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ROT-QUASIGROUPS AS ISOTOPES
OF ABELIAN GROUPS

JAN DUPLAK

A quasigroup Q(.) is called a rot-quasigroup if Q(.) satisfies the i1dentity
(D) x.xy=z(xz y).

In this paper we shall show that from the existence of a certain kind of Abelhan
groups (called tur groups) there follows the existence of rot-quasigroups, and
‘conversely. Further we find out necessary and sufficient conditions under which an
Abelian group is a tur group. Moreover, we find out sufficient conditions under
which a periodic tur group 1s a direct sum of two isomorphic groups.

In this paper we shall need the following properties of rot-quasigroups: Let
Q(.)=Q(A) be a rot-quasigroup, L (R,) a left (right) multiplication of Q{.),
L:=S,,S8S,=V,,, and x, y, z, ¢ arbitrary elements of Q(.). Then

(2) xy.zt=xz.yt (the mediality law),

(3) x.x=x (idempotency),

(4) L.R.=R,L, (elasticity),

(5) A '[x,yl=yxy,

6) Li=1,

(7) x.xy=yxy.y,

(8) S.5,S.=S. if and only if u=""Alxy, yzy]= 'Alx.zyz, z],

(9) S.8,S.=8.S,S.,
(10) L., R, are automorphisms of Q(.),
(11) S,t=8,t for some ¢ if and only if a =5,
(12) S,=x ifandonlyif a=ux,
(13) V,,=1 if and only if a=5.

These properties of rot-quasigroups are proved by the author in [3].

Let G(.) and G(o) be quasigroups. An ordered triple (a, 8, y) of bijections
a, (3, v of G onto G is called an isotopism of G(.) onto G(»), and G(.) is said to be
isotopic to or an isotope of G(o), provided

(14) x.y vy (axofy)
for all x, y in G. We shall write (14) also in the form (see [1])
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if te trpie (@ B ) 1 denoted by 7. Every isotope of a quasigroup is
a quasigroup. The otopy of quasigroups is ciearly an equivalence relat.on. if
T—(a, a, a), then ani otopism T of O(A) upon Q(B) is an isomorphism and we
Wr ‘e

or

se=3.

An sowpt m (a B, 1) of G{.) on‘c G(o) 15 calied a principal isotopism, and
G( ) 1s alled a principal isotope of G(.). The principal isotope G(o) of G(.),
dfi d'nt*nefolo m,vay

( ()= (yRnEt D

a t e identity element 4.4 Thus every quasigroup is isotopic to a loop.
L a B, ) an’ otooismof G(.)on o G{o)and (a’, B', ¥') be an isctopism
of Go) on*o G( ), then(ca’, Bf8', vy ) is anisctopism of G(.) onto G(x) (see [1]).

T ecoenl.L t Q()be rot-quasigroup and e be an arbitrary element of Q.
T' n the qua ‘gro p Q(B) defined by

6 B=()R.1LL)

1y distributive quasigro p.
Pr of. V' can wrie (16) i te form

x, yl=L(Rx.y),
Blx, yl=elxe.y)

an ac ording to (1),
Blx,yl=x.xy.

We s=2 th t operation B is néependent ot the element e. Next we prove that B is
al t-dewsiuibu ive operation Since Q) is distributive, then

Z1z(x. Y —zlzx (2. 29)],
, acrorch g to (17)
Blz, Blx, yll=(z.2x) . (z.2zx)}{(z . zy)
Biz, Bl-,)]1=B[Blz, x}, Blz, ylI,

wt  eBis- 2t ib 4 enper tior. Fir lly we prove the night-distributivity of
B Si ~» R 4~d L, are utorrorrhisms of O ), then
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RIL.(x.xy)RILx .(RILx)(RILy),
[z(x.xy)z]z=(2xz.2) .(zxz.2)(2yZ.2) ,
and by (7)
(x.xy).(x.xy)z=(x.x2).(x.x2)(y.yz) .
According to (17), we get
B[Blx, y], z]=Blx.xz, y.yz] ,
B[Blx, y], z]=B[Blx, z], Bly, zl],
whence B is also a right-distributive operation. This completes the proof.

