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SEMIDOMATIC NUMBERS
OF DIRECTED GRAPHS

BOHDAN ZELINKA

In[1] E.J. Cockayne and S. T. Hedetniemi have introduced the concept of
the domatic number of an undirected graph. In [2] this concept was transferred to
directed graphs. Here we shall define two generalizations of the domatic numbers
of directed graphs.

Let G be a directed graph with the vertex set V(G). A subset D of V(G) is
called inside-semidominating (or outsxde-semxdommatmg) in G 1f to each vertex
x € V(G) — D there exists a vertex y € D such that the edge xy (or yx, respectively)
belongs to G. An inside-domatic (or outside-domatic) partition of G is a partition
of V(G), all of whose classes are inside-semidominating (or outside-semidominati-
ng) sets in G. The maximum number of classes of an inside-semidomatic (or
outside-semidomatic) partition of G is called the inside-semidomatic (or out-
side-semidomatic) number of G and is denoted by d~(G) (or d*(G), respectively).
Note that these numbers are defined for all directed graphs, because a partition of
V(G) consisting of one class is simultaneously an inside-semidomatic partition of
G and an outside-semidomatic one.

Now a dominating set in a directed graph G can be defined as a subset of V(G)
which is simultaneously inside-semidominating and outside-semidominating. The
domatic number d(G) of G is the maximum number of classes of a domatic
partition of G, i.e. of a partition, all of whose classes are dominating sets in G. This
implies the following assertion.

Proposition 1. Let G be a directed graph, let d~(G), d*(G), d(G) be its
inside-semidomatic, outside-semidomatic and domatic number respectively. Then

d~(G)=d(G),
d*(G)=d(G).
Also the following assertion is evident.

Proposition 2. Let G be a directed graph, let G be the graph obtained from
G by reversing’ orientations of all edges. Then
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d~(6)=d*(G),
d*(6)=d(G).

Proposition 3. Let G be a directed graph, let 6*(G) (or 67 (G)) be the
minimum outdegree (or indegree, respectively) of a vertex of G. Then

d(G)=6*(G)+1,
d*(G)=6~(G)+1.

Proof. Let d (G)=d and let @={D,, ..., D,} be an inside-semidomatic
partition of G with d classes. Let x € V(G); without loss of generality we may
suppose that xeDd ‘Then in each D; for i=1, ..., d—1 there exists a vertex y;
such that xy. is an edge of G. The vertices yi, ..., ya—1 are pairwise distinct,
therefore the outdegree of x is at least d — 1. As x was chosen arbitrarily, we have
6*(G)=d (G)— 1, which impHes the first inequality. The second inequality is dual
to the first.

Proposition 4. Let G be a directed graph in which any two vertices are joined
by at most one edge, let n be its number of vertices, n=2. Then

d-(G)=[n/2],
d*(G)=[n/2].

Proof. Suppose that d*(G)>[n/2]). As n=2, we have d~(G)>1. Any in-
side-semidomatic partition @ of G with d~(G) classes contains at least one class
cons1st1ng of one vertex. If u is such a vertex, then for each y+ u there exists the
edge yu. As d- (G)>1, there exists a class D e % such that uéD. As D is
inside-semidominating and u ¢ D, there ex1sts x € D such that ux is an edge of G.
But then there are both the edges u_x’ xu in G, which is a contradiction. The proof
for d*(G) is dual to the preceding.

Corollary 1. If a directed graph G contains a source (or a sink), thend*(G) =1
(or d~(G)=1, respectively).

Theorem 1. Let d,, d,, n be three positive integers such that d,=n/2, d,=n/2.
Then there exists a tournament T with n vertices such that d~(T) = dy, d*(T) = d,.

Proof. First suppose di=d,, di<n/2. Let U={uli=1,...,d;}, V=
{uli=1,...,ds}, W={wi|i=1, ..., n—=2d,—1} and Z={z} be pairwise disjoint
sets. (W is empty if n=2d,+1.) Put V(T)=UuVuUWuUZ and construct
a tournament T with the vertex set V(T). The edge set of T will contain the edges
u.u, fori<j, 175, for i<j, m for z-—],m for i >j, u.w, for all i and j, W,—J, for all i
and j, W_M"; fori<j, o fori=d,— 1,vz fori= =d,, uz foreach i i w for each i.

Now we shall prove that d*(T)=d,. Put D} = {w, v} for i=1, ..., d,— 1 and
Di, = {ua, v}V WUZ. Consider D} for fixed i=d,—1 and let x € V(T) - D;.
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Then x € Df for j#i. If j<i, then either x = and there exists the edge VX = v,u, ,
v, € D!, or x =v; and there ex1sts the <_=<_1’ge Ux = uv, , i€ D!. If j>i, then either
X =u; an and there exists the edge ux =i, w D} , or x=v; and there exists the
edge v,x viv,, vieDf,or xe WUZ and there exists the edge u,x, u; € D{. Now
consider D},. If x € V(T)— Dj,, then x € D} for j=d,— 1. Again either x = 4; and
there exists the edge m E:;, vy, € D3,, or x=v; and there exists the edge
— —>

UspX = Us,V;, Us € D7,. Hence @* ={d{, ..., D3,} is an outside-semidomatic parti-
tion of T. As the indegree of ug, is d,— 1, we have d*(T)=d,.

