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Math. Slovaca 28,1978, No. 1,11—20 

B*-IDEALS AND Q*-IDEALS 
IN NON-COMMUTATIVE SEMIRINGS 

A.ALMEIDA COSTA—MARGARITA RAMALHO') 

Introduction. A semiring ( S , + , •) is a set S with two binary operations + and 
•, such that ( S , + ) and ( S , •) are semigroups and • distributes over + : 
a(b + c) = ab + ac, (b + c)a —ba+ca.A subset A of a semiring S will be called an 
ideal if a, b e a and s e S implies a+bea,saea and as e a. The nuclear ideal, i. e., 
the intersection of all non empty ideals, will be noted by ' 3 . We shall consider 
B-ideals, B*-ideals, Q-ideals and Q*-ideals; all these define congruences over S . 
The first two types of ideals extend the concept of congruence due to B o u r n e [3]; 
those congruences which depend either on Q — or on Q*-ideals extend the concept 
of congruence due to Al l en [1]. We examine the relations between the different 
mentioned ideals and Henriksen's k-ideals, and this leads to a generalization of 
La Torre's results [5]. In defining kd-ideals by a unilateral condition, we extend the 
notion of the k-ideal. Epimorphisms will be characterized according to the nature 
of their kernel. One can then state (theorem 6) a result on semi-isomorphisms in 
the sense of B o u r n e [4] and another (corollary 3) on isomorphisms, in which one 
uses in a convenient form Allen's notion [1] of maximal epimorphism. Theorem 4' 
and 5' exploit an idea of M a r g a r i t a R a m a l h o and extend a theorem by 
L a T o r r e [5] and another by Al l en [1]. Finally, assuming the existence of 
a semiring of quotients of S , we shall prove several statements concerning ideals. 

2. B*-ideals 

An id£al c=£0 defines a reflexive and symetric relation f$c over S (Bourne's 
relation denoted simply by /? when there is no danger of ambiguity) in the following 
way: xfiy if and only if there exists c, cuec such that x +c =y +c ( ). This relation 
which is such that Jt./?y., x2(3y2 imply (xxx2)fi(y\y2) is not transitive in general. 

') This research was supported by Instituto de Alta Cultura, Lisboa, Portugal (Projecto de 
Investigacao LM/4). 
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An ideal a =£ 0 is said to be normal, if and only if, given any a e a and any x e S , 
there exists a()ea such that a+x=x + a0. In this case, (3 is already transitive. 
Furthermore, /3 is a congruence relation. One extends thus the Bourne congruence 
given in the case of a commutative addition. 

The elements of a normal ideal a all belong to the same ^-congruence class C„. 
Ca is an ideal and the zero element for the quotient semiring S//3. From this fact 
one concludes that Ca defines over S a congruence relation |8Ca =/3a. It may be 
either a = Ca or a a Ca. In the latter case it may happen that Ca is not normal. An 
example is the following: 

+ a b c 

a a a c 
b b b c 
c c c c 

a b c 

a c c c 
Ь c c c 
c c c c 

In the above the ideal a = {c} is normal, but C« = {a, b, c) is not. 
Consequently, a non normal ideal can define a congruence. We have another 

example taking a non empty ideal c ^ S of a G-semiring (characterized by the 
following rule for addition: x + y =y, VJC, y e S ) . 

An ideal b =£ 0 is said to be a B-ideal, if and only if the corresponding relation /3 is 
a congruence and the elements of b are congruent. We shall call S//3 a Bourne 
quotient semiring and denote by Cb the class which contains b. Cb^b is an ideal 
and a right zero for the addition in S//3. Consequently, b and Cb define the same 
congruence and Cb is a B-ideal. 

Keeping in mind that Cb is also a multiplicative zero of G/0, we have: 

Theorem 1. A B-ideal b defines a congruence (3 and the congruence class Cb^b 
is a B-ideal that defines the same congruence and that is a right additive and 
multiplicative zero of 3//S. 