By Theorem 8.2 of [1] we have the following

Corollary 1. If Q(B) is defined as in Theorem 1, then the quasigroups Q(~'B)
and Q(B) (where ~'B is the left-division of B) are distributive quasigroups.

Since an isotope of a transitive quasigroup is a transitive quasigroup, we have the
following

Corollary 2. Let B be defined as in Theorem 1. Then the quasigroups Q(B),

Q(™'B) are transitive distributive quasigroups, i.e. Q(B) and Q(~'B) are idempo-
tent medial quasigroups.

Lerama 1. Let Q(B) be the isotope of a rot-quasigroup Q(.) defined by (16).
Then

S.S.S,=S, ifandonlyif ~'Blx, y]l=a.

Proof. It follows from (8) that S.S,S, =S, if and only if ~'A[xa, aya]=a, i.ec.
a.aya=xa, (a.ay)a=xa, using the cancellation law we have a.ay =x and by
(17), Bla, y]=x, whence ~'Blx, y]=a.

Corollary. If Q(B) is an isotope of a rot-quasigroup Q(.), defined by (16), then
Q(™'B) is a commutative quasigroup. i
This corollary directly follows from (9).

Lemma 2. If a quasigroup Q(B) satisfies the conditions of Lemma 1, then
S.S.S, =S, ifandonlyif ~'B[x,y]="'Bla, b].

Proof. First, suppose S,S.S,=S,. If s="'B[x, y] and u = B[s, a], then by
Lemma 1 we have

SxS:Sy = Ss ’ Sasssu = ss .
Hence
S.S.S, = S,S.S. .
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Since §2=1 for all x, then
S =85.S5SS,,

and according to (9) we have S, =S,S5.S,. Since S, =S.5.S,, then S, =S,, and by
(11) we get u=b. Conversely, suppose 'Blx, y]= 'Bla, b]. If 'B[x, y]=s,
' then by Lemma 1,

SSS,=S8 and S.S5S,=S,.
Hence
$S5S,=5S5S,, S, =85955SS,, S, =85SS.S.S,,

whence S, =8S.S,S,. This completes the proof.
Let L* be a left multiplication of Q( 'B) (B is defined as in Theorem 1). The
isotope ( 'B)" "t of 'B will be denoted by (+), i.e.

(18) (+)=('BYL1 L
Hence
(19) x+y=L*"('Blx,y]).

Replacing a by e in Lemma 2, we get b=L%* ' ( 'B[x, y]), and by (19) we have
b=x+y. Thus

(20) 5S.5,=8..,
Theorem 2. If a quasigroup Q(B) satisfies the conditions of Theorem 1 and (+)

1s defined by (18), then Q(+) is an Abelian group with the zero e.
Proof. First we prove the identity

(21) (+)=B( L 'R, R)

where L., R, are a left and a right multiplication of Q(B), respectively. It i
obvious that if

t=R, (Blx, L, 'Ryl), Ry—u, L 'u=r and Blx,r]=s,
then 1= R, 's. From these equations we have
'Blu, e]=y, 'Blu,r] =e,l 'Bls, r]=x, 'B[s,e]=t.
Since Q( 'B) is a medial quasigroup,

'B{ 'Blr,ul B[s = 'B[ 'B[r,s], 'Blu,e]]

and according to th abovc tin we gt 'Ble,t]- 'Blx,y], whence
t=L* '( 'Blx,y],1 ly )i 3y Thus
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xty= R,"(B[x, l:e\lléty]) = B[x, y]‘l.L: 'R, R,) .
Since B[x, e]=x.xe=exe.e, then

