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Math. Siovaca 28, 1978, No. 4, 389—406

ON COMPLETE LATTICE ORDERED GROUPS
WITH TWO GENERATORS 1

MARIA JAKUBIKOVA

A. W. Hales [8] proved that there does not exist any free complete Boolean
algebra with an infinite set of free generators. The main step in the proof is the
following assertion:

(H) For each cardinal a there exists a complete Boolean algebra B, such that B,
is generated by a countable subset and card B, Za.

By using the assertion (H) it was proved in [12] that there does not exist any free
complete lattice ordered group with an infinite set of free generators. An analogous
result for complete vector lattices was established in [13].

The notion of a free complete lattice ordered group can be modified in such
a way that instead of the class €, of all complete lattice ordered groups we consider
a nonempty subclass € of €;.

The definition of a free complete vector lattice used in [13] is not a precise
analogy of the definition of a free complete lattice ordered group as used in [12]
(though by translating both these definitions into the language of complete
Boolean algebras we obtain equivalent notions). Thus in the case of complete
lattice ordered groups and in the case of complete vector lattices we can consider
two types of free structures ; in the sequel we shall distinguish a-free generators and
b-free generators (for definitions, cf. § 1 below).

In this paper there will be investigated complete lattice ordered groups with two
generators. The existence of an a-free (or a b-free, respectively) complete lattice
ordered group with two a-free (or b-free) generators in some classes of complete
lattice ordered groups will be examined (without using the above mentioned result
of Hales).

§ 1. Conditions (a) and (b)

For the basic notions and denotations concerning lattice ordered groups cf.
Birkhoff [2], Fuchs [7] and Conrad [3]. The group operation will be denoted
additively.
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In this section the notions of a-free generators and b-free generators of
a complete lattice ordered group will be introduced. We begin by recalling the
definition of a free lattice ordered group. (Free lattice ordered groups and free
abelian lattice ordered groups have been investigated in several papers; cf. e.g.,
Conrad [5] and Weinberg [20].)

Let G be a lattice ordered group, @+ M c G. If H = G for each /-subgroup H of
G with M c H, then G is said to be generated by the set M. The set M is called
a set of free generators of the lattice ordered group G if G is generated by M and if
the following condition is fulfilled:

(a) For each lattice ordered group K and for each mapping ¢ of the set M into K
there exists a homomorphism ¢, of G into K such that ¢(m)=@,(m) for each
meM.

Then G is said to be a free lattice ordered group with a free generators, where
a =card M.

It is easy to verify that the condition (a) is equivalent with the following
condition:

(b) For each lattice ordered group K and for each mapping ¢ of the set M into K
having the property that K is generated by @ (M) there exists a homomorphism ¢,
of G onto K such that ¢(m)=@,(m) for each meM.

Now let us consider analogous notions for complete lattice ordered groups.
A lattice ordered group G is called complete if each nonempty upper-bounded
subset of G possesses the least upper bound in G ; if this is the case, then also each
nonempty lower-bounded subset of G possesses the greatest lower bound in G.

Let H be an /-subgroup of a lattice ordered group G. Suppose that whenever
X c H and sup X = x, holds in G, then x, belongs to H. Under this assumption H is
said to be a closed /-subgroup of G. If this is the case, then the corresponding dual
condition is valid as well.

Let G be a complete lattice ordered group and let ## M = G. Assume that for
each closed /-subgroup H of G fulfilling the relation M = H we have H = G. Then
M is called a set of generators of the complete lattice ordered group G ; we also say
that the set M generates the complete lattice ordered group G.

A homomorphism f of a lattice ordered group G, into a lattice ordered group G,
is said to be complete, if it fulfils the following condition: whenever @ # X < G, and
sup X exists in G, then supf(x) exists in G, and

supf(X)=f(sup X).

If f is a complete homomorphism, then also the corresponding dual condition is
satisfied.

Let € be a class of complete lattice ordered groups, G € €, 9 # M = G. Consider
the following conditions for G:

(a,) For each K € 6 and for each mapping @ of the set M into K there exists

390



a complete homomorphism @, of G into K such that ¢(m)=@i(m) for each
meM.

(b,) For each K € ¢ and for each mapping ¢ of the set M into K having the
property that the set (M) generates the complete lattice ordered group K there
exists a complete homomorphism ¢, of G onto K such that ¢,(m) = @(m) for each
meM.

The conditions (a,) and (b,) are analogous to the conditions (a) and (b) with the
distinction that instead of the category of all lattice ordered groups with the usual
homomorphisms we now have the category whose objects are elements of € and
morphisms are complete homomorphisms.