In La Torre [5], one finds the concept of the k-ideal of M. Henriksen. k is 
a /c-ideal, if and only if a +x ek, y +a' ek, with a, a' ek and x, y e S imply x, 
y ek. Since 3 is a k-ideal and the intersection of k-ideals is a k-ideal, there exists 
the A:-ideal generated by a subset of S . 

We recognize the importance of the k-ideals by the following example. Let S be 
a lattice semiring [2], i.e., a semiring which is a lattice for which x +y =xvy, 
xy^x Ay. The ideals of the lattice are ideals of the semiring; however the converse 
assertion is not true. One calls these ideals lattice ideals. Lattice ideals are identical 
with k-ideals, so that the k-ideals generated by a set of elements may be obtained 
in the following way: first construct the ideal s of the semiring generated by the 
said elements, then take the elements j t e S such that x^x for some xes. 
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Theorem 2. / / b is a B-ideal which is also a k -ideal, then b = Cb. 
In fact, let ceCb; then bfic, with beb, implies b +b0 = c + b00 (bo,b00eb). 

Since b is a k-ideal, c + b00eb and biH)eb imply ceb. 
Taken a B-ideal b, whenever Cb is an additive zero of S//3, ft will be said to be 

a B()-ideal [6]. If a is a normal ideal, then a and Ca are B„-ideals. In a G-semiring 
a non empty ideal is a B()-ideal. A B-ideal b that contains a B()-ideal is also 
a B()-ideal. 

Theorem 3. / / b is a B0-ideaI, the class Cb is a B0-ideal and also the k-ideal 
generated by b. 

In view of theorem 1, Cb is a B-ideal and Cb^b implies that Cb is a B()-ideal. It is 
a k-ideal as well, because, for instance, x +c eCb, with c eCb, yields Cx+C = Cb, 
therefore Cx = Cb. Furthermore, Cb is the k-ideal generated by b, since if ft Qk, 
where k is a k-ideal, from c/3b one gets c + b0 = b + biH), (ceCb; b, b0, b()i)eb), 
hence c + b0ek and c ek. 

Corollary 1. / / b is a B0-ideal, b is a k-ideal if and only if b = Cb. 

Corollary 2. In a lattice semiring, b is a lattice ideal if and only if b = Cb. 
Exten s ion of results . Let a be a congruence over S . In general an ideal a is 

partitioned by a set of classes {Ca}, (a ea, Ca e S / a ) , and uCa is an ideal of S . If 
every class Ca is a right zero for the addition in S / a , The relation (3 defined by 
a will imply a, for, if x(5y, from x +a=y +a0, (a, a0ea), one gets Cx = Cy, i.e. xoy. 
Conversely, if fi = o, then, since (x + a)(3x, (aea), one has Cx + Ca=Cx. 

This being so, let us consider, following [7], an ideal b that defines a congruence 
relation /3, but whose elements are not necessarily congruent with other. We shall 
call it B*-ideal. If b' is an ideal such that ftczft'czCb, (beb), b' will define the 
same congruence, since each class of S/jft containing an element of b' is a right zero 
for the addition in S//3 and so /3b.̂ = /3 ; on the other hand |3 S j3b-. We can state: 

Theorem 1'. A B*-ideal b defines a congruence that is defined as well by every 
ideal b' such that b cz ft' c u C b , (b eb, Cb eS/0). uC b is a B*-idealand its image 
{Cb, ...} is an ideal of S/jft, each element Cb being an additive right zero for S / 0 . 