Blx, e]=exe ¢, Ble,x]=€.¢y
Rx=L.R2x, Lx=Sx,

whence
(22) R.=Lg% L.=L:.
The equations (21) and (16) imply
(+) =(,)(R,. 1LY, L3R, R,y _
and by (22), -

(+)=(.)Re: 1. L1, BLRE LRD'= ()(Re, LIRE, RY)

Since R, is an automorphism of Q(.),
()= (‘)(R?’. RZ%, R

Therefore
(.)(g., LRZ R) = (_)(RI’, RZ?, R*)(Re, LZ'R2, R?)
— (’)(R:‘, RZ2L:I'R2, RZ*R?) — (_)(R:', LY 1)
Thus
(23) (+)=() @D

i.e. Q(+) is a principal isotope of Q(.). By Corollary 1 of Theorem 2 of [1], Q(+)
is a group, and by Theorems 1.2 and 2.9 of [1], e is the zero of Q(+ ). From (20)
and (9) it directly follows that Q(+) is an Abelian group.

Lemma 3. Let Q(.), B, (+) be the same as in Theorem 2. Then the
multiplications L., R, of Q(.) are automorphisms of Q(B), Q("'B) and Q(+).
Proof. Since L, is an automorphism of O(.) and R.L.=L.R,,
Ble = BEoleld = (')(Re, 1, L7YY(LeLe, Le) =

= (.)(Le, Le, L)(Re, 1, LYY= (_)(R., LLY=PRB i

This proves that L, is an automorphism of Q(B). Next we prove that L, is an
automorphism of Q(+). By (23) we have

(4 )k = ()R L D= (Y LR L2 D=
= ()R, L1 = ()R L D= (+).
Similarly we prove additional assertions.
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Theorem 3. Let G be the group of all maps V, , =8.,S, of a rot-quasigroup Q(.)
(see [3]). If (+) is the isotope of a rot-quasigroup Q(.) defined by (23), then the
group Q(+) is isomorphic to the group G.

Proof. Let 3 be the map Q— G, x— V... By (20) we have yxyy =V, .V, , =
S.5:8:S, = 8.Se+y = Ve xsy = y(x +y), whence ¥ is a homomorphism. If V, , =V, ,,
then S, =S, and by (11), x = y. Hence v is an injective map. Let V, , in G be an
arbitrary element. By (8), there exiats an x in Q such that §,=35.5.S,, i.c.
S.S, =8.S,, whence V,,=V,,, yx=1V,,, and so 1 is a surjective map.

Theorem 4. Let the operations B, (+) satisfy the conditions of Theorem 2. If
—y is the element inverse to y with respect to (+), then Blx, y]=x+x—y=
2x—y.

Proof. First we prove that a left multiplication L* of Q(~'B) is an automorph-
ism of Q(+). Since L*=R*, L*x= 'B{x, e],i.e. BlL*x, e]=x, then R.L*x=x,
and by (22),

(24) L¥=R7LL.
Since L., R, are automorphisms of Q(+), L* is an automorphism of Q(+). If

x=y in (21), then (L¥) 'x =x +x=2x and thus the map

L*: Q(+)— Q(+), xH%'

is an automorphism of Q(+). Since L*(z+y)=""'B[x, y],

(25) “'Blz, yl= y

f'Blz, y]=x (ie. z=Blx, y)), then from (25) we have 2x = B[x, y]+ y, whence
(26) Blx,y]=2x—-y.
this completes the proof.

Theorem 5. Let Q{.) be a quasigroup and Q(+) be the group defined by (23)
(or by (18)). Then

27) x.y=x+L.'x+L,y

for all x, y ia Q.
Proof. If the operation B is defined by (16), then x.y = L'(B[R.'x, y]). Using
(26), we have

x.y=L7'Q2R'x—y)=L7'R'(2x)—L.'y.
Since 'Bfe, B[y, ejl=y for all y.in Q,
(28) “'Ble,y.ye]l=y.
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The operation B is independent of the element e, therefore
B= (.)(Re, 1,L.") =(')(Ry, LLy"Y)

for all y in Q. Since L, is an automorphism of Q(~'B) and Q(B), then L, is also an
automorphism of Q(~'B) and Q(B). According to (28),

L,("'Ble,y.yel)=L,y, “'B[Le, Lje]=
“'Blye,L,'e]l=y.

