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Math. Slov., 26,1976, No. 4, 287—298 

ROT-QUASIGROUPS AS ISOTOPES 
OF ABELIAN GROUPS 

JAN DUPLAK 

A quasigroup Q(.) is called a rot-quasigroup if Q(.) satisfies the identity 

(I) x.xy = z(xz y) . 

In this paper we shall show that from the existence of a certain kind of Abehan 
groups (called tur groups) there follows the existence of rot-quasigroups, and 
conversely. Further we find out necessary and sufficient conditions under which an 
Abelian group is a tur group. Moreover, we find out sufficient conditions under 
which a periodic tur group is a direct sum of two isomorphic groups. 

In this paper we shall need the following properties of rot-quasigroups: Let 
Q(.) = Q(A) be a rot-quasigroup, L (Rx) a left (right) multiplication of (?(.), 
L2

X = SX, SxSy= VXmy9 and x, y, z, t arbitrary elements of (?(.). Then 
(2) xy. zt = xz. yt (the mediality law), 
(3) x.x = x (idempotency), 
(4) LXRX = RXLX (elasticity), 
(5) A l[x,y] = yxy, 
(6) Lx = \, 
(7) x.xy = yxy.y, 
(8) SxSySz = Su if and only if u = ~lA[xy, yzy]= lA[x.zyz, z ] , 
iy) bxbybz = bzbybx, 

(10) Lx, Rx are automorphisms of (?(.), 
(II) Sat = Sbt for some t if and only if a = b, 
(12) Sa=x if and only if a = x, 
(13) Va,b = 1 if and only if a = b. 

These properties of rot-quasigroups are proved by the author in [3]. 
Let G(.) and G(o) be quasigroups. An ordered triple (a, /?, y) of bijections 

a, /3, y of G onto G is called an isotopism of G(.) onto G(o), and G(.) is said to be 
isotopic to or an isotope of G(o), provided 

(14) x.y-y-^axofy) 

for all x, y in G. We shall write (14) also in the form (see [1]) 
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( . ) = ( „ ) < • ' • » . 

or 

( • ) = (o)T 

if t e tr p̂ w (a (3 /) i denoted by T. Every isotope of a quasigroup is 
a quasigroup. The otopy of quasigroups is clearly an equivalence relation, if 
T- (a9 a9 a)9 then an i otopism T of Q(A) upon Q(B) is an isomorphism and we 
wr4e 

Pa=B . 

An soiopi m (a /J, 1) of G(.) on*o G(o) is called a principal isotopism, and 
G( ) is called a principal isotope of G(.). The principal isotope G(o) of G(.)9 

d fi d n *ne fol o mto \ ay 

( ( ) = ( . ) ( ^ ' , L . - ! ) 

a t e identity element £ . a Thus every quasigroup is isotopic to a loop. 
L a (39 ) an ' otooism of G(.) on o G(o) and (a'9 j3'9 y') be an isotopism 

of G\o) on*o G( ), then (aa'9 (3(3', yy ) is an isotopism of G(.) onto G(*) (see [11). 

T eo e n 1. L t (?( ) be rot-quasigroup and e be an arbitrary element of Q. 
T1 n *he qua gro p Q(B) defined bv 

6 H = ( . ) ( i ? '1 'L") 

is distributive quasigro p. 
Pr of. Vr can wrie (16) /. tf e form 

*x9y] = Le(ReX.y)9 

B[x9yi = e(xe.y) 

an ac ording to (1), 

B[x9 y) = x.xy . 

V\ e s^e th t operation B is 'independent ot the element e. Next we prove that B is 
a 1 t-dx*t_.ibu ive operation Since Q( ) is distributive, then 

z rzOt. y))~z[zx.(zx.zy)], 

, a c w d i g to (17) 

£ [z , -B[*, y]] = (z. z*). (z. zr)(z . zy) 
B\z,B[*9y]] = B[B[z,x]9B[z,y]]> 

wr e i? is ~ t i';+ ib \ e ^per tior. Fir Hy wc prove the nght-distributivity of 
B Si ™ R ji^d Lx are utoirorrhisirs of Q( ), then 



RlLz(x.xy)RlLzx.(RlLzx)(R\Lzy) , 
[z(x.xy)z]z = (zxz. z). (zxz. z)(zyz. z), 

and by (7) 

(x.xy).(x.xy)z = (x.xz).(x.xz)(y.yz). 