If the set M generates the complete lattice ordered group G and if (a,) is valid,
then M is said to be a set of a-free generators of the complete lattice ordered group
G in the class €. If this is the case and card M = a, then G is called an a-free
complete lattice ordered group with a a-free generators in the class €. Analogous-
ly we define a b-free lattice ordered group with a b-free generators in € (with (a,)
replaced by (b,)).

Let us recall some further notions concerning lattice ordered groups.

For each subset X of a lattice ordered group G the polar X° in G is defined by

X°={geG:|g|Aa|x|=0 foreach x e X}

(cf. Sik [16]). If X = {x} is a one-element set, then we denote [x] = X**; the set [x]
is said to be the principal polar generated by the element x.

For the definitions and denotations concerning direct products of lattice ordered
groups cf., e.g., [14], § 2. If A is a direct factor of a lattice ordered group G and
g € G, then the component of g in A will be denoted by g(A). If G is a complete
lattice ordered group, then each polar in G is a direct factor of G ; namely, for each
X c G we have .

G=X°x X%,

If G is complete, g € G and x € G, then we write g[x] rather than g([x]).

A subset {x;};; of a lattice ordered group is called disjoint if x; =0 for each i e I
and x; Ax; = 0 for each pair of distinct elements i, j € I. The lattice ordered group G
is said to be orthogonally complete provided each nonempty disjoint subset of G
possesses the least upper bound in G.

An element O0=s of a lattice ordered group G is said to be singular if
xA(s—x)=0 for each xe G with 0=x=s. A lattice ordered group is called
singular if for each 0 <g € G there exists a singular element s € G with0<s =g.

We introduce the following denotations for classes of complete lattice ordered
groups:

%, — the class of all complete lattice ordered groups;

¥, — the class of all singular complete lattice ordered groups;
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€., — the class of all complete lattice ordered groups having no singular element

distinct from O;
%, — the class of all complete lattice ordered groups that are orthogonally

complete ;
©, — the class of all complete lattice ordered groups that are completely

distributive.

The following theorem is well-known (cf. {3]):

(T) For each complete lattice ordered group H there are uniquely determined
l-subgroups A, B of G such that

(a) H=A XB,

(b) Aeb,, Be%,.

Orthogonally complete lattice ordered groups and completely distributive lattice
ordered groups have been studied in several papers (cf., e.g , Bernau[1], Conrad
[6], Rotkovic [15], or Conrad [4], Weinberg [19], respectively).

In Part I some relations between the a-freeness and the b freeness will be
established and 1t will be shown that if € € {€,, €,, €,}, then there does not exist
any b-free complete lattice ordered group with two b-free generators in the class

€.
In Part II it will be proved that the following scheme is valid.

b

)

JoN
+ 9
|

-~

€.

€.NE,
€,N%E,
€.,n%€,
b.NE,NE,

4+ oo
+ + +

In this scheme we denote by + and by —, respectively, the fact that an a-free
lattice complete lattice ordered group with two a-free generators in the correspon-
ding class does exist or does not exist; the same denotation will be used for the
existence of b-free complete lattice ordered groups with two b-free generators.

In what follows the symbols N and N, denote the set of all positive integers or
.the set of all integers, respectively, with the natural linear order. Sometimes we
consider N, as a linearly ordered group (with respect to the addition).
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§ 2. Relations between the conditions (a,) and (b,)

In this paragraph the relations between the conditions (a,) and (b,) will be
examined; we shall also consider conditions analogous to (a;) and (b4,) for
complete Boolean algebras.

2.1. Lemma. Let € be a class of complete lattice ordered groups such that,
whenever H € € and H, is a closed I-subgroup of H, then H, belongs to €. Let
Ge €, 0+ M =G and suppose that the condition (b,) holds. Then the condition
(a,) is valid as well.

Proof. Let K and ¢ have the same meaning as in the condition (a;,) (cf. § 1). We
denote by H the intersection of all closed /-subgroups H, of K with ¢(M)< H..
Then H is a closed /-subgroup of K and the set (M) generates the complete
lattice ordered group H. According to the assumption the condition (b,) is valid,
hence there exists a complete homomorphism ¢, of G onto H such that
@:(m)=q@(m) for each m € M. Thus @, is a homomorphism of G into K ; it suffices
to verify that ¢, is a complete homomorphism of G into K.