By (5), we have L;'e=A""[y, e]=y, e] = eye, therefore
“'Blye, eye]=y, L7'("'Blye,eye])=L%'y=L%"'("'Bly,y]).

According to (19), ye+eye=y+y. If y=R.'x, then x+Lx=R;'x+ R, 'x,
L. x+x=L;'QR;'x)=L.'R;'(2x). Thus x.y=x+ L_.'x+ L,y. This completes
the proof.

If L, is a multiplication of a rot-quasigroup Q(.), then by (22) and (26),
Lix=Lx=B[e, x]=e+e—x= —x. Thus we have the following important prop-

erty of an automorphism L, of the group Q(+):
(29) Lix=—x

forall x in Q. If x+x=ein Q(+),i.e. Vi,=1, thenby (8), Voiarceer. =1
and by (13), 'Ale . exe, e]=x, i.e. xe =e . exe, whence x =e. This proves the

following property of the group Q(+):

x=e¢ ifandonlyif x+x=e,

where e is the zero of Q(+). Since x+ L;'x=L;'R.'(2x) and L* 'x=2x, then
x+L;'x=L;'R;'L*'x=R.x. Consequently, x+ L,'x is an automorphism of
Q(+). ‘

Now we shall describe necessary and sufficient conditions under which an
Abelian group is isotopic to a rot-quasigroup. Therefore we give the following

Definition 1. Let H(+) be an Abelian group with the following properties
(I) there exists an automorphism @ of H(+ ) such that ¢?x= —x for all x in H,
(II) H(+) has no element of the order 2,

(I11) the map o: H— H, x+—>x + @~ 'x is a surjective map, provided that @ has the

property (I) of the definition.

Then H(+) is said to be a tur group and ¢ is a tur automorphism of H(+ ),
We may easily verify that the conditions of the definition are independent.
By the above-presented discussion, the principal isotope (.)(R<'.L:. 1) of a

rot-quasigroup Q(.) is a tur group. The following theorem shows that any tur group

is isotopic to a rot-quasigroup.
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Theorem 6. If H(+ ) is a tur group and @ a tur automorphism of H(+ ), then the
groupoid H(.) defined by
(30) x.y=x+@ 'x+ @y

is a rot-quasigroup.

Proof. Denote by ¢ the map H— H, x—x+ ¢ 'x. By (30), we have (.)=
(+)@ P In order to prove that H(.) is a quasigroup, we must show that o is
a bijection. Moreover, @ is a homomorphism. Indeed, o(x+y)=
x+y+@ ' (x+y)=x+@ 'x+y+ @ 'y=px+0y. Next we prove that Kero=
{e}. If px=e¢, i.e. x+ @ 'x=¢, then @x +x=@ox=q@e=e. Thus pox + gox =e¢,
ie.(x+ @ 'x)+(px+x)=e+e=e,hence 2x =e and by (11), x = ¢. Thus Ker o =
{e}. According to (I1), o is an automorphism of H(+). Finally we show the
identity (1). Clearly, the left-hand side of (1) is

x.xy=x+@ 'x+@exy)=x+e 'x+(x+e'x+@y)=
=x+@'x+exr+x+@’y=2x-y.

Using ¢ 'x=@’x = @*(px)= — ¢@x, i.c.
(31) ¢ 'x=—gx,
the right-hand side of (1) is

Z2(xz.y)=z+@ 'z+@xz.y)=z+t@ 'z+@kxz+ @ 'xz+
+@y)=z+@ lz+ex+x—z+x+@ ' x+ez—y=2x—y.