We shall say that an ideal k is a kd-ideal if and only if x +a ekd, with a ekd, 
implies x ekd. In any natural epimorphism S—>S/)3, defined by a B*-ideal ft, the 
image of this ideal is the kd-ideal {Cb \b e ft}, whose complete inverse image is uCb . 
However, in any epimorphism S—>S' a subset S ' cz S ' is a kd-ideal if and only if 
its complete inverse image is one as well. Therefore uCb is a kd-ideal of S , 
precisely the kd-ideal generated by ft. Thus: 

Theorem 2'. / / ft is a B*-ideal, ft is a kd-ideal if and only if ft = u C b . 
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3. Q ! -ideals 

The B-ideal b will be called a Q-ideal if and only if it satisfies the two following 
conditions: i) given S/jft = {Ch, Ca, ..., Q , . . . } , there exists a set O = {b0, a, ..., q, 
...}, (b0e Ch), of class representatives such that q + b = Cq, Vr/ e Q ; ii) b + q cz q + 
+ b, V a e O . This concept can be found in [1] for the case where addition is 
commutative. 

We wish to remark that: 1) the set O is not, in general, uniquely determined; 2) 
qeq+b; 3) if Cx = Cq = q + b, then x + b gzq + b, so that in the family of sets 
{x + b}, (x e S ) , the sets {q+b}, (qeQ), are maximal; 4) in the natural 
epimorphism S—• S//3 one has x —.> Cx = q + b and this is a class independent of O ; 
5) every Q-ideal is a B„-ideal, since, if CX=CX, Cb + Cx = Ch()+ Cq = Cha+q 
= Cq+h()U = Cq = Cx, (b0, b00eb); 6) every Q-ideal is a k-ideal. Summing up: 

Theorem 4. II b is a Q-ideal, the quotient S//3 vv/71 be independent of the sets 
Q which may be considered. Furthermore, b is a B{)-ideal and equal to Ch, therefore 
a k-ideal. 

And also: 

Theorem 5. The Q-ideal b will be normal if and only if, given b0, bxeb, there 
exists bo such that b0 + bx = bx+b'0, (b'0eb). 

It is enough to verify the sufficiency. Put x=q+bx, with x e S , bxeb; given 
b eb one has b +x = b +q +bx. The property ii) yields b +q=q +b0, (b0eb), 
therefore b +x = q +b0 + bx; since, by hypothesis, b0 +bx = bx +b'0, one has b + x 
= q+bx + b'0 = x + b'{), and b is normal. 

E x t e n s i o n of r e s u l t s . Take an ideal a and assume the existence of a set O* 
such that {q +a},(q e Q*) is a partition of S . When the equivalence relation a so 
defined is a congruence, a is said to be a Q*-ideal. The following statement holds: 

Theorem y .If a is a Q*-ideal, one has: i)x eq + a if and only if q + a = q + a ; ii) 
the congruence classes q + a, (q e Q*), containing elements of a are right additive 
zeros in S / a ; Hi) an ideal a' such that a^a' c u(qa +a), where the qa e O* are 
such that qa+a contains elements of a, is a Q*-ideal, as well; iv) u(qa + a) is 
a kd-ideal generated by a. 

With regard to / ) : if x + a^q +a, assume that x = qx + a e qx+a(qxeQ \ 
a ea); then x +a <^qx + a and q + a = qx+a, q =qx. With regard to ii): assume 
that a eqx+a ; since q e q +a, (q + a) + (qx + a) is a class containing q + a and this 
class can only be q + a. As regards ///), one notices that q+a=q+a',VqeQ is 
satisfied, since, if x e a', then x e qa + a, f or some qa, and one has q+xeq+qa+a 
c (q + a) -\- (qa + a) = q + a. As to iv), u(qa + a) is certainly a k^-ideal, and if one 
suppose a czkd, then, if a eqa+a, (a ea), one has a =qa +a{, (ax ea), since a, 
ax ekd, qa ekd and qa + a ^kd, u(qa +a)^kd. 
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4. Morphisms 

Let S—>S' be an epimorphism of semirings and assume that !3' is the nuclear 
ideal of ©'. The complete inverse image 9? of 3 ' is the kernel of the epimorphism. 
Following [4], we shall call an epimorphism a semi-isomorphism if sJf = S. Now we 
have: the epimorphism cannot be a semi-isomorphism, unless 3 and !3' are both 
empty or both non empty. In the former case, one always has a semi-isomorphism, 
while in the latter it will be a semi-isomorphism if and only if 3 is an ideal saturated 
with regard to the congruence defined by the epimorphism. 