According to (17), we get 

B[B[x,y],z] = B[x.xz,y.yz], 
B[B[x,y],z] = B[B[x,z],B[y,z]], 

whence B is also a right-distributive operation. This completes the proof. 
By Theorem 8.2 of [1] we have the following 

Corollary 1. If Q(B) is defined as in Theorem 1, then the quasigroups Q(~lB) 
and Q(B) (where ~lB is the left-division of B) are distributive quasigroups. 

Since an isotope of a transitive quasigroup is a transitive quasigroup, we have the 
following 

Corollary 2. Let B be defined as in Theorem 1. Then the quasigroups Q(B), 
Q(~lB) are transitive distributive quasigroups, i.e. Q(B) and Q(~1B) are idempo-
tent medial quasigroups. 

Lemma 1. Let Q(B) be the isotope of a rot-quasigroup Q(.) defined by (16). 
Then 

SxSaSy = Sa if and only if ~lB[x, y] = a . 

Proof. It follows from (8) that 5x5a5y = Sa if and only if ~lA[xa, aya] = a, i.e. 
a.aya = xa, (a.ay)a = xa, using the cancellation law we have a.ay = x and by 
(17), B[a,y] = x, whence ~lB[x, y] = a. 

Corollary. If Q(B) is an isotope of a rot-quasigroup Q(.), defined by (16), then 
Q(~lB) is a commutative quasigroup. 

This corollary directly follows from (9). 

Lemma 2. If a quasigroup Q(B) satisfies the conditions of Lemma 1, then 

5x5a5y = Sb if and only if lB[x, y] = ~lB[a, b] . 

Proof. First, suppose SxSaSy = Sb. If s = ~lB[x, y] and u = B[s, a], then by 
Lemma 1 we have 

Ox&sOy = >JS , iJaiJj-Ju = I3J. . 

Hence 

•JjClJ l̂by = tJalJS0U . 
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Since S2
X = 1 for all x, then 

i3 —- 3v-3a-3x-3 .3y , 

and according to (9) we have Su = SxSaSy. Since Sb = SxSaSy, then Su = Sh, and by 
(11) we get u = b. Conversely, suppose xB[x, y]= xB[a, b]. If xB[x, y] = s, 

then by Lemma 1, 

SxSSy = Ss and SaSsSb = Ss. 

Hence 

.3^i3 «3y — .3 .3 «3ft, Ob — O k3ak3ri39i3y, Ob
 = \JstJsiDxiJaOy , 

whence Sb = SxSaSy. This completes the proof. 
Let L* be a left multiplication of Q( lB) (B is defined as in Theorem 1). The 

isotope ( lB)(1 UL*] of XB will be denoted by ( + ), i.e. 

(18) ( + ) = ( W ' 1 L*] 

Hence 

(19) x+v =L* x ( xB[x,y]) . 

Replacing a by e in Lemma 2, we get b = L* x ( xB[x, y]), and by (19) we have 
b =x + y. Thus 

(20) SxSeSy = Sx+y 

Theorem 2. If a quasigroup Q(B) satisfies the conditions of Theorem 1 and ( + ) 
is defined by (18), then 0 ( + ) is an Abelian group with the zero e. 

Proof. First we prove the identity 

(21) ( + ) = B(1,LVK,./I-) 

where Le, Rt are a left and a right multiplication of Q(B), respectively. It i 
obvious that if 

t=Re
 x(B[x,Le

xRey]), Rey~u, Le
xu = r and B[x,r] = s, 

then t= Re
 xs. From these equations we have 

xB[u, e] = ) , lB[u, r] = e, lB[s, r] = x, xB[s, e] = t . 

Since Q( XB) is a medial qi asigroup, 

xB[xB[r,u] B\s ]]= ]B[xB[r,s], xB[u,e]] 

and according to th above ti n we g t xB[e,t]- xB[x,y], whence 
1 -L* x( xB[x,y] , i ly ) / y Thus 
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x + y = Re
l(B[x, I-^i/iy]) = B[X, y]<i.L; .«/«,) 

Since B[x9 e] = x.xe = exe.e, then 

B[x, e] = exz e,B[e,x] = e.ex ^ 
Rex = Le$ix, Lj-'SeX s 

whence 

(22) Re = L^l, Le = Ll. 

