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THE FIRST KIND PERIODIC SOLUTI/ NS
OF DIFFERENTIAL EQUATIONS |
OF THE SECOND ORDER

IRENA RACHUNKOVA

The purpose of this paper is to prove some existence and uniqueness theo-
rems for the problem

.1 u" =f(t u,u’)
0.2) ub) —u(a) =4, u'(b) —u’(a) = B,

where a, b, A, Be(— o0, +00), a < b. The problems of such type have been
already solved in many works, for example [1—11], [13]. Here, the problem
(0.1), (0.2) is solved by means of lower and upper functions and there is used the
method of [12]. This approach enables us to find the conditions for the existence
of the first kind periodic solutions of (0.1).

1. Notations and definitions

R=(—o, +),R, =[0, +0), T=b — a,c, =max{l,|4/T|}; a.e. = almost
every, p;, ¢;€[l, +o), I/p;+ 1/g;=1,i=1, ..., n; AC'(a, b) is the set of all
absolutely continuous functions with their first derivatives on [a, b];

Car, (D) is the set of all real functions satisfying the local Carathéodory
conditions on D.

Definition. 4 function ue AC'(a, b) which fulfils (0.1) for a.e. te[a, b] will be
called a solution of the equation (0.1) on [a, b). Each solution of (0.1) on [a, b]
satisfying (0.2) will be called a solution of the problem (0.1), (0.2). Each solution
of (0.1) on R will be called the first kind T-periodic solution (resp. T-periodic
solution) of (0.1) if u’ (resp. u) is a T-periodic function.

Definition. 4 function o,€ AC'(a, b) will be called a lower function of the
problem (0.1), (0.2) if

(1.1) oi(1) 2 f(t, 0y, o)) for ae. te(a, b),
(1.2) 0,(b) — oy(@) = 4, oi(b) — gi(a) = B.
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A function o,e AC'(a, b) will be called an upper function of the problem (0.1), (0.2)
if

(1.3) oH() St 0, 09 for ae. te(a, b),

(1.4 0y(b) — 0y(a) = A, o3(b) — 03(a) 2 B.

Throughout the whole paper we suppose that f:’*— B is a T-periodic
function in its first argument and the restriction of f on [a, b] x &* belongs to
Car,. ([a, b] x B?). We denote r; = max{|c’(t)| + |6¥(N):a <t < b}, i=0, 1,
and say that some condition is satisfied on S(a, b) if it is satisfied for a.e. te (a, b)
and for every xe[o,(t), ox(9)}, |yl = ¢;.

2. The main results

The following two theorems deal with the property (E):

1. The problem (0.1), (0.2) has at least one solution.
(E) 2. If A = B = 0, then there exists at least one T-periodic solution of (0.1).
3. If A # 0, B=0and fis |A|-periodic in its second argument, then there
exists at least one first kind T-periodic solution of (0.1).

Theorem 1. Let o, be a lower function and o, an upper function of the problem
(0.1), (0.2) and o,(1) < oy(t) for a < t < b. Let on the set S(a, b) the inequality

@.1) £ (2, x, )| < o(p) i g0 h) A+ )"

be satisfied, where g€ L"(a, b), h,e L*(—ry, 1)), i = 1, ..., n, and e C(R) is a
positive function such that

@.2) f+wﬂ=r°° & _ o
< (O(S) € w(_s)

Then (E) is satisfied.
Theorem 2. Let o0,, 0, satisfy the conditions of Theorem 1 and let on the set
S(a, b) the inequality

@.3) £t x, ) £ o1, [3)

be fulfilled, where we Cary ([a, b] x R.) is a non-negative function, non-decreas-
ing with respect to its second variable and

b
(2.4) lim sup 1 f o(t, o)dt < 1.

e— +x® Q
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Then (E) is satisfied.
Note. For the assertions 1, 2 of (E) we can use the following criterions:
1. Let go(9) = (Bt? + 24t — B(b + a)t)(2b — 2a)~". If there exists
re(0, + o0) such that f satisfies for a.e. t€(a, b) and each xe R

