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NEARLY REGULAR CELL-DECOMPOSITIONS
OF ORIENTABLE 2-MANIFOLDS WITH AT MOST
TWO EXCEPTIONAL CELLS

MIRKO HORNAK—ERNEST JUCOVIC

1. Introduction

Convex 3-polytopes whose valencies of all vertices are multiples of m and
numbers of edges of all faces are multiples of &, m, k <6, appear as especially
interesting in the study of combinatorial properties of polytopes (cf. Griinbaum
[4], Gallai [3]). They are sometimes called nearly regular (cf. Crowe [2]).

Much effort has been devoted to the study of the nearly regular decompositions
of the sphere with one or two vertices or faces exceptional in the sense that the
numbers of edges they are incident with are not multiples of 7 or 4, respectively.
Some of the results dealing with boundary complexes of 3-polytopes were obtained
by investigating much more general decompositions of the sphere than those which
are complexes. (For definitions concerning complexes cf. e.g. Griinbaum [5].)
And, inspired by Griinbaum [4], Malkevitch [11] answers, for all pairs (m, k)
the question of existence of a decomposition of the sphere (not necessarily a
complex) with at most two exceptional elements (vertices or faces). He shows that
for most pairs (m, k) and required numbers of the exceptional elements such
decompositions do not exist. The aim of the present paper is to show how things are
on 2-manifolds of higher genus and to give general assertions. It appears,
analogously as in some other problems concerning cell-decompositions of 2-man-
ifolds (cf. Jucovic—Trenkler [10], Jucovic [8]), that manifolds of low genus are
exceptional in the sense that decompositions of some type exist only on manifolds
of sufficiently great genus. But let us first introduce the necessary notions and
notations.

We investigate 2-dimensional orientable 2-manifolds with no boundary only and
decompositions of them which are cell-complexes. For a 2-dimensional cell-comp-
lex N let p,(N) or v;(N) denote the number of 2-cells (faces) or O-cells (vertices),
respectively, which are incident with precisely i 1-cells (edges).

Let m, k be integers greater than 1, &,, &, g non-negative integers. By M(m, k;
&, & ; g) we denote the class of decompositions of the manifold of genus g with the
following properties:
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a) the valencies of all vertices with the exception of precisely &, vertices
(exceptional vertices) are multiples of m;

b) the numbers of edges of all faces, with the exception of precisely g faces
(exceptional faces) are multiples of k.

If ¢, +¢& =2, the class M(m, k; ¢,, &; g) can be divided into subclasses by
prescribing the distance between the two exceptional cells c,, ¢, of the decom-
position; by the distance of the cells c,, ¢, it is meant the (graphical) length of the
shortest path joining a vertex of ¢, with a vertex of c,. A subclass of M(m, k ; €,. ¢, ;
g) with the distance d of the exceptional cells will be denoted by M(m, k ; €., ¢ ; ¢,
d).

For d =0 it is worth while to distinguish the classes M(m, k; 0, 2; g, 0) and
M(m, k;0,2; g,0). In acomplex of the first class the exceptional faces have only
one vertex in common, in a complex of the second class the exceptional faces have
one edge in common.

In the following sections there are given solutions of existence problems
concerning some types of the nearly regular cell-decompositions of orientable
2-manifolds with at most two exceptional cells. To show that some class of
complexes is non-empty a member of it is constructed. To simplity the description
of complexes, many pictures are used ; in them the exceptional vertices or faces are
marked «; or U, respectively (/€ {1, 2}). In the assertions infinite numbers of
non-negative integers ¢, d appear; therefore inductive constructive steps are
employed increasing the genus g of the manifold or the distance d of the
exceptional cells.

2. Decompositions with at most one exceptional cell

Lemma 1. Let (m, k)e{(3,3), (3,4), (4,3), (3,5), (5,.3)}, &. & and g, be
non-negative integers. If the class M(m, k; €,, & ; g,) is non-empty, so is the class
M(m, k; ¢, &; g) for every integer g > g..

