is a block
containing exactly one articulation.) Without loss of generality let u, e D,. If
u,€ D,, then, similarly as in the proof of Theorem 1, ;e D, if and only if i = 1
(mod 4) or i = 2 (mod 4) and ;e D, otherwise, with a possible exception of u,.
This implies u, _,€D,, u,_,€D,. If u.e D,, then u, is adjacent to no vertex
of D,; if u,e D,, then u, _, is adjacent to no vertex of D,. Now if u, € D,, then
u,e D, if and only if i = 0 (mod4) or i = 1 (mod 4) and y;e D, otherwise, with
a possible exception of u,. This implies v, _,e D, u, _,€D,. If u,e D,, then u, _,
is adjacent to no vertex of D,; if u, € D,, then u, is adjacent to no vertex of D,.
In all the cases we obtain a contradiction with the assumption that {D,, D,} is
a total domatic partition of G. Therefore d,(G) = 1.

Now we prove other theorems concerning terminal blocks of cacti.

Lemma 1. Let G be a non-trivial cactus, let d,(G) = 2, let @ be a total domatic
partition of G. Let C be a terminal block of G of a length k = 1 (mod 4), let a be
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the articulation contained in C. Then a in C is adjacent only to vertices of the class
of D to which it belongs.

Proof. Let the vertices of C be denoted as in the proof of Theorem 1, let
a = u,. Let 2 = {D,, D,} and without loss of generality let 4, € D,. Suppose that
the assertion does not hold; hence at least one of the vertices u,, u, _, belongs
to D,. Without loss of generality let u, € D,. Thus u,eD,, u;e D, and, by
induction, ;e D, if and only if i=1 (mod4) or i=2 (mod4) and w,e D,
otherwise. Then u, _,eD,, u,_,eD, and u, _, is adjacent to no vertex of D,,
which is a contradiction. [] ‘ '

Lemma 2. Let G be a non-trivial cactus, let d,(G) = 2, let 9 be a total domatic
partition of G. Let C be a terminal block of G of a length k = 3 (mod 4), let a be
the articulation contained in C. Then a in C is adjacent only to vertices of the class
of 9 to which it does not belong.

Proof. Let again the vertices of C be denoted as in the proof of Theo-
rem 1, let a = u,. Let 2 = {D,, D,} and without loss of generality let u, € D,.
Suppose that the assertion dees not hold; hence at least one of the vertices
u,, u, _; belongs to D,. Without loss of generality let , € D,. Then u,€ D,, u;e D,
and, by induction, u;€ D, if and only if i = 2 (mod 4) or i = 3 (mod 4) and u;€ D,
otherwise. Then u, _,eD,, u,_,eD, and u, _, is adjacent to no vertex of D,,
which is a contradiction. [

Now we prove a theorem.

Theorem 3. Let G be a round cactus with exactly one articulation. The total
domatic number of G is 2 if and only if no block of G is a circuit of a length
congruent with 2 modulo 4 and either there exists at least one block of G being a
circuit of a length divisible by 4, or there exists at least one block of G being a
circuit of a length congruent with 1 modulo 4 and at least one block of G being a
circuit of a length congruent with 3 modulo 4.

Proof. In G all blocks are terminal, therefore by Theorem 2 none of
them can be a circuit of a length congruent with 2 modulo 4. Suppose that there
exists a block C of G being a circuit of a length divisible by 4. Then there exists
a total domatic partition of C with two classes and thus a total domatic
colouring of C by the colours 1 and 2. It may be chosen so that the unique
articulation a of G has the colour 1. In such a way we may take the total domatic
colourings of all blocks of G being circuits of lengths divisible by 4. If there exists
a block of G being a circuit of a length congruent to 1 modulo 4, then let its
vertices be denoted as in the proof of Theorem 1 and so that u;, = a. Colour all
vertices u; for i = 1 (mod 4) or i = 2 (mod 4) by 1 and all the others by 2. If there
exists a block of G being a circuit of a length congruent with 3 modulo 4, we
denote its vertices again as in the proof of Theorem 1 and so that ¥, = a. We
colour all vertices u; for i = 0 (mod4) or i = 1 (mod4) by 1 and all the others
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by 2. The colouring obtained in this way is a total domatic colouring of G by
two colours and thus 4,(G) = 2.

