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UNIFORMLY DISTRIBUTED SEQUENCES 
OF POSITIVE INTEGERS IN BAIRE'S SPACE 

V O J T E C H LASZLO — TIBOR SALAT 

ABSTRACT. Topological properties of the set of all uniformly distributed se­
quences of positive integers in Baire's space S of all sequences of positive integers 
are investigated in this paper. 

Introduction 

In [6] the concept of uniformly distributed sequences of positive integers 
modm ( m > 2) and uniformly distributed sequences of positive integers in 
Z is introduced (see also [3], p. 305). 

Let a = {anJ^Lj be a sequence of positive integers. Denote by A(j,m,N) the 
number of terms among a i , . . . , a/v that satisfy the congruence a, = j (modm) . 
The sequence a is said to be uniformly distributed mod m if 

A( j ,m,N ) 1 
J i m /V = ™ 0 = 1 , 2 , . . . , m ) (1) 

and a is said to be uniformly distributed in Z if (1) is satisfied for every integer 
m > 2. 

We recall the notion of Baire's space S of all sequences of positive integers. 
This means the metric space S endowed with the metric d defined on S x S 
in the following way: 

Let x = {xk}^ e 5 , y = {yk)tLi G 5 . If x -= y , then d(x,y) = 0, if 
x ^ y, then 

d(x> y) = —r-j j 7 • 
mm{n : xn±yn) 

The space (S,d) is a complete metric space (cf. [1], pp. 185,190; [5], pp. 95-96). 
The aim of this paper is the study of topological properties of the class of 

all such sequences in S that arc uniformly distributed modm (uniformly dis­
tributed in Z ). Let us remark that the study of the class of uniformly distributed 
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mod 1 sequences of real numbers from the topological point of view is contained 
in [2], pp. 72-74 (see also [4]) and from the metric point of view in [3], pp. 
313-316 (see also [6]). 

Uniformly distributed sequences of positive integers 
in the space S 

Denote by Um and U the class of all uniformly distributed sequences of 
positive integers m o d m and the class of all uniformly distributed sequences of 
positive integers in Z , respectively. We shall study topological properties of sets 
Um (m > 2), U as subsets of the metric space S. 

From the definition of the previous classes of sequences we get 

U = П Um . (2) 
m=2 

The following theorem shows that the sets Um (m > 2) are "small' from 
the topological point of view. 

Theorem 1. The set Um (m > 2) is a dense set of the first Baire category 
in S. 

P r o o f . The density of Um in S follows from the well-known fact that if 
two sequences differ only in a finite number of terms, then either each of them is 
uniformly distributed mod m or none of them is uniformly di tributed mod m . 

Define for x = {xk)kLi £ S and fixed m,n the function gn in the following 
way: 

9n(*) = l'Ze2"i*" (x = {xk}?=ieS). 
k=l 

Evidently we have |gn(^)| < 1 for each x G 5 . The function gn maps S into 
the metric space C of all complex numbers with the metric p, p(z, z') = \z — z'\, 

z,z' e c . 
Denote by S* the set of all x = {xk}fL1 G S for which there exists the limit 

lim gn(x) G C . Put g(x) = lim gn(x) for x G 5* . Then the function g maps 
n—»-oo n—•oo 

S* into C . 
We shall show that: 

(a) The function gn (n is fixed) is a continuous function on S. 
(b) The function g is discontinuous at each point x G 5* ( 5 * is regarded 

as a metric subspace of S). 
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Proof of (a). Let a = {ak}(kL1 E 5 . Let us form the ball 

K(a,±) = {xeS: d(x,a)<±}. 

If x belongs to K(a, ^ ) , then Xk = ak (fc = l , . . . , n ) and therefore yn(z) = 
gn(a). The assertion (a) follows. 

Proof of (b). Let b = {bk}kLx € 5* . We shall show that the function g : 
S* —+ C is discontinuous at 6. 

We have two possibilities: 1) \g(b)\ < 1 2) \g(b)\ = 1. 