(2.5) (f(t, x + 80, g)—B/(b —a))sgnx 20 for|xj 27,

then o,(f) = g,(#) — r is a lower function and o,(f) = g,(¢) + r is an upper
function of (0.1), (0.2).
2. Let fbe continuous on [a, b] x &* and let there exist ce (0, + o) such that

%t—é—x;)i)— = con [a, b] x R Then (2.5) is satisfied for r = max {|f(¢, g, g¢) —
x

—B/(b—a)c':ast<b).
Theorem 3. Let there exist a non-negative function he L(a, b) such that for a.e.
te(a, b) and every (x, y)€ R* there is satisfied the inequality

(2.6) S, x, ) —f(t, x5, ) + h(Oly, — yol >0 for x, > x,.

Then the problem (0.1), (0.2) has not more than one solution.

3. Lemmas

Lemma 1. Let ke (0, + o0) and G: [a, b] x [a, b] = R be the Green function for the
problem

@3.1) v =k>.v

(3.2 - vb)—vl@ =0, v'®)—v@=0.

Then there exists c,€(0, + o0) such that the ineqdality

(3.3) LD 16w s forastsst
t

is fulfilled.

Proof. It is easy to show that the constant ¢, = 2 (k + 1) (e"" + 1)e*"/kD,
where m = max {|a|, |b|} and D = 2 (e** — e**). (e ~** — e ~*) satisfies the inequa-
lity (3.3).

Lemma 2. (Conti Theorem). Let there exist he L(a, b) such that

If(t, x, IS h(®)  for (t, x, y)ela, b] x B,
Then for any ke (0, + o0) the problem
3.4) ‘ u" =ku+f(t u,u),
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3.5) u@) —u@=A4,u'(b) —u'(a)=B
has a solution.

Proof. Put go(¢) = (Bt*+ 24t — B(b+a))(2b —2a)™" for a<t<b,
gt,x, ) =f(t, x + gy, y + 8¢) + k’go(t) — B(b — a)~" on [a, b] x 7* and con-
sider the differential equation

v" =k*+g(t, v, v).
Analogously as in the proof of Lemma 3 in [12], denote by # the Banach space
of all functions from C'(a, b) with a norm
Izl = max{|z()] + |z’ (D)): a < t £ b} for ze C'(a, b)
and consider the operator H: B — B defined by

b
H(z(t)) = J G(t, s)g(s, z(s), z'(s)) ds fora<t<b,

where G is the Green function of the problem (3.1), (3.2). By the Schauder
fixed-point theorem, since H is continuous and maps 4 into its compact subset,
there exists ve 4 such that

v(t) = be(t, 5)g(s, v(s), v'(s))ds.

a

Therefore u = v + g, is a solution of (3.4), (3.5).
Lemma 3. (A priori estimate). Let re(0, + ), g;e L"(a, b) h,e L"(—r, 1),

i=1,...,n,and we C(R) be a positive function satisfying (2.2). Then there exists
r*e(c,, +o0) such that for any function ue AC'(a, b) the conditions

(3.6) u) —u@=4, |Ju@lsr forastsb

and

3.7) " (@) S @@’ (1) Y g0 hu@) (1 + |u' 0D

for ae. te(a, b), u' () 2 ¢,
imply the estimate

3.8) lu’ ()] = r* forast=<b.

Proof. Lemma 3 can be proved in the same way as Lemma 4 in [12].

Lemma 4 (A priori estimate). Let re (0, + ) and owe Car,.([a, b) x R,)
satisfy the conditions of Theorem 2. Then there exists r* € (c,, + 00) such that for
any function ue AC'(a, b) the conditions (3.6) and

(3.9 " (D] = ow(t, |u’ (1))
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for a.e. te(a, b), where |u’(¢)| = ¢,,
imply the estimate (3.8).

Proof. Let ue AC'(a, b) satisfy (3.6) and (3.9). From (3.6) it follows that
there exists a,e(a, b) such that u’(a,) = A/(b — a). Let o* = max{lu’(?)|:
a <t < b} and t*€[a, b] be such that [u’(¢*)| = 0*. If o* > c,, then there exists
tye(a, t*) (or t,e(t*, a;)) such that

[’ () = ¢y, [u' (D] > ¢ fort, <t<t*(ort*<t<ty).