Let §##+ X = G and suppose that sup X =x, holds in G. Since ¢, is a complete
homomorphism of G onto H, the relation

@1(x0) =sup @,(X)

is valid in H. Thus @.(x,) is an upper bound of the set ¢,(X) in K. Because K is
a complete lattice ordered group, there is y € K such that

y =sup@,(X)

1s valid in K. From the fact that H is a closed /-subgroup of K and from ¢,(X)cH
we obtain y € H and thus @,(x,) = y. Therefore ¢, is a complete homomorphism of
G into K.

2.2. Corollary. Let € be a class of complete lattice ordered groups fulfilling the
same assumption as in 2.1. Suppose that M is a set of b-free generators of
a complete lattice ordered group G in the class €. Then M is a set of a-free
generators of the complete lattice ordered group G in the class €.

2.3. Corollary. Let € be as in 2.1 and let « be a cardinal. Suppose that there does
not exist any a-free complete lattice ordered group with o a-free generators in the
class €. Then there does not exist any b-free complete lattice ordered group with o
b-free generators in the class €.

The following result has been proved in [12] (by using another terminology):

2.4. Theorem. Let a be an infinite cardinal. There does not exist any a-free
complete lattice ordered group with a a-free generators in the class €,.
From 2.4 and 2.3 we obtain:
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2.5. Corollary. Let a be an infinite cardinal. There does not exist any b-free
lattice ordered group with a b-free generators in the class €,.

We shall show below that the notion of the a-freeness and that of the B-freeness
in a class € need not coincide.

Now let us consider an analogous notions for complete Boolean algebras. The
notion of a closed subalgebra and the notion of a complete homomorphism of
a complete Boolean algebra are defined analogously as in the case of complete
lattice ordered groups.

Let G be a complete Boolean algebra, # # M = G. If for each closed subalgebra
H of G with M c H we have G = H, then M is said to be a set of generators of the
complete Boolean algebra G.

Let %, be the class of all complete Boolean algebras and let M c G € 8,. If
we replace in the condition (a,) the symbol € by %,, then we obtain the condition
(a,) for the Boolean algebra G. Analogously we get from (b,) the condition (b,) for
the Boolean algebra G. By using the conditions (a,) and (b.) we can define the
notion of an a-free (or b-free, respectively) complete Boolean algebra with a
a-free (or b-free) generators in the class %,.

The following consideration shows that the notions of a-freeness and b -freeness
in the class 94, are equivalent.

We have to verify that the conditions (a.) and (b,) are equivalent. Let G € %,,
@+ M c G. If (b,) holds, then by an analogous procedure to that in the proof of 2.1
we obtain that the condition (a,) is valid as well. Conversely, suppose that (a.)
holds. Let K and @ have the same meaning as in (b,). According to (a.) there exists
a complete homomorphism ¢, of G into K such that @,(m)=¢(m) for each
meM. Put ¢,(G)=H. Our assertion will be proved if we verify that H=K is
valid. Since @,(M) generates the complete Boolean algebra K, it suffices to prove
the following assertion:

(#*) Let G and K be complete Boolean algebras and let ¢, be a complete
homomorphism of G into K, ¢,(G)=H. Then H is a closed subalgebra of K.

Proof. For any XcK and Yc G we denote by supgX and supsY the
corresponding suprema in K or in G, respectively. Let @# X < H. Put Y = ¢7'(X).
Then we have

supgX =supg@:(Y)=supsY e H

and an analogous relation holds for the greatest lower bounds. Thus H is a closed
subalgebra of G.

The essential diference between complete lattice ordered groups and complete
Boolean algebras with respect to the conditions (a.), (b,) or (a>), (b2), respectively,
consists in the fact that the assertion analogous to () is not valid for complete
lattice ordered groups. The reason for this lies in the following: each complete
Boolean algebra can be considered as a structure with infinitary operations, while
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a complete lattice ordered group distinct from {0} is only a structure with partial
infinitary operations.

The following example shows that the assertion analogous to () does not hold in
general for complete lattice ordered groups.

Example 1. Let F be the set of all integer valued functions defined on the set N.
In the set F we consider the usual operation + ; the partial order in F is defined
componentwise. Then F is a complete lattice ordered group. Let F, be the set of all
bounded functions belonging to F and let ¢, be the identical mapping defined on
F,. Thus F, is a complete lattice ordered group and ¢, is a complete homo-
morphism of F, into F. We have ¢,(F,)=F, and F, fails to be a closed /-subgroup
of F.