Thus the sides of (1) are equal. This completes the proof.
According to (31), we can write (30) in the form

X.y=x—@x+ty.

If @ is a tur automorphism of a tur group H(+), then (¢ ')’x =@ *x=@*x =
—x, so @' is also a tur automorphism of H(+). According to (30), a groupoid
H(o) defined by

Xoy =X+ @x— @y
is a rot-quasigroup (isotopic to H(.), which is defined by (32)).

Theorem 7. An Abelian group Q(+), which has the properties (I) and (I1) of
Definition 1, is a tur group if and only if
(IV) for every y in Q, there exists x in Q such that

2x=y.

Proof. Let Q(+) be a tur group with the zero e and ¢ be a tur automorphism of
Q(+). Then @ =L, is a multiplication of a rot-quasigroup Q(.) defined by (30).
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Since L* ': Q— Q, x+—2x is an automorphism of Q(+ ), there exists an x in Q
such that 2x =y. Conversely, let (IV) hold. We must show that the map o:
x> x — @x is a surjective map. Clearly, g is a homomorphism of Q(+). Let ox =a,
where a is an element of Q. Then @ox=gqa, ie. x+@x=g@a and also
(x+ @x)+ (x — @x) = @a + a, whence 2x =a+ @a. By (1V), there exists b in H
such that 2b=a+ @a. Now we show that gob =a. Let pb =c. Then

2c=0b+0b=0(2b)=0(a+@a)=a+ qga—
—@la+@a)=a+@a—@pa+a=2a.

Hence 2(a —c)=e, and by (Il), a—c=e, i.e. a=c. This completes the proof.
Let H(+) be an Abelian group with the properties (11) and (IV). Then the
product group H X H is a tur group. Indeed the map

¢:HXxH—-HXH, (x,y)—>(—y,x)

is a tur automorphism of H X H, and so by Theorem 7, H X H is a tur group. A tur
group need not be a direct sum of two isomorphic groups. In what follows we shall
find sufficient conditions under which a periodic tur group is a direct sum of two
isomorphic groups.

Theorem 8. Let Z, be the cyclic group of order r and let Z, be the direct sum of
cyclic p-groups F,, F,, ..., F,, whose orders are r}', ..., r5, respectively. Then Z, is
a tur group if and only if every 7, is a prime of the form 4m, + 1, where m; is
a positive integer, i=1, 2, ..., s.

Proof. Let Z, be a tur group and ¢ be a tur automorphism of Z,. Evidently,
@(F)={qt: te F} is a group of order r}«. Since r,# r, for i#j, @(F)=F,, so F, is
a tur group for all i. Thus Z, is a direct sum of cyclic p-groups which are tur groups.
Let C={0, 1, 2, ..., r"—1} and let ¢1=k. Then @21 = @k =kl =k". Since
@*1= -1, k*=—1 (mod r). According to § 4b and § 3a of Chapter V of [2],
r.=4m; + 1. Conversely, suppose r=r7...r%, where r,=4m,+ 1 is a prime for all
i=1,2,3,...,s. According to Exercise 3a and § 4b of Chapter V of [2], there exists
k, such that k= —1 (mod r}) for all i. Let us define ¢,, F;— F, by @t=tk,. It
follows from Exercise 6 of Chapter V of [2] that k; and 7, are relatively prime,
therefore @, is a bijection. It may be easily verified that g, is a tur automorphism of
the cyclic p-group F;, which has the order r}:, whence F; is a tur group for all /.
Since a direct sum of tur groups is a tur group, Z, is a tur group.

Corollary 1. If Z, is a cyclic tur group, then Z, is a direct sum of cyclic p-groups
which are tur groups.

Corollary 2. If @ is a tur automorphism of a cyclic tur group Z,, and if Z, is
a direct sum of p-groups F,, F, ..., F,, then @(F))=F, foreveryi=1,2, ..., s.

