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SEMIDOMATIC NUMBERS 
OF DIRECTED GRAPHS 

BOHDAN ZELINKA 

In [1] E. J. Cockayne and S. T. Hedetniemi have introduced the concept of 
the domatic number of an undirected graph. In [2] this concept was transferred to 
directed graphs. Here we shall define two generalizations of the domatic numbers 
of directed graphs. 

Let G be a directed graph with the vertex set V(G). A subset D of V(G) is 
called inside-semidominating (or outside-semidominating) in G if to each vertex 
x e V(G) — D there exists a vertex y e D such that the edge xy (or yx, respectively) 
belongs to G. An inside-domatic (or outside-domatic) partition of G is a partition 
of V(G), all of whose classes are inside-semidominating (or outside-semidominati­
ng) sets in G. The maximum number of classes of an inside-semidomatic (or 
outside-semidomatic) partition of G is called the inside-semidomatic (or out-
side-semidomatic) number of G and is denoted by d'(G) (or d*(G), respectively). 
Note that these numbers are defined for all directed graphs, because a partition of 
V(G) consisting of one class is simultaneously an inside-semidomatic partition of 
G and an outside-semidomatic one. 

Now a dominating set in a directed graph G can be defined as a subset of V(G) 
which is simultaneously inside-semidominating and outside-semidominating. The 
domatic number d(G) of G is the maximum number of classes of a domatic 
partition of G, i.e. of a partition, all of whose classes are dominating sets in G. This 
implies the following assertion. 

Proposition 1. Let G be a directed graph, let d~(G), d+(G), d(G) be its 
inside-semidomatic, outside-semidomatic and domatic number respectively. Then 

d~(G)^d(G), 

d+(G)^d(G). 

Also the following assertion is evident. 

Proposition 2. Let G be a directed graph, let 0 be the graph obtained from 
G by reversing orientations of all edges. Then 
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d-(G) = d+(G), 

d+(G) = d~(G). 

Proposition 3. Let G be a directed graph, let d+(G) (or 6~(G)) be the 
minimum outdegree (or indegree, respectively) of a vertex of G. Then 

d~(G)Zid+(G) + \, 

d+(G)^d~(G) + \. 

Proof. Let d~(G) = d and let 2> = {Di, ..., Dd} be an inside-semidomatic 
partition of G with d classes. Let xeV(G); without loss of generality we may 
suppose that xeDd. Then in each D, for i = 1, ..., d — 1 there exists a vertex y, 
such that xyt is an edge of G. The vertices yx, ..., yd-i are pairwise distinct, 
therefore the outdegree of x is at least d — 1. As x was chosen arbitrarily, we have 
8+(G) .§ d~(G) - 1 , which implies the first inequality. The second inequality is dual 
to the first. 

Proposition 4. Let G be a directed graph in which any two vertices are joined 
by at most one edge, let n be its number of vertices, n § 2 . Then 

d~(G)^[n/2], 

d+(G)^[n/2]. 

Proof. Suppose that d'(G)>[n/2]. As n^2, we have d~(G)>\. Any in­
side-semidomatic partition 2) of G with d~(G) classes contains at least one class 
consisting of one vertex. If u is such a vertex, then for each y^u there exists the 
edge yu. As d~(G)>\, there exists a class DeSd such that u^D. As D is 
inside-semidominating and u^D, there exists xeD such that ux is an edge of G. 
But then there are both the edges ux, xu in G, which is a contradiction. The proof 
for d+(G) is dual to the preceding. 

Corollary 1. If a directed graph G contains a source (or a sink), then d+(G) = 1 
(or d~(G) = l, respectively). 

Theorem 1. Let dl9 d2,nbe three positive integers such that dx ^ n/2, d2 ̂  n/2. 
Then there exists a tournament T with n vertices such that d~(T) = dx, d

+(T) = d2. 
Proof. First suppose dx^d2, dx<n/2. Let U={Ui\i = \,..., d2}, V = 

{vi|i = l,. . . , d2}, Wr={wi|i = l, . . . , rt-2d2-l} and Z = {z} be pairwise disjoint 
sets. (W is empty if n=2d2 + \.) Put V(T)= UuVuWuZ and construct 
a tournament T with the vertex set V(T). The edge set of T will contain the edges 
uiuj for i<j, v^ forj<; , uivj for i g ; , ^ for i>j, uWj for all i and j , wvi for all i 
and;, wiwf tor i<j, zv, for i^dx-\, viz tor i IS dx, ux f or each i, w£ for each i. 