An epimorphism ©—> S ' is said to be a B-epimorphism (B-epimorphism), if the 
kernel is a B-ideal (B0-ideal). This certainly happens in the natural epimorphism 
©—>G//3, if b is a B-ideal (B0-ideal). One can, as a general rule, write either <5/b 
or S//3 on the quotient semiring. 

Theorem 6. Let S—>©' be a B-epimorphism and suppose !3' = C\ a B-ideal; 
then there exists a semi-isomorphism S ^ J — > © / 3 \ (9? = Ker<p). 

The morphism obtained by the composition ©—>©'—>©73' is a B-epimorphism 
whose kernel is 9?; then it suffices to show if ©—>©' is a B-epimorphism and ©' 
has a right additive and multiplicative zero, there exists a semi-isomorphism 
S/9?—>©' (9? = Ker<p0). If o is the congruence relation defined by <p0 and /3 the 
congruence defined by 9?, it suffices to show that jSSa . Since the ideal 9tf is 
contained in a unique class defined by a, and this is 9f{ itself, which is a right 
additive zero for S / a , we have shown in §2 (extension of results) that as required 
P^o. 

We shall give now an isomorphism theorem concerning B*-ideals which extends 
a known result [5]. The theorem is based on two lemmas. 

Lemma 1 \ Let ©—>©' be an epimorphism and o the congruence it defines. 
Then: i) if a is an ideal such thato^fa, then x{5ay if and only if (p(x)P<f(a)q)(y); ii) 
also witho^pa, a is a B*-ideal if and only if (p(a) is one as well; Hi) in the last case, 
we have S / f t — ©'//3v(a). 

With regard to i): the necessity is obvious. We show the sufficiency. Assuming 
that (p(x)P<p(a)q>(y), one will have <p(x) + (f(a) = (p(y) + (f(a0), (a, a0ea). Then 
from q?(x +a) = q?(y + a0), one gets (x + a)o(y + a0), therefore (x + a)/3a(y + a0), 
hence xfiay. With regard to ii) and Hi), it suffices to verify that there is a 1 - 1 
correspondence between the congruence classes "modulo-/?a" and the congruence 
classes "modulo /3v ( a )" and that this correspondence preserves addition and 
multiplication. 

Lemma 2 ' . Let us suppose a a B*-ideal and b^a a kd-ideal; then in the natural 

epimorphism ©—•©/#, the image b of b is a kd-ideal and one has b=b/fSa. 
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We begin by verifying that the ideal b is saturated with regard to the congruence 
(3a. Assuming xfiab, (beb), from x + a = b + a(), (a, a0ea), one gets x + aeb, 
therefore x eb. From what we saw in §2, b is a kd-ideal since b is one as well; 
moreover, one will have b=b/(ia. Now the theorem: 

Theorem 47 Let a and b, with b~2~, be B*-ideaIs. If b is a kd-ideal the following 
isomorphism will take place:~ol$h —(S//3fl)/(&/&). 

Let us consider now the case of the natural epimorphism 3—>S/6, where b is 

supposed to be a Q-ideal, Given J C G S / 6 , there is q e Q such that cp(q) = x and 
cp \x) = q+b, with 6 = Kerq?. We shall then call a B0-epimorphism 3—>3 ' 
maximal if S ' is a Q-ideal and if, given j c ' e S ' , there exists u e S such that 
cp(v) = x' and cp x(x'+ %') = v + W, with sJf = Ker<p. 