§ 3. Remark on complete vector lattices

This paragraph contains some supplements and comments to the author’s paper
[13]. At first we recall some definitions concerning vector lattices.

A lattice ordered group H is said to be a vector lattice if H is a linear space over
the field of all reals such that Ak >0 holds for each positive real A and for each
O<heH. If, moreover, H is a complete lattice ordered group, then H is called
a complete vector lattice.

The following results are well known (cf. [3]):

If H is a vector lattice, then H does not contain any singular element distinct
from 0. Let H e %, (cf. the denotations introduced in § 1). Then we can define
a multiplication of elements of H with reals such that H turns out to be a complete
vector lattice.

Let X be a vector lattice and let ## Y = X. Assume that

(i) Y is a closed /-subgroup of the lattice ordered group X,

(ii) Ay e Y for each y € Y and for each real A.

Then Y is called a closed vector sublattice of X.

Let X be a complete vector lattice and let @# M c X. If Y =X holds for each
closed vector sublattice Y of X with M c Y, then M is said to be a set of generators
of the complete vector lattice X.

Let X, and X, be vector lattices and let f: X;— X, be a mapping such that

(i) f is a complete homomorphism of the lattice ordered group X, into the lattice
ordered group X,;

(ii) f(Ax) = Af(x) for each real A and each x € X. Then f is-said to be a complete
homomorphism of the vector lattice X, into the vector lattice X,.

Under these denotations we can replace in the conditions (a,) and (b,) the
notions concerning complete lattice ordered groups by analogous notions concer-
ning complete vector lattices. The corresponding conditions for a complete vector
lattice G will be denoted as conditions (as) and (bs). By means of (a;) and (bs) we
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can now define the notion of an a-free (or a b-free, respectively) complete vector
lattice in a nonempty class € of complete vector lattices.
By a method analogous to that used in § 2 we obtain.

3.1. Lemma. Let € be a class of complete vector lattices such that, whenever
He € and H, is a closed vector sublattice of H, then H, € 6. Let a be a cardinal.
Suppose that there does not exist any a-free complete vector lattice with a a-free
generators in 6. Then there does not exist any b-free complete vector lattice with a
b-free generators in 6.

The following result has been proved in [13] (Thm. 1) (under another
terminology):

3.2. Theorem. Let V', be the class of all complete vector lattices and let o be an
infinite cardinal. Then there does not exist any b-free complete vector lattice with
a b-free generators in the class V.

By using the method of the proof of this theorem 1n [13] we infer that the
following assertion is valid:

3.3. Theorem. Let V', be the class of all complete vector lattices and let a be an
infinite cardinal. Then there does not exist any a-free complete vector lattice with a
a-free generators in the class V.

Thm. 3.2 is an immediate consequence of Thm. 3.3 and Lemma 3.1. Let us
remark that in the proof of Thm. 1 in [13] the assertion (H) on complete Boolean
algebras (cf. the introduction) was used.

A vector lattice X is said to be orthogonally complete if the corresponding lattice
ordered group X is orthogonally complete. We need the following result on
orthogonal extensions (cf. [9]):

3.4. Lemma. Let X be a complete vector lattice. There exists a complete vector
lattice o(X) such that:

(i) X is a convex vector sublattice of 0(X);

(ii) for each element 0<y e€o(X) there exists a disjoint subset {x},c.,=X
having the property that y =\/x; holds in o(X);

el
(iii) o(X) is orthogonally complete.
The vector lattice o(X) is determined uniquely up to isomorphisms.
From 3.4 we obtain immediately:

3.5. Corollary. Assume that a set M generates a complete vector lattice X. Then
M generates the complete vector lattice o(X).

From 3.5 it follows that the conclusions of the proof of Thm. 1 in [13] remain
valid if in this proof we replace X, and X by 0(Xo) and by o(X). Thus we obtain
the following assertion:
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3.6. Theorem. Let ¥, be the class of all complete vector lattices that are
orthogonally complete. Let o be an infinite cardinal. Then there does not exist any
a-free complete vector lattice with o a-free generators in the class V.

§ 4. Complete lattice ordered groups with one generator

The natural question arises whether in each class € € {€6,, €., 6,, 6,, 6.} there
exists an a-free (or b-free, respectively) complete lattice ordered group with one
a-free (or b-free) generator.