The equations (21) and (16) imply 

( +)-(.)(*„ VL^aLvR^) 

and by (22), 

( + ) = ( )(R„ 1, Lr'Xi, L2-R2, _R2)I= (.)(/?„ LlRl, Rl) 

Since Re is an automorphism of (?(.), 

( ) = ( x(R72, R7\ R72) 

Therefore 

/ \ (R„ LlRl R2) = ( \(Rr2, Rr2, Rr2)(Re, L71R2, R2) 

= (.)(R<~\ R72L7lRl R72R2) = ( )(Rr>, L71, 1) 

Thus 

(23) ( + ) = ( . ) ( / ? ' , ' L ' , ' 1 ) 

i.e. Q( + ) is a principal isotope of Q(.). By Corollary 1 of Theorem 2 of [1], Q( + ) 
is a group, and by Theorems 1.2 and 2.9 of [1], e is the zero of (?( + ). From (20) 
and (9) it directly follows that (?( + ) is an Abelian group. 

Lemma 3. Let 0 ( . ) , B, ( + ) be the same as in Theorem 2. Then the 
multiplications Le, Re of Q(.) are automorphisms of Q(B), Q(~XB) and Q( + ) . 

Proof. Since Le is an automorphism of Q(.) and ReLe = LeRe9 

QLf _ g(Le,Le,Le) __ / \(R-, 1, L71)(LeLe, Le) = 

= ( ) ( „ , „ , L*)(R«, i, Lr1)- (.)(*-, 1, L^1)— _? . 

This proves that Le is an automorphism of Q(B). Next we prove that Le is an 
automorphism of 0 ( + ). By (23) we have 

( + )Le = (.)(R<\ L7\ \)L*~ ( . )MR< \ 1""1' 1>= 

= ( \MR , \ L7\ 1) _ ( )(*,\ Lr1, i ) = ( + ) . 

Similarly we prove additional assertions. 
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Theorem 3. Let G be the group of all maps Vatb = SaSb of a rot-quasigroup Q(.) 
(see [3]). If (-h) is the isotope of a rot-quasigroup Q(.) defined by (23), then the 
group Q( + ) is isomorphic to the group G. 

Proof. Let ip be the map (?—>G, x\-+ VetX. By (20) we have ^px^py= V€tXV€ty = 
SeSxSeSy = SeSx+y = V€tX+y = ty(x + y), whence t/t is a homomorphism. If VetX = Vety, 
then Sx = Sy and by (11), x = y. Hence */> is an injective map. Let VUtV in G be an 
arbitrary element. By (8), there exists an x in Q such that Sx = SeSuSv, i.e. 
SeSx = SuSv, whence V€tX= VUtV, ipx= VUtV, and so tp is a surjective map. 

Theorem 4. Let the operations B, ( + ) satisfy the conditions of Theorem 2. If 
-y is the element inverse to y with respect to ( + ), then B[x, y] = x + x — y = 
2x-y. 

Proof. First we prove that a left multiplication L* of Q(~lB) is an automorph­
ism of Q( + ) . Since L* = R*e, L*x = lB[x, e], i.e. B[L*x, e] = x, then ReL*x = x, 
and by (22), 

(24) L* = R-e
2L~e

l . 

Since Le, Re are automorphisms of Q( + ) , L* is an automorphism of Q( + ) . If 
x = y in (21), then (L*yi x = x + x = 2x and thus the map 

L*:Q( + )->Q( + ) , * - > | 

is an automorphism of Q( + ) . Since L*(z + y) = ~1B[x, y], 

(25) -iB[z,y]=^. 

If ~lB[z, y] = x (i.e. z = B[x, y]), then from (25) we have 2x = B[x, y] + y, v> hence 

(26) B[x,y] = 2x-y . 

this completes the proof. 

Theorem 5. Let Q(.) be a quasigroup and Q( + ) be the group defined by (23) 
(or by (18)). Then 

(27) x.y = x + L~lx + Ley 

for all x, y in Q. 
Proof. If the operationB is defined by (16), t henx . y = Le

1(B[Re
lx, y]). Using 

(26), we have 

x.y = L-\2RSx-y) = L-SR-\2x)-L->y . 

Since lB[e, B[y, e]] = y for all y in Q, 

(28) ~lB[e,y.ye] = y . 