If there is no block of G being a circuit of a length divisible by 4, but there
exists at least one of a length congruent with 1 modulo 4 and at least one of a
length congruent with 3 modulo 4, then we proceed in the same way. The ver-
tex a is adjacent to vertices coloured by 1 (or by 2) in the circuits of the lengths
congruent with 1 (or with 3 respectively) modulo 4. Also other vertices are
adjacent to vertices of both the colours, therefore we have a total domatic
colouring by two colours and 4,(G) = 2.

The remaining cases are those when all blocks are circuits of lengths con-
gruent with 1 modulo 4 and when all blocks are circuits of lengths congruent
with 3 modulo 4. Let the first case occur and let {D,, D,} be a total domatic
partition of G. Without loss of generality let ae D,. According to Lemma 1 the
vertex a is adjacent only to vertices of D, and {D,, D} is not a total domatic
partition, which is a contradiction. Similarly in the second case according to
Lemma 2 the vertex a would be adjacent only to vertices of D,, which is again
a contradiction. [J

A graph G is said to be uniquely totally domatic if in G there exists exactly
one maximal total domatic partition of G, i.e., a domatic partition of G with
d(G) classes.

Theorem 4. Let G be a round cactus with exactly one articulation, let d (G) =
= 2. The graph G is uniquely totally domatic if and only if it contains no circuit
of a length divisible by 4.

Proof. If G contains no circuit of a length divisible by 4, then all of its
blocks are circuits of lengths congruent with 1 or with 3 modulo 4. Then for each
vertex it is uniquely determined, whether it belongs to the same class of a
maximal total domatic partition of G as the articulation, or not. This follows
from Lemma 1 and Lemma 2 and from the fact that any vertex of degree 2 must
be adjacent to exactly one vertex of each class of a maximal total domatic
partition. Hence G is uniquely totally domatic.

Now let G contain a circuit C of a length k divisible by 4. Let its vertices be
denoted as in the proof of Theorem 1 and so that u, is the articulation of G.
Suppose that there is a total domatic partition {D,, D,} of G. Now we construct
another partition {D}, D3} in the following way. If a vertex x does not belong
to C, then xe Dy if and only if xe D, ; otherwise it is in D;. Foreachi=1, ...,
k — 1 let the vertex u; be in Dj if and only if , _,e D, ; otherwise let it be in D3.
If u, € D, then let u, € D7 ; otherwise let u, € D5. Evidently {D, D5} is also a total
domatic partition of G. Exactly one of the vertices u,, u, _, is in the same class
of {D,, D,} as u,; this vertex is in the other class of {D}, D3}, then u, and thus
{D{, D3} #{D,, D,} and G is not uniquely totally domatic. []
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Before formulating a theorem concerning other cacti than those with one
articulation, we shall proceed with some considerations on the tree T(G).

Let G be a round cactus such that the diameter of T(G) is greater than 2.
Let P be a diametral path in 7(G). The terminal vertices of P are evidently
blocks of G. Let a be a vertex of P adjacent to one of the terminal vertices
of P; this is an articulation of G. The articulation a has the property that it is
contained in exactly one non-terminal block of G (otherwise there would exist
a path longer that P in T(G)). We introduce some notation. By G’(a) we denote
the subgraph of G consisting of all terminal blocks containing a, by G"(a) the
graph obtained from G by deleting all vertices of G’(a) except a. In G"(a) the
vertex a has evidently the degree 2; let v, v, be the vertices adjacent to a in G"(a).
By G~ (a) we denote the graph obtained from G"(a) by deleting the vertex a and
adding the edge e~ (a) joining v, and v,. By G *(a) we denote the graph obtained
from G"(a) by replacing a by two adjacent vertices a,, a, and joining a, with v,
and a, with v, by an edge. Obviously all the mentioned graphs are cacti.

Consider the following three assertions:

A. The graph G"(a) has the total domatic number equal to 2.

A~. The graph G ~(a) has a total domatic partition with two classes such that
the end vertices of ¢~ (a) belong to the same class.

A™. The graph G *(a) has a total domatic partition with two classes such that
the end vertices of e*(a) belong to the same class.

The next theorem will enable us to determine the total domatic number of a
round cactus recurrently by means of that of a round cactus for which the
diameter of the block tree is smaller. ’

Theorem 5. Let G be a round cactus such that the diameter of T(G) is at
least 4. The cactus G has the total domatic number equal to 2 if and only if G'(a)
contains no circuit of a length congruent with 2 modulo 4 and at least one of the
following cases occurs:

(a) G’(a) contains a circuit of a length divisible by 4 and either A, or A, or A*
holds.