Let G be a complete lattice ordered group and let @#x € G. Put

Gi={nx"+nx},

where n, and n, run over the set of integers. Then G, is the least /-subgroup of G
containing the element x. It is easy to verify that G, is a closed /-subgroup of G.
Hence the one-element set {x} generates the complete lattice ordered group G,. If
x is comparable with O, then either x*=0 or x~ =0, hence in this case G, is
isomorphic with N,. If x is incomparable with 0, then G, is isomorphic with N, X N,
(the corresponding isomorphism ¢ being defined by @(n,x* +n,x~) = (n,, —n,)).
From this we obtain the following assertion:

4.1. Lemma. Let € be a class of complete lattice ordered groups, H € €. Then
the following conditions are equivalent:

(a) H is an a-free complete lattice ordered group with one a-free generator in
the class €.

(b) His a b-free complete lattice ordered group with one b-free generator in the
class 6.

(c) H is isomorphic with Ny X N,.

Since Ny X Noe 6,n6,n%€,, from 4.1 it follows:

4.2. Corollary. Let € €{%,, €,, 6o, €.}, ce{a, b}. Then there exists a c-free
complete lattice ordered group with one c-free generator in the class €.

The class €, is closed with respect to isomorphisms and N, X N, ¢ €, ; hence
from 4.1 we obtain:

4.3. Corollary. Let c € {a, b}. There does not exist any c-free complete lattice
ordered group with one c-free generator in the class €,.

Let G be a lattice ordered group and let R be a congruence relation on G. For
x € G we denote by R(x) the set of all elements y € G with x =y (mod R). If the
natural homomorphism x — x(R) turns out to be a complete homomorphism of the
lattice ordered group G onto G/R, then R will be said to be a complete
congruence relation. For each set {R.}:.; of complete congruence relations on G
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their meet /AR, is also a complete congruence relation on G. If G is a complete
iel

lattice ordered group and if R is a complete congruence relation on G, then G/R is

a complete lattice ordered group.

4.4. Lemma. Let 6 be a class of complete lattice ordered groups that is closed
with respect to complete homomorphisms. Let a, 8 be cardinals, 0 <a <f and let
ce{a, b}. Assume that there exists a c-free complete lattice ordered group with 3
c-free generators in €. Then there exists a c-free complete lattice ordered group
with a c-free generators in 6.

Proof. According to the assumption there exist G € € and M < G such that M is
a set of c-free generators of the complete lattice ordered group G in € and
card M = f3. We can choose a subset M, =M such that

card M,=a if a is infinite,
card M,=a—1, if «a isfinite.

Let m, be a fixed element of the set M\M,. Further let {R,};., be the set of all
complete congruence relations on G fulfilling

m=m, (mod R;) foreach meM\M,.
We put

R=AR., G,=G/R,

M’ ={my(R)}u{m(R)}mem, -

Then M’ is a set of c-free generators of the complete lattice ordered group G, in €
and cardM' =a.

The class €, is closed with respect to complete homomorphisms. Hence from 4.3
and 4.4 it follows:

4.5. Corollary. Let ce {a, b} and let a =1 be a cardinal. There does not exist
any c-free complete lattice ordered group with o c-free generators in €,,.

If G is a lattice ordered group generated by a finite set, then clearly card G = R,.
If a one-element set generates a complete lattice ordered group H, then, as we
have seen above, we have either card H =1 or card H =R,. Suppose that a set M
with card M =2 generates a complete lattice ordered group G ; the following
example shows that the power of the set G can be greather than R,.

Example 2. Let R, be the additive group of all reals with the natural linear
order. Let x be a fixed irrational number and let G be the intersection of all closed
I-subgroups H; of R, such that {x, 1} = H;. Hence G is a closed /-subgroup of R,,
thus G is a complete lattice ordered group. Thus either G is cyclic or G = R,. In the
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first case there are 0<y € G, n,, n,€ N with n,y =1, n,y = x, which is impossible.
Thus G =R,. The set {x, 1} generates the complete lattice ordered group G.

This example also shows that if G is a complete lattice ordered group and
# + M <= G, then the following two conditions (i) and (ii) need not be equivalent :

(1) M generates the complete lattice ordered group G.

(ii) M generates the lattice ordered group G.

In fact, let us put M = {x, 1} (under the denotations as above). We have verified
that (i) holds. Put G, = {n,x + n,}, where n, and n, run over the set N,. Then G, is
an /-subgroup of G, G, # G and M c G,. Hence (ii) fails to be valid.

§ 5. Some auxiliary results

First let us investigate in more detail the lattice ordered group F from Example 1
in § 2.
Let f and g be elements of F such that

f(x)=1, g(x)=x foreach xeN.
For each n e N we denote by e, the element of F defined by
e.(n)=1, e,(m)=0 foreach meN\{n}.