Now we shall prove that d+(T) = d2. Put D + = {w,, v,} for i = l , . . . , d2-\ and 
D ^ { w * , ^ } u W u Z . Consider D + for fixed i%d2-\ and let xe V(T)-D,+ . 
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Then JC e D+ for /=£ i. If j < i, then either x = u, and there exists the edge wc = wJ,, 
v, e D+, or JC = v, and there exists the edge utx = u^., Ut e D+. If j > i, then either 
JC = Uj and there exists the edge utx = U(U\, Ui e DT, or JC = Vj and there exists the 
edge ViX = v^, vt e DT, or JC e WuZ and there exists the edge mx, ut e D+. Now 
consider Dd2. Uxe V ( T ) - Dd2, then JC e D+ for ; .§ d2 - 1 . Again either JC = wy and 
there exists the edge vd2Uj = vd2x, vd2eDd2, or x = Vj and there exists the edge 
ud2x = ud2Vj, ud2eDd2. Hence 3)+ = {di", ..., Dd2} is an outside-semidomatic parti­
tion of T. As the indegree of ud2 is d2 — 1, we have d+(T) = d2. 

Now let DT = Dt for i = 1, ..., dx - 1 and D i = Q D^. Consider DT for fixed 

i -S di - 1 . Let JC e V(T) - D r ; then JC e Dj for j=£ i. If ; < i, then either JC = Uj and 
there exists the edge JCMI = MJMI, uteDT, or jc = vy and there exists the edge 
xvi = VjVi, Vi e DT. If / > i, then either JC = M7 and there exists the edge xvt = UjVi, 
Vi e DT, or JC = vt and there exists the edge JCM, = v^{l9 w, e DT, or JC € WuZ and 
there exists the edge xvt, vteDT. Now consider Dlu If xeV(T) — Ddl9 then 
jceDf for j^-dt-1. Again either x = Uj and there exists the edge xudl = UjUdl, 
udleDdlr or JC = U; and there exists the edge xvdl = VjVdl, vdleDdl. Hence ST = 
{DT, ..., Ddl} is an inside-semidomatic partition of T and, as the outdegree of z is 
di — 1, we have d~(T) = dx. We have proved the assertion for the case dx1kd2. 

If di>d2, d2<n/2, we construct a tournament t such that d"Cf) = d2, d
+(T) = 

d\. By reversing the orientation of all edges of t we obtain the required 
tournament T. 

If dx = d2 = n/2, we take W=Z = 0. Then we may put D? = DT = {ui9 vt} for 
i = l, ..., n/2; these sets form a partition of V(T) which is simultaneously 
inside-semidomatic and outside-semidomatic, hence d+(T)^n/2, d~(T)^n/2. 
From Proposition 4 we obtain the equalities. 

The following theorem is an analogon of a theorem in [2] concerning the domatic 
number. 

Theorem 2. Let G be a directed graph. Then the following two assertions are 
equivalent: 
(i) G contains a factor G0 which is bipartite and has no sink. 
(ii) d~(G)^2. 

Proof. Suppose that G contains the described factor G0. It is a bipartite graph, 
hence there exists a partition {Di, D2} of V(G0) = V(G) such that each edge of G0 

joins two vertices of distinct classes of this partition. As G0 has no sink, each vertex 
of D2 = V(G) — Di is an initial vertex of an edge of G0 and the terminal edge of this 
edge is in Dx; hence Dx is inside-semidominating in G0 and analogously so is D2 . 
Thus {Di,D2} is an inside-semidomatic partition of G0 and also of G and 
d~(G)^2. 

Now suppose that d~(G)^2. Then there exists an inside-semidomatic partition 
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{Di, D2} of G. By G0 we denote the factor of G whose edge set is the set of edges 
of G joining vertices of Dt with vertices of D2; this is a bipartite graph. Suppose 
that Go has a sink u; without loss of generality let ueD2. Then there exists no edge 
from u to a vertex of Dx and Di is not inside-semidominating, which is 
a contradiction. 

Theorem 2\ Let G be a directed graph. Then the following two assertions are 
equivalent: 
(if) G contains a factor Gd which is bipartite and contains no source. 

(ii') d+(G)^2. 
This theorem is dual to Theorem 2. 

Corollary 2. If every cycle of a directed graph G has an odd length, then 
d~(G) = d+(G) = l. 

A question may be asked, whether d'(G)^2 and d+(G)^2 imply d(G)^2. 
We shall show that this is not true. Let V(G) = {ux, u2,u3,u4, u5) and let the 
edges of G be uxu2, u2u3, u3u4, u3u^, u4u5, u5ux. The reader may verify himself 
that d-(G) = <T(G) = 2 and d(G) = l. 
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ПОЛУДОМАТИЧЕСКИЕ ЧИСЛА ОРИЕНТИРОВАННЫХ ГРАФОВ 

ВоЫап 2еПпка 

Резюме 

Подмножество О множества V(0) вершин ориентированного графа О называется внутренне 
полудоминантным (или внешне доминантным), если для всякой вершины х е V(С)-^ сущес­
твует вершина уе^ такая, что дуга ху (или ух, соответственно) принадлежит графу О. 
Максимальное число классов разбиения множества V(С), все классы которого являются 
внутренне полудоминантными (или внешне доминантными) множествами в О, называется 
внутренне полудоматическим (или внешне полудоматическим) числом графа О и обозначается 
через (Г(С) (или 4+(С) соответственно), Исследуются свойства чисел с1~(0) и (1*(С). 
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