(b) G’(a) contains a circuit of a length congruent with 1 modulo 4 and a circuit of
a length congruent with 3 modulo 4 and either A, or A, or A" holds.

(c) G'(a) consists of circuits of lengths congruent with 1 modulo 4 and either A,
or A" holds.

(d) G'(a) consists of circuits of lengths congruent with 3 modulo 4 and either A,
or A~ holds.

Proof. The assertion concerning the circuit of a length congruent with 2
modulo 4 follows from Theorem 2. Suppose that d,(G) = 2. In the case (a) there
exists a total domatic partition {D,, D,} of G with the property that a is adjacent
to vertices of both the classes in a circuit of G’(a) whose length is divisible
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by 4. If in G"(a) it is also adjacent to vertices of both classes, then evidently the
restriction of {D,, D,} onto G"(a) is a total domatic partition of G"(a) and A
holds. If in G”"(a) the vertex a is adjacent only to vertices of its own class, then
we may take the restriction of {D,, D,} onto the vertex set of G ~(a); this is
evidently a total domatic partition of G ~(a) in which the end vertices of ¢~ (a)
belong to the same class and A~ holds. If in G”(a) the vertex a is adjacent only
to vertices not belonging to its own class, then we may take the partition of the
vertex set of G*(a) obtained from the restriction of {D,, D,} onto G"(a) by
replacing a by q,, a, and putting a,, a, into the class in which a was; this is
evidently a total domatic partition of G *(a) in which the end vertices of e*(a)
belong to the same class and A* holds. In the case (b) there also exists a total
domatic partition {D,, D,} of G with the property that a is adjacent to a vertex
of its own class in a circuit of a length congruent with 1 modulo 4 and to a vertex
of the other class in a circuit of a length congruent with 3 modulo 4 in G'(a).
The rest of the proof is now the same as in the case (a). In the case (c) the
vertex a is adjacent in G’(a) only to vertices of its own class. Then in G”(a) the
vertex a must be adjacent either to vertices of both the classes, or only of the
class other than its own. Analogously as above we prove that A or A" holds.
In the case (d) the vertex a is adjacent in G’(a) only to vertices of the class other
than its own. Then in G"(a) the vertex a must be adjacent either to vertices of
both the classes, or only of its own class. Analogously as above we prove
that A or A~ holds.

Now suppose that the conditions are satisfied. Let (a) occur. Then we take
a total domatic colouring of G’(a) described in the proof of Theorem 3. If A
holds, we take a domatic colouring of G"(a) by two colours such that a has the
same colour in both the colourings. Both the colourings together give a total
domatic colouring of G by two colours. If A~ holds, we take a total domatic
polouring of G~ by two colours such that the end vertices of e ~(a) have the same
colour and this colour is the same as that of a in the colouring of G’(a). Then
we colour G”(a) so as G~ (a); we obtain a total domatic colouring of G by two
colours. If A* holds, we take a total domatic colouring of G *(a) by two colours
such that the end vertices of e¢*(a) have the same colour and this colour is the
same as that of a in the colouring of G’(a). We colour G"(a) so as G*(a); to a
we assign the colour of g, and a,. We obtain again a total domatic colouring of
G by two colours. In the case (b) we proceed quite analogously. In the case (c)
we colour G’(a) in such a way that a is adjacent only to vertices of its own class
and all other vertices are adjacent to vertices of both the classes (as in the proof
of Theorem 4). Then in the cases A and A* we proceed analogously as above.
In the case (d) we colour G’(a) in such a way that a is adjacent only to vertices
~ not belonging to its own class and all other vertices are adjacent to vertices
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of both the classes. Then in the case A and A~ we proceed analogously as
above. [ ’

Remark. If the block of G™(a) containing e~ (a) has the length divisible
by 4 and d,(G~(a)) = 2, then always there exists the required colouring. If its
length is congruent with 1 or 3 modulo 4, it is not always so (see Lemma 1,
Lemma 2, Theorem 4). Analogously for G*(a) and e (a).

From the cacti which are not round we shall study only the simplest, namely
those consisting of two circuits and a path connecting a vertex of one of them
with a vertex of the other. ,

Theorem 6. Let G be a cactus consisting of two circuits C,, C, of the lengths
¢, ¢, respectively and a path P of the length p connecting a vertex of C, with a
vertex of C,. Then d(G) = 2 if and only if one of the following cases occurs:
@) ¢, =0 (mod4).