Example 1. Let Z(p~) be a group of the type p=. Then Z(p=) is a tur group if
and only if there exists a positive integer m such that p=4m 4 1.
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Proof. Let C, be such a subgroup of Z(p=) whose order is p* and let
p=4m+ 1. By Theorem 8, C, is a tur group for all n =1, 2, 3. .... It follows from
Exercise 6 of Chapter V of [2] that the congruence x2= — 1 (mod p") has exactly
two solutions, therefore C, has exactly two tur automorphisms. Let @, be a tur
automorphism of C,. We shall define a tur automorphism @ of Z(p~) by induction
on n. Let ¢, be a tur automorphism of C, and let ¢, ¥. be distinct tur
automorphisms of C,.,. Since C, is a subgroup of C,.,, ¥:(C.) and y,(C,) are
subgroups of C,..,. Every group C,., has a unique subgroup of the order p~,
therefore the restrictions of vy, and vy, to C, are tur automorphisms of C,.
Consequently, either v, or ¥, is an extension of y,. If ¥, (i=1 or i=2) is an
extension of @,, then set @,., = ¥,. Now we define ¢: Z(p~)— Z(p~), by ¢x = @.x
for x in C,. It can be easily shown that ¢ is a tur automorphism of Z(p=). The
converse follows irom Theorem 8.

Theorem 9. If a tur group H is finite, then the order » of H has the form
r=ryreq?, ,
where r;=4m,+1isaprimeforalli=1,2,3, ..., s, g is odd, and n,, n,, ..., n, are
positive integers.

Proof. Since H is finite, H is a direct sum of cyclic p-groups C,, C,, ..., C,,
whose orders are ri1 r32 ..., ris, respectively. Let @ be a tur automorphism of H
and let C} be a subgroup of C, such that C} has the order r,. Clearly @(C}) is such
a cyciic subgroup of H which is isomorphic to C}. Let O be the zero of H. Then
either @(CHNC'#0, or @(CHNCi=0. If @(C)HNCi#0, then obviously
@(CYNCi=C!, thus C; is a tur group and by Theorem 8, p, =4m, + 1. Now, let
@(CHN(CY)={0}. Then @(C)NC,={0}. To prove this suppose ¢(C)NC, =
= C# {0}. Then according to the property (1) of a tur automorphism ¢ we have

@(C)=@le(CINnCl= ¢ (C)ne(C)=Cne(C)=C,

whence C is a tur group of the order r/ m, <n,. Since C, C} are subgroups of C,
C} is a subgroup of C. C, has a unique subgroup of the order r, therefore
@(CHNC,={0}. Since CicC and @(C)c=(C)=CcC, @(C")<C. Conse-
quently, ¢(CHNC, = @(C})#{0} and this is in contradiction with the above
mentioned assertion. Hence @(C)NC; = {0}. Since ¢(C}) is a cyclic p-group, there
_exists j# i such that ¢(C) < C,. Hence ¢*(C) = @(C), i.e. C,c @(C). Since C, is
not a subgroup of any cyclic p-subgroup of H expect C;,, C, = @(C)) and also
@(C) = C,. Thus for each C, there are two alternatives, either , =4m, + 1 or there
exists j#i such that C, is isomorphic to C,, more preciselv, ¢(C)=C,. If
@(C)=C, r#i, j, then obviously ¢(C)NC, = @(C)nC ={0}. This completes
the proof.
Since there exist more than two solutions of the congruence x*=—1
(mod ;... r), there are tur groups which have more than two tur automorphisms.
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If @, and @, are two tur automorphisms of a tur group H( + ), then the quasigroups
H(C), H(D) defined by '

C=(+)(o,.w,,l), D=(+)(02,w2.1)’
where o, =x— @x, i =1, 2, are isotopic. Clearly

C=D (02 'e1.07 91 1)

Theorem 10. Let H(+) be a periodic tur group with the zero O. If there exists
a tur automorphism & of H(+ ) such that for every cyclic p-subgroup C of H(+)
with respect to a prime p =4m + 1, there holds £(C)nC={0}, then H(+) is
a direct sum of two isomorphic subgroups.