Proof. Let the complex De M(m, k; &,, & g,) be realized on the surface S.
Choose its arbitrary face W and change it according Fig. 1a where the subcomplex
D7 means the boundary complex of the regular 3-polytope with m-valent vertices
and k-gonal faces in which one face is omitted. As an example, in Fig. 1b for
(m, k)= (3, 4) a quadrangle is subdivided using graphs of four cubes. Clearly the
new decomposition D’ of surface § is again a complex. The n-gon W is subdivided
into the k-gons X, ..., X,, the k-gons belonging to the subcomplexes D7 and the
n-gon W’'. The valencies of the vertices w; have increased by m, the vertices w; are
2m-valent and the remaining new vertices are m-valent. So the complex D’ has &,
exceptional vertices and & exceptional faces; this means it belongs to the class
M(m, k; &, &; go) as well as the complex D.

74



Now it is clear that from among the k-gons belonging to the subcomplexes D}’
two disjoint k-gons X, Y with vertices x,, ..., Xk, Y1, ..., Y, T€Spectively, can be
chosen. These k-gons are used as openings for setting a handle to the surface S.

wl‘-i Wl'-' WJ” So
m m \\\
_______ Ple o w|B N
W A
bl X | o - o' % !
s X, i
|
// Wh “4| S
Fig. 1a Fig. 1b

This is done in the obvious way and the handle is decomposed as marked in Fig. 2,
3, 4, 5 or 6 depending on whether (m, k)=(3, 3), (3, 4), (4, 3), (3,5) or (5, 3),
respectively. The new decomposition D, of the manifold of genus g, + 1 is again a

X4 ] y,,
V‘ }2
- —se
X Ys
X1 Z ¥
Fig. 2

complex (there is no face on the handle meeting simultaneously a vertex of X and a
vertex of Y). At the passage from D' to D, the numbers of the exceptional vertices
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and faces are preserved ; so the complex D, is a member of M(m, Kk €,, & ; go+ 1).
This procedure can continue until a member of M(m, k; &,, & g) is obtained for
any integer g > ¢,.

z; Z
% - 2 B % )/ Xy L 2 D )]
X2 Y2
- \
X3 Y5 X2

X Y%
Xz Z o zz N Xz N
Fig. 3 Fig. 4
X1 X5 X4 xa X2 X,
Z, Z,
*—4 *>—4
*>—q g
2, 122
[ = = K =
23 >4 - 4 23
*>—4 +—e ¢4
z, ¢+
4 b—o
l +—4
Z 25
y4 Y5 y# ys y2 Y
Fig. 5

Theorem 1. Let g be a non-negative integer.
a) If (m, k)€ {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}, the class M(m, k; 0, 0; g) is
non-empty.
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b) The class M(4,4; 0,0; g) is empty iff g =0.

Proof. a) As the boundary complex of the regular 3-polytope with m-valent
vertices and k-gonal faces is a member of the class M(m, k; 0, 0; 0), it is sufficient
to apply Lemma 1.

b) The emptiness of the class M(4,4; 0,0; 0) is implied by the following
corollary of Euler’s theorem concerning a cell-decomposition N of the 2-manifold
of genus g:

(™) 2(4—1') (P(N)+v,(N))=8(1—g).
The well-known cell-complex decomposing the torus into quadrangles with
four-valent vertices belongs to the class M(4,4; 0,0; 1).

, Z; 2 Z3
X 4 ’ x
Xy Y
X3 %
1 Z, 2 2z %
Fig. 6

The required complex for g >1 is constructed as follows: First a decomposition
of the torus as in Fig. 7 is performed (by the identification of equally marked
points). There we have one (8g —4)-gon W, 2(g — 1) hexagons H,, H,, ..., H,,_,
with trivalent vertices only, and quadrangles. The hexagons H; and H,, i +j=
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2g —1, are joined then by g—1 handles decomposed into quadrangles (cf.

Jucovi¢—Trenkler [10]). A manifold of genus g decomposed by a complex
belonging to M(4,4; 0,0, g) is reached.

Wi Wy W W s e Mg WiehWhos WigWegqW

Y H, HZ — - -—--" - H29.3 HZg-Z Y1

w4 38 Xy
"4

W We W W, W W Wigs W W W%
Fig. 7

Theorem 2. Let g be a non-negative integer.

a) The class M(m, k; 0, 1; g) as well as the class M(m, k; 1, 0; q) is empty for
m=k.

b) Let (m, k)e{(3,4), (4, 3), (3,5), (5, 3)}). The classes M(m, k; 1,0; g),
M(m, k; 0,1; g) are empty iff g =0.