Now let D; =D; for i=1, ..., di—1 and D, = U D} . Consider Dy for fixed
j=d1

i=d,—1.Letxe V(T)—- D.‘, then x € D for j#i. If j <i, then either x = y; and
there exnsts the edge xu; —~u,u,, u; € Dy, or x=v, and there exists the edge
—> —> —_
xv; = v,v, , vie Dy, If j>1i, then either x = y; and there exists the edge xv; =y,
vie D;, or x=1; and there exists the edge xu, v,u., u; e D;, or xe WUZ and
there exists the edge xv,, v;€ D7. Now consider Dj,. If xe V(T)— Dg, then
xeDj for j=d;—1. Again either x=u; and there exists the edge ;Z,,l-u,u,,l,
us, € D3, or x=v; and there exists the edge xv.,l— v,v,,l, v4, € Dg,. Hence 9~
{D1, ..., Dg,} is an inside-semidomatic partition of T and, as the outdegree of z is
di—1, we have d~(T)=d,. We have proved the assertion for the case d;=d,.

If d,>d,, d,<n/2, we construct a tournament T such that d~(T) = d,, d*(T)=
d,. By reversing the orientation of all edges of T we obtain the required
tournament T. :

If dy=d,=n/2, we take W=Z=¢. Then we may put D =D; = {u;, v;} for
i=1,...,,n/2; these sets form a partition of V(T) which is simultaneously
inside-semidomatic and outside-semidomatic, hence d*(T)Zn/2, d~(T)=n/2.
From Proposition 4 we obtain the equalities.

The following theorem is an analogon of a theorem in [2] concerning the domatic
number.

Theorem 2. Let G be a directed graph. Then the following two assertions are
equivalent: '
(i) G contains a factor G, which is bipartite and has no sink.

(i) d~(G)=2.

Proof. Suppose that G contains the described factor G. It is a bipartite graph,
hence there exists a partition { D:, D,} of V(G,) = V(G) such that each edge of G,
joins two vertices of distinct classes of this partition. As G, has no sink, each vertex
of D, = V(G) — D is an initial vertex of an edge of G, and the terminal edge of this
edge is in D ; hence D, is inside-semidominating in G, and analogously so is D,.
Thus {D:, D;} is an 1ns1de-sermdomat1c partition of G, and also of G. and
d-(G)=2.

Now suppose that d~(G)=2. Then there exists an inside-semidomatic partmon
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{D:, D} of G. By G, we denote the factor of G whose edge set is the set of edges
of G joining vertices of D, with vertices of D;; this is a bipartite graph. Suppose
that G, has a sink u ; without loss of generality let u € D,. Then there exists no edge
from u to a vertex of D, and D; is not inside-semidominating, which is
a contradiction.

Theorem 2'. Let G be a directed graph. Then the following two assertions are
equivalent : _
(i') G contains a factor G, which is bipartite and contains no source.
(ii') d*(G)=2.

This theorem is dual to Theorem 2.

Corollary 2. If every cycle of a directed graph G has an odd length, then
d (G)=d*(G)=1.

A question may be asked, whether d*(G)Z2 and d*(G)=2 imply d(G)=2.
We shall show that this is not true. Let V(Q ={uy, U, Us, Us, us} and let the

edges of G be usily, Uslis, Uslis, Uslls, Uslis, Usl;. The reader may verify himself
that d°(G)=d*(G)=2 and d(G)=1.
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TMONIYOAOMATHNUYECKUE YUCIIA OPUEHTHUPOBAHHBIX I'PA®OB
Bohdan Zelinka
Pe3iome

IMopmuoxectBo D MHoxecTBa V(G) BepuMH OpHeHTHPOBaHHOTO rpaga G Ha3LIBAeTCs BHYTPEHHE
[OTyJOMUHAHTHBIM (WIN BHEIIHE JOMMHAHTHBIM), €C/IH U1 BcAkoi BepumHsl x € V(G)— D cymec-
TByeT BepmmHa y € D Takas, 4ro pgyra xj" (wm y;, COOTBETCTBEHHO) mpHHamIexur rpady G.
MakcumanbHoe 4YMCiIo KiraccoB pa3bmenus MHoxectBa V(G), Bce KiIacchl KOTOPOTO ABJSHOTCS
BHYTPEHHE MOJYAOMMHAHTHBIMM (WIH BHEIIHE AOMMHAaHTHBIMHM) MHOXecTBaMH B G, Ha3bIBaeTcs
BHYTpPEHHE IOJIyloMaTHYeCKUM (WIH BHELIHe MONyAOMaTHIeCKNM) YncioM rpada G u o6o3navaeTcs
gepe3 d~(G) (wm d*(G) coorsercrBenno), Mccnenyiores coiictsa uucen d (G) u d*(G).
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