292 



The operation B is independent of the element e, therefore 

fl = ( > ) ( R . . l . .€..') = ( . ) ( * . l . -V'> 

for all y in Q. Since Le is an automorphism of Q(~lB) and Q(B), then Ly is also an 
automorphism of Q(~lB) and Q(B). According to (28), 

Ly(~
xB[e,y.ye]) = Lyy, 'xB[Lye,L\e] = y , 

~xB[ye,Ly
xe] = y . 

By (5), we have L~1e = A~1[y, e] = y, e] = eye, therefore 

~xB[ye, eye] = y, L~x(-xB[ye, eye]) = Lr1y = L*-1(~1B[y,y]) . 

According to (19), ye + eye = y + y. If y = R~xx, then x +Lex = R~xx +Re
xx, 

Le
xx + x = L~e

x(2R-xx) = L~xR~x(2x). Thus x.y = x + L~xx + Ley. This completes 
the proof. 

If Le is a multiplication of a rot-quasigroup (?(.), then by (22) and (26), 
L:Lr = L<J: = B[e, x] = e + e - x = - x. Thus we have the following important prop­
erty of an automorphism Le of the group Q( + ) : 

(29) L2
ex=-x 

for all x in Q. If x-f x = ^ in (?( + ), i.e. V?.*=l, then by (8), K_ lA(r_, l JC = 1 
and by (13), ~lA[e . exe, e] = x, i.e. xe = e . exe, whence x = e. This proves the 
following property of the group Q( + ) : 

x = e if and only if x + x = e , 

where e is the zero of (?( + ). Since x + Le
xx = Le

xR~x(2x) and L*_1.r = 2x, then 
x + L-e

xx = L-xR-xL*e-
xx = Rex. Consequently, x + L~xx is an automorphism of 

Q( + ). 
Now we shall describe necessary and sufficient conditions under which an 

Abelian group is isotopic to a rot-quasigroup. Therefore we give the following 

Definition 1. Let H( +) be an Abelian group with the following properties 
(I) there exists an automorphism q? of H( +) such that qp2x = - x for all x in H, 

(II) H( + ) has no element of the order 2, 
(III) the map g: H-*H, .*»->.* + q?~xx is a surjective map, provided that q? has the 

property (I) of the definition. 
Then H( + ) is said to be a tur group and q? is a tur automorphism of H( + ) . 

We may easily verify that the conditions of the definition are independent. 
By the above-presented discussion, the principal isotope (.)(R7l>L7^ ^ of a 

rot-quasigroup Q(.) is a tur group. The following theorem shows that any tur group 
is isotopic to a rot-quasigroup. 
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Theorem 6. If H( +) is a tur group and cp a tur automorphism of H( +), then the 
groupoid H(.) defined by 

(30) x .y = x + q?~lx + (py 

is a rot-quasigroup. 
Proof. Denote by g the map H—>H, xv-+x + cp~xx. By (30), we have (.) = 

( + ) ( e < p l ) . In order to prove that H(.) is a quasigroup, we must show that g is 
a bijection. Moreover, g is a homomorphism. Indeed, g(x + y) = 
x + y + (p~1(x + y) = x + (p~lx + y + qp~xy = gx + gy. Next we prove that Kerg = 
{e}. If gx = e, i.e. x + qp~lx = e, then (px +x = (pgx = (pe = e. Thus p x + (££* = <?, 
i.e. (x + (p~lx) + (q?x + x) = e + e = e, hence 2x = e and by (II), x = e. Thus Ker g = 
{e}. According to (II), g is an automorphism of H( + ) . Finally we show the 
identity (1). Clearly, the left-hand side of (1) is 

x.xy = x + (p~lx+ (p(xy) = x + (p~xx + (x + q?~lx + (py) = 
= x + (p~lx + (px + x + qp2y = 2x — y . 

Using ф XX = фЪX = ф2(фx) = - фX, i.e. 

(31) ф~lX = - фX 

the right-hand side of (1) is 

z(xz.y) = z + qp xz +(p(xz.y) = z +(p lz + (p(xz + cp lxz + 
+ q?y) = z + (f~lz + qpx + x — z + x + (p~xx + qpz — y = 2x — y . 

Thus the sides of (1) are equal. This completes the proof. 
According to (31), we can write (30) in the form 

x.y = x — q?x + y . 