Proof. If G is a cyclic subgroup of H(+), then £&(G)nG ={0}. Indeed, if
Gn&E(G)= P+ {0}, then P is a cyclic tur group. By Coroliary 1 of Theorem 8, P is
a direct sum of the cyclic p-groups P,, P,, ..., P,, which are tur groups. By
Corollary 2 of Theorem 8, £(P.) = P,, which is in contradiction with the assumption
of this theorem. To prove the theorem, we proceed by transfinite induction on
elements of H. Let x e H, x+0 be an element. (If H= {0}, then the theorem is
trivial). Denote by C, the cyclic subgroup of H(+) generated by x. Then
E(C)NC,={0}. Let H, be the direct sum of groups C,, &(C,). Let H, be
a subgroup of H(+) such that H, is a direct sum of the groups K, &(K) and
H, c H,. Denote by C, a cyclic p-subgroup of H(+) generated by an element y in
H\H,. Then either C,nK=C,={0} or C,n&§(K)={0}. To prove this, suppose
C,nk=C,#+ {0} and C,n&§(K)= C,+# {0}. Since C,, C, are cyclic subgroups of the
p-group C,, we have C,nC,# {0}. This implies KNn&(K)+# {0}, and this is in
contradiction with the induction assumption. Without loss of generality suppose
EC,nK#{0}. Then &(C,)nE(K)={0} and also [§(K)+ C,]n[K+ &(C,)]={0}.
Hence we can define the following direct sum

H,=E[K+E(C)] +[K+E(C)].

If C,n[(K+&EK)I\(KUE(K))]=C,+ {0} then exist elements ¢, w such that 7€ K,
C+&C=C+E&C, CcC,, C,+&EC,=C,+EC,. Hence we can define

H,=§ K+C,)+(K+C,).
This completes the proof. ’

Coroilary 1. Every periodic tur group which does not contain elements of order
p*, k=1,2,3, ..., where p is a prime of the form 4 + 1, is a direct sum of two
isomorphic groups.

Example 2. Let Z,;(+) be the cyclic group of the order 13 and let Z,;={0, 1,
2,...,9,a, b, c}. By Theorem 8, the cyclic group Z,s(+) is a tur group. We may
easily verify that the map @: Z,;— Z,;, r— 5r is a tur automorphism of U,;( + ). By
Theorem 6, the groupoid Z,5(.) defined by x.y =x — @x + @y is a rot-quasigroup
which is given by the multiplication table
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Example 3. Let R(.) be the multiplicative group of all positive real numbers
and let Q=R X R. Define a binary operation (o) on the set Q by

(a,b)o(c,d)=(%’, ch)

It can be easily shown that Q(o) is a rot-quasigroup.
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POT-KBA3UI'PYTITIbBI KAK M3O0TOIIbl ABEJIEBBIX I'PYIIIT
SAa Qynaak
PesomMme

KBasurpynna Q(.) Ha3bIBa€TCA ‘POT-KBA3UTPYNNON, €CIH B HEH BLIMOJHAETCS TOXIAECTBO X .Xy =
z(xz.y). B aroi paboTe NMOKa3aHO, YTO CYLIECTBOBAHHE POT-KBA3WUIPYMIbl 3KBMBAJIEHTHO CYyLIECT-
BOBAHMIO HEKOTOPbLIX abeseBbiX rpynm (HasBaHHbIX Typ rpymnbl). [lanee HaieHbl AOCTaTOYHbIE
U HeoOxopguMble YCNIOBHS, NMPH KOTOPBIX abenesa rpymna siBIsSE€TCS Typ TPYNNOH, M HOCTaTOYHbIE
YCNOBMsl, IPU KOTOPBIX TYP TPYNNa pa3jioXuMa B NPAMYIO CYMMY ABYX M30MOpP(HBIX Tpymil.
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