Integrating (3.9) from ¢, to ¢* (or from t* to 1), we get

b
(3.10) o*<Z ¢ + J w(t, o*)dt.

a

Since (2.4), there exists r*e(c,, + o0) such that for any ¢ > r* the inequality

@3.11) 1> o+ (1/0) j o(t, Q) dt

holds. By (3.10), (3.11), we have o* < r*.

Lemma 5 (On the solvability of the problem (0.1), (0.2)). Let o, be a lower
function and o, an upper function of the problem (0.1), (0.2) and o,(t) £ o,(t) for
a <t £ b. Further, let on the set S(a, b) the inequality

Lf (2, x, p)l = g(1)

be valid, where ge L(a, b).
Then the problem (0.1), (0.2) has a solution u satisfying the condition

(3.12) oM Zu(t)<o(t) forast=<h.

Proof. Similarly as in the proof of Lemma 8 in [12], we put
wi(t, x, y) = (=1Ym(x — o) [f(t, 0;, 0)) = f(t, 0, p) + (= D)ry/m], i=1,2
and

f(t, o, o7) — ry/m forx < o,(t) — 1/m

f@, o, y)+wl(t, x,p) for 0,(1) — 1/m < x < 6,(1)
Jut, X, ¥) =< f(t, x, ) for 0y(f) = x = 6y(0)

f(t, 05, p) + wy(t, x, p) for oy(H) < x < o5() + 1/m

f(@t, 0,, 03) + ry/m for x 2 o,(t) + 1/m,

where (¢, x, y)€[a, b] x &* and m is a natural number.
Then, by Lemma 2, the problem

u" =A/mu+f,(@t u u’),
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u) —u@=A4, u'(b)—u'(a) =B
has a solution. First, let us prove that
(3.13) o(t) —1/mZu,(t) £ o(t) + 1/m forag<t=<b.
Put v(¢) = (— 1) (u,,(t) — 0,(2)) — 1/m for a< t < b, ie{l, 2}. Then, by (1.2),
(1.4),
(3.14) v(h) —v(@ =0, v'(b)—v'(@) Z0.
Let v(¢) > 0 for te I < [a, b]. Then, in view of (1.1), (1.3),
(3.15) v"() = (=D (uy () — o)) = ro/m + (—1)'u,/m= 1/m* for tel.
From this it follows according to (3.14) that there exists t,€ (a, b) such that
(3.16) v(ty) =0.

Now, suppose that (3.13) does not hold on [¢,, 4], i.e. that for certain ie{l, 2}
and t*e(¢,, b)

v(t*) > 0.

Let (e, f) < (t,, b) be the maximal interval containing ¢* in which v(¢) > 0. Then
v(@) =0, v’(@) = 0 and, by (3.15), v"(£) = m~? for a £ t £ B. Therefore B=b
and v(b) > 0, v’(b) > 0. Since (3.14), v(a) > 0, v'(a) > 0. Let (a, a,) < (a, t,) be
the maximal interval in which v(¢) > 0. Analogously as above we can prove
a, = t,, whence v(t;) > 0, which contradicts (3.16). Consequently

3.17) v() 20 for ty <t < b, and by (3.14), v(a) £ 0.

Supposing that (3.13) does not hold on [a, ¢}, we obtain a contradiction similar
to (3.16). Hence u,, satisfies (3.13) on [a, b].

Finally, since the sequences (u,,) and (u,,)?° are uniformly bounded and equi-
continuous on [a, b], by the Arzela-Ascoli lemma we can suppose without loss
of generality that they are uniformly converging on [a, b]. Consequently the
function u(f) = lim u,,(¢) for a < ¢t < b is a solution of the problem (0.1), (0.2)

and satisfies the condition (3.12).

4. Proofs of Theorems

Proof of Theorem 1. Let r* be the constant constructed by Lemma 3
forr=ry.Putgo=r*+ry+r,
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1 for0 =5 < g,

2000, 8) =<2 —s/g, for g <s<2g
0 forsz2go_

@.1) J(t, x, p) = 2@, X + YD f(t, x, »)  for (1, x, p)ela, b] x A
and consider the equation
4.2) u" = f(t, u u).