In the case 1) we put CQ = 1 — |y(b)| > 0. It suffices to prove that in each 
ball K(b,8) = {x E 5* : d(x,b) < 6} of the subspace 5* of S there is a point 

y = {yk}tLi s u c h t h a t \y(y) - v(b)\ ^ £ o . 
Choose an s such that 

- < * . (3) 
s 

Put yfc = 6jt (k = 1,2, . . . , 5) and y3+{ = Im (I = 1,2,. . . ), y = {y*}£Li. 
Then for n = 6 + v we get 

a-J-v 

n(y) = g,+к(y) = - Ê ^ - +-T, e2ҡІ" = 
fc=l fc=J+l 

n — 3 

n *—' n 
k=i j=i 

Hence lim gn(y) = g(y) = 1 and so y G 5 * . Further, according to (3) the 
n—•oo 

point y belongs to K(b,6) and 

lff(y) - <?(&)! = |1 - <K*)I > 1 - \9(b)\ =e0>0. 

In the case 2) we have |y(b)| = 1. It suffices to show that in any ball K(b, 6) 
( 6 > 0 ) there is a point y such that 

\g(y)-g(b)\ = l . (4) 

Let 6 > 0. Choose s such that (3) holds. Let z = {zk}<kL1 be a fixed sequence 
from U (e.g. we can choose Zk = k, A: = 1,2,... ). Define y = { y * } ^ ! in the 
following way: yk = 6jt ( fc = 1,2,..., s ), yk = z* for fc > 5 . 

On account of the well-known criterion for uniformly distributed sequences 
of positive integers m o d m (cf. [3], p. 306, Theorem 1.2) we have 

lim Ì V 
n—>oo n --—' 

**«'*= 0. 
*=i 
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Hence g(y) = lim gn(y) = 0. Therefore Um C S* and (4) evidently holds. 
n—•oo 

According to (a),(b) the function g is a limit function of the sequence 
{gn}„*=i . The functions gn (rc = 1,2,... ) are continuous on S and therefore 
<7n|S* ( n = 1,2,... ) are continuous on 5 * . The function g being a function 
in the first Baire class on S* has the following property: The set Dg of all 
discontinuity points of g in S* is a set of the first Baire category in S* (cf. [7], 
p. 185). Hence S* is a set of the first Baire category in S* and therefore in 5 , 
too. 

Since Um C 5* , the theorem follows. • 

The following two theorems are immediate consequences of Theorem 1. 

Theo>rem 2. The set U is a dense set of the first Baire category in S. 

Theorem 3. The set W of all sequences of positive integers that are uni­
formly distributed modm for no m > 2 is a residual set in the space S. 

P r o o f . It follows from Theorem 1 that the set IJm=2 ^m 1S a s e ^ °̂  ^ n e 

first Baire category in S. Therefore the set 

w = s\ \Jum= f)(S\Um) 
m = 2 m = 2 

is residual in S. D 

We shall show that the set U belongs to the second Borel class in S. 

Theorem 4. The set Um (m _ 2) is an Fas -$ct in S. 

According to (2) we get from Theorem 4: 

Corollary. The set U is an Fas -set in S. 

P r o o f of T h e o r e m 4. It is proved in [3] (Theorem 1.2, p. 306) that a 
sequence {ak}fL1 of positive integers is uniformly distributed m o d m if and 
only if we have 

1 

iim - y 
n—Kx> n ---—' 

Є m _ Џ 

* = 1 

for every fe = l,2, . . . , m — l . 

Put for x = {xk}^=1 E 5 and fixed h <E {1,2,..., m - 1} 

n * = l 
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We can show that fUih is a continuous function on 5 . (This can be shown 
analogously as the continuity of gn in the proof of Theorem 1). Therefore on 
account of the quoted Theorem 1.2 from [3] we get 

m —1 oo oo oo 
Um= Гì П U Ç]D(n,h,k), (5) 

h=l k=l s=l n=s 

where 

D(n, h, k) = L = {Xj}f=1 € S : |/„,*(*)| < H • 

The continuity of /„.& implies that D{n, h,k) is a closed set in S. The assertion 
follows at once from (5). H 
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