S.1. Lemma. Let G, be an [-subgroup of F, f, g € G,. Then e, € G, for each
neN.

Proof. We proceed by induction with respect to n. We have
ei=02f-g)",
hence e; € G;. Let n € N and assume that the elements e, e, ..., e, belong to G,.

Denote

fi=f—(e.+e:+..+e,),
gr=g—(e,+2e,+...+ne,),
gn=g.—nf,.

Then

e"+1=(2fn —gn)+’
hence e, ., € G;.
If n, meN, n#m, then 0<e,, e, Ae,,=0. Hence from 5.1 it follows:

5.2. Corollary. Let G, be an l-subgroup of F, f, g € G,. Then there exists an
infinite disjoint subset of G,.

5.3. Lemma. The set {f, g} generates the complete lattice ordered group F.
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Proof. Let H be a closed /-subgroup of F and let f, g € H. Let h € F. Then the
relation
h=vh(n)e, (neN)

holds in F and hence it follows from 5.1 that # belongs to H. From this we infer
that H=F is valid.

5.4. Lemma. Let G be a complete lattice ordered group. Suppose that each
disjoint subset of G is finite. Then G is a direct product of a finite number of
linearly ordered groups.

This is a consequence of [7], Chap. I, Thm. 14.

5.5. Lemma. Let G be as in 5.4 and let ¢ be a congruence relation on G. Then
each disjoint subset of the lattice ordered group G/p is finite.

The proof follows from 5.4 by routine induction steps ; the details will therefore
be ommited.

5.6. Lemma. Let € be a class of complete lattice ordered groups, F € €. Let G be
an a-free complete lattice group with two a-free generators in 6. Then G contains
an infinite disjoint subset.

Proof. Suppose that f,, f.€ G, f,#f, and that f,, f, is a set of a-free generators
of G in the class €. Since F € €, there exists a complete homomorphism @, of G
into F such that

o:(f=f, @f)=g.

Denote H = ¢,(G). Then according to 5.2 there exists an infinite disjoint subset of
H. Moreover, there exists a congruence relation ¢ on G such that H is isomorphic
with G/p. From this and from 5.5 it follows that there exists an infinite disjoint
subset in G.

From 5.6 and 2.2 we obtain:

5.7. Corollary. Let € be a class of complete lattice ordered groups such that,
whenever H € € and H, is a closed [-subgroup of H, then H, € 6. Let Fe €. Let
G be a b-free complete lattice ordered group with two b-free generators in the
class €. Then G contains an infinite disjoint subset.

Now suppose that a set M # () generates a complete lattice ordered group G. Let
us introduce the following denotations. Put A,= M. Let a, be an ordinal having the
property that the set of all ordinals less than a; has the cardinality greater than the
power of G. Let a =a, be an ordinal and suppose that for each ordinal g with
B <a we have defined the set A in such a way that whenever 8,=8,<a, then*

ApcAncG.

Put Z, = |J A; and define A, as the set of all elements z € G fulfilling some of the

p<a
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following conditions:

(i) there exist elements z,, z,€Z, with z=2z,—z,;

(ii) there exists a subset X of Z, such that either z =sup X or z =inf X holds
in G.

Then we have A; c A, for each f <a. Thus there exists an ordinal a,<a, such
that

Aa0+1 =A“o'

Hence A, is a closed /-subgroup of G and M c A,, . Since the set M generates the
complete lattice ordered group G, we obtain A,,=G.

5.8. Lemma. Suppose that a set M # () generates a complete lattice ordered group
G and that G is an [-subgroup of a lattice ordered group G,. Let ¢ be a complete
homomorphism of G into G, such that ¢(m)=m for each me M. Then @ is an
identical mapping on G.

Proof. Let A, (0=a =a,) have the same meaning as above. We have to verify
that for each ordinal a with 0=a =a, the partial mapping

q)Aa: Aa—)Gl

is an identical mapping on the set A,. We proceed by transfinite induction with
respect to a. According to the assumption we have @(x)=x for each x € A,. Let
0<a=a, and suppose that for each f <a we have @(x)=x whenever x € Ag.
Thus @(x) = x for each x € Z,. Since @ is a complete homomorphism, we infer that
@(x)=x foreach x € A,. Now from G = A, it follows that ¢ is an identity on G.

The following lemma 5.9 and Corollary 5.10 show that an a-free complete lattice
ordered group with a a-free generators in a class € is defined uniquely up to
isomorphisms.