If qp is a tur automorphism of a tur group H( +), then (qp~x)2x = qp~2x = (p2x = 
-x, so (p1 is also a tur automorphism of H( + ) . According to (30), a groupoid 
H(o) defined by 

x oy = x + cpx — (py 

is a rot-quasigroup (isotopic to //( .) , which is defined by (32)). 

Theorem 7. An Abelian group 0 ( + ), which has the properties (I) and (II) of 
Definition 1, is a tur group if and only if 
(IV) for every y in Q, there exists x in Q such that 

2x = y . 

Proof. Let Q( +) be a tur group with the zero e and (p be a tur automorphism of 
0 ( + ). Then qp = Le is a multiplication of a rot-quasigroup Q(.) defined by (30). 
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Since L* l: Q-» Q, x*-*2x is an automorphism of Q( +), there exists an x in Q 
such that 2x = y. Conversely, let (IV) hold. We must show that the map g: 
x *-*x - cpx is a surjective map. Clearly, g is a homomorphism of Q( +). Let gx = a, 
where a is an element of Q. Then qpgx = ga, i.e. x + cpx = cpa and also 
(x + cpx) + (x- cpx) = cpa + a, whence 2x = a + cpa. By (IV), there exists b in H 
such that 2b = a + cpa. Now we show that gb = a. Let gb = c. Then 

2c = gb + gb = g(2b) = g(a + cpa) = a + cpa — 
— cp(a + cpa) = a + cpa — cpa + a = 2a . 

Hence 2(a — c) = e, and by (11), a — c = e, i.e. a = c. This completes the proof. 
Let H( + ) be an Abelian group with the properties (II) and (IV). Then the 

product group HxH is a tur group. Indeed the map 

cp:HxH-*HxH, (x, y)«->(-y, x) 

is a tur automorphism of HxH, and so by Theorem 7, HxH is a tur group. A tur 
group need not be a direct sum of two isomorphic groups. In what follows we shall 
find sufficient conditions under which a periodic tur group is a direct sum of two 
isomorphic groups. 

Theorem 8. Let Zr be the cyclic group of order r and let Zr be the direct sum of 
cyclic p-groups Fu F2, ..., Fs, whose orders are rn\ ..., rn% respectively. Then Zr is 
a tur group if and only if every r, is a prime of the form 4/7Z, + 1, where ra, is 
a positive integer, / = 1 , 2, ..., s. 

Proof. Let Zr be a tur group and cp be a tur automorphism of Zr. Evidently, 
Cp(Ft) = {cpt: teFi} is a group of order rn\ Since r,^ ry for /-£/, cp(Ft) = Fi, so F, is 
a tur group for all /. Thus Zr is a direct sum of cyclic p-groups which are tur groups. 
Let Q = {0, 1, 2, ..., rf'-l} and let cp\ = k. Then <p2\ = cpk = kcpl = k1. Since 
cp2\ = - 1, k2= -1 (mod rrO. According to § 4b and § 3a of Chapter V of [2], 
r, = 4m{ + 1. Conversely, suppose r= rn'...rn% where rt= 4mt + 1 is a prime for all 
/ = l , 2 , 3 , . . . , s . According to Exercise 3 a and § 4b of Chapter V of [2], there exists 
k, such that k2= — 1 (mod r"1) for all /. Let us define cpt, Pi—>F; by cp,t = tkt. It 
follows from Exercise 6 of Chapter V of [2] that k{ and r, are relatively prime, 
therefore cpt is a bijection. It may be easily verified that cpt is a tur automorphism of 
the cyclic p-group Ft, which has the order rn>, whence F{ is a tur group for all /. 
Since a direct sum of tur groups is a tur group, Zr is a tur group. 

Corollary 1. If Zr is a cyclic tur group, then Zr is a direct sum of cyclic p-groups 
which are tur groups. 

Corollary 2. If cp is a tur automorphism of a cyclic tur group Zr, and if Zr is 
a direct sum of p-groups FX,F2, . . . ,FS , then cp(F,) = F, for every / = 1,2,..., s. 