Since max {|o; ()| + |o/(): a = t S b} < 0y, i =1, 2, 7, is a lower function and
o, an upper function of the problem (4.2), (0.2). Moreover |f(t, x, y)| < g(¢) for
(t, x, y)ela, b] x R?, where g(?) = sup{|f(t, x, y)|:|x| + |y < 20} € L(a, b).
Therefore, by Lemma 5, the problem (4.2), (0.2) has a solution u satisfying
(3.12). Clearly u fulfils (3.6) for r = ryand (3.7) and so, by Lemma 3, the estimate
(3.8) is valid. Therefore

4.3) lu(®)] + [u’ ()] £ 0, foragt<h.

In view of (4.1), (4.2) and (4.3), u is a solution of the problem (0.1), (0.2).
Now, let A = B =0 and u*: R — [’ be the T-periodic extension of u. Then u* is
a T-periodic solution of (0.1).

Finally, let 4 # 0, B=0 and f be |A|-periodic in its second argument. Let
u*: R — R be defined by u,(f) = u(t) + nA for te[a+ n(b — a), b + n(b — a)),
n=0, +1, +2, .... Then uy is a T-periodic function and u, satisfies (0.1) for
a.e. t€ R. Therefore u, is the first kind T-periodic solution of (0.1) and we have
proved Theorem 1.

Theorem 2 can be proved analogously as Theorem 1 only instead of
Lemma 3 we use Lemma 4.

Proof of Theorem 3. Let us assume that the problem (0.1), (0.2) has
two solutions u,, u,. Put v = u; — u, on [a, b]. Then

4.4 v(a) =v(b), v'(a) =v'(b).
Let us suppose that v(a) # 0. Without loss of generality we may consider that
4.5) v(a) > 0.

Since (4.4), there exists z,e(a, b) such that v'(¢,)) = 0. Now, let v(¢) > 0 for
ast=s b. Then, by (2.6), v"(f) + h(t)v’(1) >0 for a.e. te(a, b), where
h = hsgnv’. Therefore the inequality

“6) (exp (J R (s) ds) u'(:))' >0
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is satisfied for a.e. 1€ (a, b). Integrating (4.6) from a to ¢, and from ¢, to b, we
get v’(a) <0 and v’(b) > 0, which contradicts (4.4). Therefore there exists
t,€(a, b) such that

4.7 () =0.

In view of (4.4), (4.5), (4.7), there exist a,, b, e(a, b) such that v(r) > 0 for te
€la, a)) u (b,, b] and v(a;) = v(b,) = 0. Then (4.6) holds on [a, a,) U (b,, b] and
integrating it from a to a, and from b, to b, we get (as above) the contradiction
to (4.4). Hence

(4.8) v(a) =v(b)=0.

Let there exists 7€ (a, b) such that v(7) > 0 and let (a, f) < (a, b)be the maximal
interval containing ¢ in which v(f) > 0. Then, by (4.8), v’(a) = 0, v’(f) < 0.
Moreover (4.6) holds on (a, f). Integrating (4.6) from a to f, we get
0= v'(f) — v’(a) > 0. This contradiction proves Theorem 4.
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O MEPUOAMNYECKUX PEHMIEHUAX TEPBOIO POJA
AUOPEPEHUUAJILHBIX YPABHEHWI BTOPOI'O MNMOPAIKA

Irena Rachinkova
Pe3iomMme

B cTaTthe /10Ka3aHbl IOCTATOYHBIC YCJIOBHS 1Sl CYLIECTBOBAHHA W €IMHCTBEHHOCTH pElLECHUS
3a/1auu
u” =f(t,u, u’), u(by —u(a) = A, u’'(by —u’(a) = B, a, b, A, Be(— 0, ©),a<b.

B cnydac 4 # 0, B = 0 noka3aHbl YCJIOBUS JUIS CYLUECTBOBAHUS PELLCHHA U YPABHEHUS u” =
= f(1, u, u’) Takoro, 4To 1’ nepuoanyeckas GpyHkuus.
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