5.9. Lemma. Let € be a class of complete lattice ordered groups, G, G' € 6,
W+McG, 0M' =G'. Let ¢ be a complete homomorphism of G into G'.
Assume that the following conditions are fulfilled:

(a) M is a set of a-free generators of the complete lattice ordered group G;

(b) M’ is a set of a-free generators of the complete lattice ordered group G’;

(c) the partial mapping @m: M — G’ is a one-to-one mapping of M onto M’.
Then ¢ is an isomorphism of G onto G'.

Proof. From (b) and (c) we obtain that there exists a homomorphism ¢ of G’
into G such that for each me M and each m' e M’, from @(m)=m' it follows
y(m')=m. Put

xx)=vy(@x)), x(y)=eW())

for each x € G and each y € G'. Then x is a complete homomorphism of G into G
such that x(m)=m for each m € M. Similarly, x, is a complete homomorphism of

401



G' into G’ such that x,(m')=m’ for each m' e M'. From this and from 5.8 we
obtain that x is an identity on G and that y, is an identity on G’. From this it
follows that @ is an isomorphism of G onto G'.

5.10. Corollary. Let € be a class of complete lattice ordered groups, G, G' € €,
0+McG,0+M' cG'. Suppose that the conditions (a), (b) from 5.9 are fulfilled
and that card M = card M". Then there exists an isomorphism ¢ of G onto G’ such
that the partial mapping @u is a bijection of M onto M.

Proof. According to the assumption there exists a one-to-one mapping ¢ of M
onto M'. From (a) it follows that @ can be extended to a complete homomorphism
of G into G'. Hence according to 5.9, ¢ is an isomorphism of G onto G'.

Let us denote by (a’) the condition that we obtain from the condition (a) of
lemma 5.9 if we replace the expression ‘a-free generators’ by the expression
‘b-free generators’. Further let (b') have an analogous meaning with respect to the
condition (b) of 5.9.

5.11. Lemma. Let € be a class of complete lattice ordered groups such that,
whenever H € € and H, is a closed [-subgroup of H, then H, € €. Assume that the
conditions (a'), (b') are fulfilled and that the condition (c) from 5.9 holds. Then ¢
is an isomorphism of G onto G’.

Proof. The assertion follows from 2.2 and 5.9.

5.12. Corollary. Let € be as in 5.11. Let G, G’'€%6, 0+McG, 0+ M' =G/,
cardM =card M’. Assume that the conditions (a') and (b') are fulfilled. Then
there exists an isomorphism @ of G onto G’ such that the corresponding partial
mapping @, is a monomorphism of M onto M’.

The proof is analogous to that of 5.10 (with the distinction that instead of 5.9 we
now use 5.11).

A lattice ordered group G is called o-complete if each subset X of G with @ # X,
card X =R, possesses the least upper bound in G.

5.13.Lemma. Let G bé a o-complete lattice ordered group, f, g € G, f=0. Then

f=V.(¢nlg)).

This assertion is proved in [18] for o-complete vector lattices, but the proof
remains valid also for o-complete lattice ordered groups.

5.14. Lemma. Let G and G’ be complete lattice ordered groups and let ¢ be
a complete homomorphism of G into G'. Let f, g € G, f' =@(f), 9’ =@(g). Then
o(flah=f"lg’'l

Proof. The element f can be expressed as f =f; — f, with f,=0, f,=0. Then we
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have

o(fla]) = o(fil9] — ¢(fAg]).

From 5.13 we obtain

o(taD=w (V GirnlaD) =0 (lg)
and an analogous relation is valid for @(f2[g]). Hence

e(flaD =o'l - e()la'1=f'g'].

§ 6. The case of two b-free generators

In this paragraph it will be shown that if € € {6, 6., 6.}, then there does not
exist any b-free complete lattice ordered group with two b-free generators in €.

We need the following result on the orthogonal extension of a complete lattice
ordered group (analogous to Lemma 3.4); for the proof cf. [9], [11].

6.1. Lemma. Let G be a complete lattice ordered group. There exists a complete
lattice ordered group o(G) having the following properties :

(i) G is a convex l-subgroup of 0(G);

(ii) for each element y € o(G) with 0<y there exists a disjoint subset {x;}; . of
G such that y =\/x,; holds in o(G);

iel

(ili) G is orthogonally complete.

The lattice ordered group o(G) is determined uniquely up to isomorphisms.

Let us remark that from (ii) we obtain the assertion: for a complete lattice
ordered group G we have G =0(G) if and only if G is orthogonally complete.