E x a m p l e 1. Let Z(p°°) be a group of the type p°°. Then Z(p°°) is a tur group if 
and only if there exists a positive integer m such that p = 4m + 1. 
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Proof. Let Q be such a subgroup of Z(p°°) whose order is pn and let 
p = 4m + 1. By Theorem 8, Q is a tur group for all n = 1, 2, 3 It follows from 
Exercise 6 of Chapter V of [2] that the congruence x2= - 1 (mod /?") has exactly 
two solutions, therefore Cn has exactly two tur automorphisms. Let cpx be a tur 
automorphism of C,. We shall define a tur automorphism <p of Z(/?°°) by induction 
on n. Let q?n be a tur automorphism of Q and let </A, ipi be distinct tur 
automorphisms of C„+1. Since C„ is a subgroup of C„+1, ^ i ( C ) and ip2(Cn) are 
subgroups of Cr+1. Every group Cn+1 has a unique subgroup of the order pn, 
therefore the restrictions of ipx and \p2 to Cn are tur automorphisms of Q. 
Consequently, either \px or ip2 is an extension of yn. If ^ ( i = l or i = 2) is an 
extension of qn, then set q>n+l = ipi. Now we define <T: Z(/?°°)—>Z(/?°°), by qx = qnx 
for x in C„. It can be easily shown that q> is a tur automorphism of Z(/?°°). The 
converse follows from Theorem 8. 

Theorem 9. If a tur group H is finite, then the order r of H has the form 

r=rn\..rn*.q2, 

where r, =4m, + 1 is a prime for all / = 1, 2, 3, ..., s, q is odd, and nu n2, ..., AZ, are 
positive integers. 

Proof. Since H is finite, H is a direct sum of cyclic p-groups Cu C2, ..., C5, 
whose orders are rn\ r2

2, ..., rn% respectively. Let q be a tur automorphism of Ff 
and let C) be a subgroup of Q such that C) has the order r,. Clearly q>(C)) is such 
a cyclic subgroup of H which is isomorphic to C). Let 0 be the zero of H. Then 
either q(C))nC)±0, or q(C))nC) = 0. If <p(C5)nC5=£0, then obviously 
q(C))nC) = C], thus C* is a tur group and by Theorem 8, /?, =Amt + 1. Now, let 
q(C^n(C)) = {0}. Then q(Q)nQ = {0}. To prove this suppose q(Q)nQ = 
= C£ {0}. Then according to the property (I) of a tur automorphism q we have 

q(C) = q[q(Q)nQ] = q2(Q)nq(Q) = Qnq(Q)=C, 

whence C is a tur group of the order rT\ m, ^fy. Since C, C) are subgroups of C,, 
C) is a subgroup of C. C has a unique subgroup of the order r{, therefore 
q(C))nQ = {0}. Since QczC and q(C))a(C) = CczQ, q(C))aQ. Conse­
quently, q(C))nQ = q(C))=t{0} and this is in contradiction with the above 
mentioned assertion. Hence q(Q)nQ = {0}. Since q(Q) is a cyclic p-group, there 

^.exists ]+• i such that q(Q)czQ. Hence q?2(Q)c:q)(Cj), i.e. Qczq(Q). Since C, is 
not a subgroup of any cyclic p-subgroup of H expect Q, Q = q?(Q) and also 
q?(Q) = Q. Thus for each Q, there are two alternatives, either r, = Am{ + 1 or there 
exists / -£/ such that Q is isomorphic to Q, more preciselv, q(Q) = Q. If 
q(Q) = Ci9 r£i, / , then obviously q(Q)nQ = q(Q)nQ = {0}. This completes 
the proof. 

Since there exist more than two solutions of the congruence x2 = - 1 
(mod ri1...^*), there are tur groups which have more than two tur automorphisms. 
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If q>\ and cp2 are two tur automorphisms of a tur group H( +), then the quasigroups 
H(C), H(D) defined by 

C = ( + )<*'• *-• 1 } , L> = ( + )<"-• "2. i ) , 

where Qi = x — q?,x9 / = 1 , 2, are isotopic. Clearly 

/ ^ ,
= : r ) (?2 <PI.»?2~ <Pi.n 

Theorem 10. Let H( +) be a periodic tur group with the zero O. If there exists 
a tur automorphism ^ of H( + ) such that for every cyclic p-subgroup C of FT(+) 
with respect to a prime p = 4m + l, there holds £(C)nC={0}, then H( + ) is 
a direct sum of two isomorphic subgroups. 