Lemma 1. When 3 ' contains a zero 0' the kernel of a maximal epimorphism 

3—>S' is a Q-ideal. 

By hypothesis the kernel is a B()-ideal; moreover, given x' e S ' , there is q e S 
such that <p-1(jt') = <7 + SJJ. The classes cp l(x') are disjoint, and the set of elements 
q, previously chosen, is such that Cq = q + s)i. On the other hand cp (s)l + q) = x' and 
so sJf + qczq+yi. 

Theorem 7. A Q-ideal b determines a maximal epimorphism 3—>S/6 = 3 ' 

where 3 ' has a zero element. Conversely, a maximal epimorphism 3—>S', /n case 

there exists O ' e S ' , w/71 have a kernel b which is a Q-ideal and the following 
isomorphism holds: S / Ker cp = 3 ' . 

In fact, the Bourne congruence defined by b coincides with the one defined by cp. 

Corollary 3. /f S - > S ' is a maximal epimorphism, we have an isomorphism 

S A J i - S ' / S ' , with sJ? = Ker(p. 
The extension of this corollary is interesting when one introduces Q*-ideals. We 

begin with a lemma. 

Lemma 37 Ler 3—>S' be an epimorphism, b' a Q*-ideal of 3 ' and {..., q', ...} 

the set Q* which corresponds to b ; then, according to the hypothesis cp x(q' +b') 
= q +cp~x(b'), for certain elements q e 3 , the ideal cp~x(b') = b is a Q*-ideal and 
one has <5/b=*Q'/b'. 

3 = u(q + cp~x(b')) is a disjoint union and so the set of elements q is a Q*-set. 
The equivalence relation defined by this partition is a congruence in view of the 
following. Let qx, .]2€0*cS and suppose q'x.q^q'^ conveniently chosen: one has 
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¥>[(<?.+ <P \b')) + (q2 + cp-\b'))]<-(q[ + b') + (q'2 + b')-q\ + b', 

(q, + cp \b')) + (q2 + cp-\b'))^<p \q', + b') = q, + cp ' ( * ' ) ; 

and similarly for products. Hence the isomorphism. 

Theorem 5 \ In a maximal epimorphism 2 — > 2 \ Kerq? is a Q*-ideal and the 
following isomorphism takes place: 2 Kercp — 2 ' / 3 ' . 

5. Transfer problems 

Following D. A. Smith [8], we say: i) a subset D of the multiplicative semigroup 
of 2 will be called a right divisor set if it consists of cancellable elements; it is 
closed for multiplication; and it has the property of the right common multiple, 
i.e., given a e 2 , <5 G D , there are y e D , x e 2 such that a y = <5x ; ii) a semiring C 
is said to be a semiring of right quotients of the semiring 2 if C contains the 
identity and a subset isomorphic to 2 , so that the inclusion 3 c C has a meaning; 
moreover, 2 contains cancellable elements and there is a subset D„ of the set of 
such elements which is closed for multiplication and consists of elements invertible 
in C ; at last, every element of C can be written in the form xn \ (x e 2 , n e D0). 

Given 2 and D , one can define in the cartesian product 2 x D an equivalence 
relation by putting (a, o ) ~ ( c , d), with a, c e 2 and /?, d eD if and only if bx = dy 
implies ax = cy. Denoting by alb the equivalence class which contains (a, b), the 
set of all classes will constitute a semiring if one defines addition and multiplication 
as follows: 

a c az+cv .ç , , , ~ ~ ч т + ~i =—~—^ » dv = bz, ( v є D , z є ^ ) , 
b d d 

a c az ., , / r-i - \ 
T'~J = ~~~i » cv = bz, ( v e D , ze<z). 
b d dv 

( i ) 

Then the following proposition holds: 2 will have a semiring of right quotients 2 n , 
if and only if its multiplicative semigroup contains a right divisor set D. The 
semiring of right quotients is the one defined by the rules (1). 