The lattice ordered group G is said to be the orthogonal hull of G.

In view of (ii), we obtain:

6.2. Lemma. Let a set M# () generate a complete lattice ordered group G. Then
M generates the complete lattice ordered group o(G).

Let us consider the following conditions for a class € of complete lattice ordered
groups :

(@) If He € and H, is a closed /-subgroup of €, then H,€ €.

(b) If He € and H, is a convex /-subgroup of €, then H, € €.

(c) Fe€ (F being as in Ex. 1 of § 2).

(d) If He%, then o(H)e 6.

(e) The class € is closed with respect to complete homomorphisms.
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6.3. Lemma. Let 6 be a class of complete lattice ordered groups fulfilling the
conditions (b) and (c). Assume that a two-element set {g,, g.} is a set of a-free
generators of a complete lattice ordered group G in the class €. Then G is not
orthogonally complete.

Proof. Assume that G is orthogonally complete. Put

gsz,gllvlgzl,
K= [—ngs, ng].

neN
Then k is a convex /-subgroup of G, hence K € €. Obviously g,, g,€ K. Hence
there exists a complete homomorphism ¢ of G into K such that @(g:)=g:
(i=1, 2). Then ¢ is a complete homomorphism of G into G. Thus according to
5.8, @ is the identical mapping on G, whence G =K.
By 5.7 there exists in G an infinite disjoint subset {a;} (i € N), where a; >0 for
each i e N. Denote

b =g3[a‘-]

for each ieN. If b, =0 for some i €N, then [a]° is a closed [-subgroup of G
containing both g, and g,, and [a;]°# G (since a, ¢[a,]°); this is a contradiction.
Thus b, >0 for each i e I. The set {ib;} (i € N) is disjoint, hence there exists b € G
with

b=\ ib,.

ieN
For each n e N we have

bla,.]=(n+1)b,..=(n+1)g;[a...]>ng;la...],

therefore b£ng,. From this it follows b é€ K = G, which is a contradiction.

6.4. Corollary. Let € be a class of complete lattice ordered groups fulfilling the
conditions (), (b) and (c). If a two-element set is a set of b-free generators of
a complete lattice ordered group G in €, then G cannot be orthogonally complete.

This follows from 6.3 and 2.2.

6.5. Theorem. Let € be a class of complete lattice ordered groups fulfilling the
conditions (a), (b), (c) and (d). Then there does not exist any b-free lattice ordered
group with two b-free generators in the class €.

Proof. Assume (by way of contradiction) that a two element set {g,, g.} is a set
of b-free generators of a complete lattice ordered group G in the class €. Hence
according to 6.4 G is not orthogonally complete, thus G# o(G). By 6.2, the set
{91, g2} generates the complete lattice ordered group o(G). According to (d) we

404



have 0(G)e €. Hence there exists a complete homomorphism @ of G onto o(G)
such that @(g;) = g; for i =1, 2. In view of 5.8 we have arrived at a contradiction.

6.6. Corollary. There does not exist any b-free complete lattice ordered group
with two b-free generators in the class €,.
Since the class 6, and also the class €, fulfils the condition (a)—(d), we obtain:

6.7. Corollary. Let € € {6,, 6.}. Then there does not exist any b-free complete
lattice ordered group with two b-free generators in the class 6.
From 6.4, 4.4 and 2.2 it follows:

6.7. Corollary. Let € be a class of complete lattice ordered groups fulfilling the
conditions (a)—(e). Let a >1 be a cardinal. Then there does not exist any b-free
complete lattice ordered group with o b-free generators in €.
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O NMOJIHBIX CTPYKTYPHO YITOPAOOYEHHBIX I'PYIIIIAX
C IBYMS OBPA3YIOUIMIMU 1
Mapus SIky6ukoBa
Pesome
Iycts € — xyacc MONHBIX CTPYKTYPHO YNOPANOYEHHBIX rpynn. B 3Toif cTaThe BBENECHBI MOHATHA
ABYX THNOB CBOGOXHOH MOJHOM CTPYKTYPHO ynopsodeHHo#H rpymnel B kinacce €. HMccnenosano

CyLECTBOBaHHE CBOGOHON NMOJHOM CTPYKTYPHO YHOPSAOY€HHOM rpyNNbI € AByMs CBOGOIHBIMH 0Gpa3y-
IOLIMMH B HEKOTOPBIX KJIACCaxX MOJNHBIX CTPYKTYPHO YNOPSAOYEHHBIX IPYMII.
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