Proof. If G is a cyclic subgroup of H( + ) , then %(G)nG = {0}. Indeed, if 
Gn^(G) = P£ {0}, then P is a cyclic tur group. By Corollary 1 of Theorem 8, P is 
a direct sum of the cyclic p-groups Pl9 P2, ..., Ps, which are tur groups. By 
Corollary 2 of Theorem 8, £(P1) = Pi9 which is in contradiction with the assumption 
of this theorem. To prove the theorem, we proceed by transfinite induction on 
elements of H. Let xeH, x+0 be an element. (If H={0}, then the theorem is 
trivial). Denote by Q the cyclic subgroup of H( + ) generated by x. Then 
£(CJnCx = {0}. Let Hx be the direct sum of groups Q, %(Q). Let H2 be 
a subgroup of H( + ) such that H2 is a direct sum of the groups K, %(K) and 
Hl a H2. Denote by Cy a cyclic p-subgroup of H( +) generated by an element y in 
H\H2. Then either CynK= Q = {0} or Cyn^(K) = {0}. To prove this, suppose 
Cynk = Q±{0} and Cyn$(K) = Q± {0}. Since Q, Q are cyclic subgroups of the 
p-group Cy, we have QnQ± {0}. This implies Kn%(K)± {0}, and this is in 
contradiction with the induction assumption. Without loss of generality suppose 
%CynK±{0}. Then |(Cy)n£(K.) = {0} and also [£(K) +Cy]n[K + |(Cy)] = {0}. 
Hence we can define the following direct sum 

H3 = $[K+£(Cy)] + [K+%(Cy)]. 

If Cyn[(K+ %(K))\(Kv%(K))] = Qi={0} then exist elements t, w such that te K, 
Q + %Q = Q + %Q, Q c Cw, Cw + kcw = Cy + £Cy. Hence we can define 

H3 = %(K+CW) + (K+CW). 
This completes the proof. 

Corollary 1. Every periodic tur group which does not contain elements of order 
pk, k = 1, 2, 3, ..., where p is a prime of the form Am + 1, is a direct sum of two 
isomorphic groups. 

Example 2. Let Z13( +) be the cyclic group of the order 13 and let Z13 == {0, 1, 
2, ..., 9, a, b, c}. By Theorem 8, the cyclic group Z13( + ) is a tur group. We may 
easily verify that the map q?: Z13—>Z13, ri-*5r is a tur automorphism of U13( +). By 
Theorem 6, the groupoid Z13(.) defined by x .y = x — qpx + <$y is a rot-quasigroup 
which is given by the multiplication table 
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0 1 2 3 4 5 6 7 8 9 a b c 

0 0 5 a 2 7 c 4 9 1 6 b 3 8 
1 9 1 6 b 3 8 0 5 a 2 7 c 4 
2 5 a 2 7 c 4 9 1 6 b 3 8 0 
3 1 6 b 3 8 0 5 a 2 7 c 4 9 
4 a 2 7 c 4 9 1 6 b 3 8 0 5 
5 6 b 3 8 0 5 a 2 7 c 4 9 1 
6 2 7 c 4 9 ,1 6 b 3 8 0 5a 
7 b 3 8 0 5 a 2 7 c 4 9 1 6 
8 7 c 4 9 1 6 c 3 8 0 5 a 2 
9 3 8 0 5 a 2 7 c 4 9 1 6 b 
a c 4 9 1 6 b 3 8 0 5 a 2 7 
b 8 0 5 a 2 7 c 4 9 1 6 b 3 
c 4 9 1 6 b 3 8 0 5 a 2 7 c 

Example 3. Let R(.) be the multiplicative group of all positive real numbers 
and let Q = Rx R. Define a binary operation (o) on the set Q by 

<"•«•«•«>=(¥•¥)• 
It can be easily shown that Q(o) is a rot-quasigroup. 
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РОТ-КВАЗИГРУППЫ КАК ИЗОТОПЫ АБЕЛЕВЫХ ГРУПП 

Ян Д у п л а к 

Р е з ю м е 

Квазигруппа 0(.) называется рот-квазигруппой, если в ней выполняется тождество х.ху = 
г(хг.у). В этой работе показано, что существование рот-квазигруппы эквивалентно сущест­
вованию некоторых абелевых групп (названных тур группы). Далее найдены достаточные 
и необходимые условия, при которых абелева группа является тур группой, и достаточные 
условия, при которых тур группа разложима в прямую сумму двух изоморфных групп. 
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