In what follows we shall suppose that both operations + and • are commutative 
in 2 , and we shall employ Greek letters to denote elements of D, although 
denominators such as b or d belong to D, as well. 

We shall be concerned with several statements. 
1) The operations + and •, in 2 D , are also commutative. Let us put 

a c az c a cy 
- • - = — , -JT = ~~~* W l t n cv = bz, a\i=dy. 
b d dv d b b\x 
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We have to show (az, dv)~(cy, b]i) but, as was formulated by D. A. Smi th , it is 
only necessary to show that dvx = b\iE), ( J C G 3 , § G D ) implies azx=cy^. Let us 
assume that dvx = b^, then we have successively 

dvxcy = bfi^cy , a\ivxc = b^cy , avxc = b^cy , 

abzx = b^cy , azx = cyt; . 

Further, let us put 

a c az + c c a cy + ag . . , , 
6 + d = ̂ T ' d + b=-bT> w , t h dv = bz> 

bg =dy. 

We wish to show that (az + cv, dv)~(cy +ag, bg). From dvx = bgt], (x e 3 ) we 
obtain successively 

bzx = bgr), zx =gt], azx = agr), 

and quite similarly, from the same equality we obtain, successively 

dvx = dyr), vx=yr\, cvx = cyr). 

Consequently, azx + cvx = cyr\ + agr] and this completes the proof. 
2) Now, let a be an ideal of 3 and let a' be the ideal of S D generated by a. Each 

element a' of a' can be written in the form 

a' =Hmlai+^b,t'i, (ai9bt€a; t;eSD), 

where the sums are finite and each m, is a positive integer. Since a finite number of 
elements of 3 D can always be represented in such a way that they have the same 
denominator in D, the element a' of a' can be written 

a' = a()o~\ with a()ea, oeD. 

For example, taken 

a' = mxax + m2a2 + bxt'x + b2t'2, (l!=Tr , t2 = — \, 
\ g r\J 

we have 

and 

18 
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bxty + b2t2=—^- — -\ = H , 

£ § r] n v [i 
with r, v = §JC , t2\x = r]y, 

mxaxvu m2a2vu 
mxax + m2a2 = 1 

v\i V\i 



therefore 

a =— , with o = uv, 
o 

a0 = mxaxv\i +m2a2v\i +bxx[i +b2yv. 

3) Let it be a /c-ideal of 3 and denote by k' the ideal of 3 D generated by it. If we 
take a' +x' ek' and if we put 

we obtain 

a'—-г, x' = —, (aek), 

Ч ц 

<"І+*S=!L ( k e k ) 

and further 

___L±___!_-___I 

which implies ar)% + x^% = k%£, therefore 

xSC JC 
x^ek, and 7r̂ z = -refr ' . 

£̂ <- 5 

4) Let a and a' be as above and consider the classes Ca, Ca and the ideal ( C ) ' of 
3 D generated by Ca. Given c%~1 e(Ca)', with ceCa, one has c + a0 = a+aoi), for 
some a0, a, amea, therefore 

_ + _°. = _ + __ 

and this implies ( C « ) ' _ C a . Assuming now 

x'fca' (x'=^, a ' = £ e a ' ) . 

one gets 

_ _ i _ _ _£ 

which implies x + ax = a+a2, therefore x eCa and x' e(Ca)'. 
Summarizing 

Theorem 8. If the operations + and • are commutative in 3 and if there is 
a semiring of quotients 3 D of 3 , one /ias: 1) fhe operations + and • are also 
commutative in 3 D ; 2) an /dea/ a (necessarily normal) of 3 generated in 3 D an 
idea/ a' = { a ' e 3 D | a ' = a<>£~\ a<>ea, ? e D } ; 3) the ideal k' generated in 3 D by 

19 



a k-ideal of 3 is also a k-ideal; 4) the class Ca is the ideal (C a ) ' generated in S D 

by the class Ca. 
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