@) ¢, =0 (mod4).

(b) ¢, =c,=1(mod4), p=1 (mod?2).

(©) ¢ =c,=3(mod4), p=1 (mod?2).

(d) ¢, =1 (mod4), ¢, =3 (mod4), p =0 (mod 2).

(d) ¢, =3 (mod4), ¢, =1 (mod4), p =0 (mod 2).

Proof. From Theorem 2 we have ¢, # 2 (mod4), ¢, # 2 (mod 4). Let the
vertices of P be vy, ..., v,, let its edges be v;v;, , fori =0, ..., p — 1. Let v, belong
to C, and v, to C,. Let (a) occur. If ¢, = 1 (mod4), we colour C, by the co-
lours 1 and 2 so that v, has the colour 1 and so have the vertices adjacent to it
and any vertex distinct from v, is adjacent to vertices of both the colours (see
the proof of Theorem 3). The vertices of P will be coloured so that v, has the
colour 1 if and only if i = p (mod4) or i = p + 1 (mod 4); otherwise it has the
colour 2. Then we take a total domatic colouring of C, by the colours 1 and 2
in which v, has the same colour as in the colouring of P. We obtain a total
domatic colouring of G by two colours. If ¢, = 3 (mod 4), then we colour C, in
such a way that v, has the colour 1 and the vertices adjacent to it have the
colour 2 and any vertex distinct from v, is adjacent to vertices of both the
colours. The vertices of P will be coloured so that v; has the colour 1 if and only
ifi = p (mod4) ori = p — 1 (mod 4); otherwise it has the colour 2. The vertices
of C, will be coloured as in the preceding case. If ¢, = 0 (mod 4), we take total
domatic colourings of both C,, C, by two colours and we colour the vertices
of P in an arbitrary one of the described ways. The case (a") is analogous. In the
case (b) we take the colourings of C, and C, such as for C, in the case (a) for
¢, =1 (mod4), and such that v, is coloured by 1. Then we must colour the
vertices of P so that v, has another colour than v, and v, _, has another colour
than v,. If p is odd, this is possible in such a way that v; has the colour 1 if and
only if i = 0 (mod 4) or i = 3 (mod 4) and it has the colour 2 otherwise. If p is
even, this is evidently not possible. In the case (c) we take the colourings of C,
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and C, such as for C, in the case (a) for ¢, = 3 (mod 4) and so that v, is coloured
by 1. Then we must colour the vertices of P so that v, has the same colour
as vy and v, _, has the same colour as v,. If p is odd, this is possible in such a
way that v, has the colour 1 if and only if i = 0 (mod 4) or i = 1 (mod 4) and it
has the colour 2 otherwise. If p is even, this is evidently not possible. In the case
(d) we proceed analogously. The vertices of P must be coloured so that v, has
another colour than v, and v, _, has the same colour as v,. If p is even, this is
possible in such a way that v; has the colour 1 if and only if i = 0 (mod4) ori = 3
(mod 4) and the colour 2 otherwise. If p is odd, this is evidently not possible. The
case (d’) is analogous. Thus we have exhausted all cases and the assertion is
proved. [
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TOTAJIBHOE JOMATHUYECKOE YUCJIO KAKTYCOB
Bohdan Zelinka
Pe3omMe
IMoamuoxectBo D MHOxecTBa V(G) BepLIHH HEOpUEHTHpPOBaHHOro rpacda G Ha3bIBaeTCs
TOTQJILHBIM [TOMHMHAHTHBIM, €CJIM IJI Kax[Ioil BepuiuHbl x€ V(G) cyuwecTByeT BepuruHa ye D,
cMexHas ¢ x B G. MakcHManbHOe YHCJIO KJjaccoB pa3bueHuss MHoxectBa F(G), Bce Kiacchl
KOTOPOTrO SIBJISIOTCS TOTaJIbHBIMH JOMHUHAHTHBIMH MHOXECTBaMH B G, Ha3bIBAE€TCA TOTAJIbHbIM

JOMaTH4eCKUM 4uciIoM rpada G. 3aeck OHO HcCiefyeTcs s KaKTyCoB, TO €CTh rpadoB, B KOTO-
PBIX KaxJa0€ peGpo MPUHAMJIEXHUT MO KpaiiHeil Mepe OXHOMY KOHTYDY.

214



		webmaster@dml.cz
	2012-08-01T04:22:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