Proof of Theorem 2.
a) For a cell-complex N we obviously have

(**) Zipi(N) = 2 iv,(N)=2e(N)
where e(N) is the number of edges of N. From the existence of precisely one
exceptional cell in N, e.g. face, a contradiction would follow:

Sip(N)#0(modm) and > iv,(N)=0 (mod m).
i=3 . i=3

b) The emptiness of the classes treated for g =0 is proved in Malkevitch [11].
Figures 8, 9, 10 and 11 present complexes belonging to the classes M(4, 3; 1, 0;
1), M(5,3;1,0; 1), M(4,3; 0,1; 1) and M(5, 3; 0, 1; 1), respectively. Their
duals belong to the classes M(3,4;0,1; 1), M(3,5;0,1; 1), M(3,4; 1,0; 1),
M@3,5; 1,0; 1), respectively. Now using Lemma 1 we get complexes from all
classes whose non-emptiness is asserted in Theorem 2.
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Fig. 8 . Fig. 9
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U,
a, a [e3) q aq, az G [
Fig. 10 Fig. 11

3. Decompositions with two exceptional cells

Lemma 2. Let (m, k)e{(3, 3), (3,4), (4,3), (3,5), (5,3)}, (¢, &)e{(1,1),
(0, 2), (2,0)}, g be a non-negative integer and d € {0, 0, 1,2, ...}. If the class
M(m, k; e,, & g, d) is non-empty, so is the class M(m, k; &,, & ; g ; d) for every
integer g > go.

The proof proceeds as that of Lemma 1, but in this case it is moreover
necessary to preserve the distance between the exeptional cells c,, ¢, at the passage
a) from D to D' and b) from D’ to D,.

a) For this purpose the face W chosen from D must be multi-k-gonal. Then the
distance of c,, ¢, will not decrease because the distance between no two vertices w;,
w; of the face W will decrease. As all edges of D remain edges of D’, the distance
of ¢,, ¢, will not increase, so it is d in D', too. Therefore D’ belongs to M(m, k;
£, &5 Go, d).
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b) Clearly the k-gons X, Y can be chosen so that no path joining c,, ¢, and
containing inner vertices of the handle is shorter than the shortest path joining c,
and ¢, in D’ (e.g. it is sufficient to take the k-gons containing the edges w,w; and
w;ws, respectively). So the complex D, belongs to the class M(m, & ; €, &; go+ 1,
d) and it is possible to apply induction.

Lemma 3. Let g, d, be non-negative integers, (m, k)e{(3, 3), (3, 4), (4, 3),
(3,5), (5,3)}, (&, &)€{(0,2), (1, 1)}. If the class M(m, k; ¢,,&; g, d,) is
non-empty, so is the class M(m, k; ¢,, &; g, d) for every integer d > d,.

Proof. Let the complex De M(m, k; &,, &; g, do), let W be its exceptional
face and C the second exceptional cell. Arrange the face W analogously as in the
proof of Lemma 1 in accordance with Fig. 1a; we get a ccmplex D'. If P is a path
of length d, joining a vertex w; of W with a vertex of C in the complex D, then the
path P’ = {'P, wwi, wi} is clearly the shortest path joining a vertex of W’ with a
vertex of C in the complex D’. As its length equals d,+ 1, and the cells W', C are
the only exceptional cells in D’, the complex D' e M(m, k; ¢,, &; g, d,+1) and
the induction works.

Theorem 3. Let g and d be non-negative integers.

a) The class M(3,3; 1, 1; g, d) is empty iff (g, d)=(0, 0).

b) For (m, k)e{(3, 4), (4, 3), (3,5), (5,3)} the class M(m, k; 1,1; g, d) is
empty iff g =0.

Proof.

a) The emptiness of the class M(3,3; 1,1; 0,0) has been proved by
Malkevitch [11].

In Fig. 12 a complex from the class M(3, 3; 1, 1; 1, 0) is drawn. Using Lemma 2
we get a member of the class M(3, 3; 1, 1; g, 0) for every integer g > 1.

u, by b2 y,
Uy
a, a Us
1
a @
u, b, b, ug \
Fig. 12 Fig. 13
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Fig. 13 shows a complex belonging to the class M(3,3; 1,1; 0,1); so by
Lemma 3 it is guaranteed the existence of complexes from classes M(3,3: 1,1;
0, d) for all positive integers d. Now using Lemma 2 we get the remaining required
complexes.

b) Again the emptiness of the classes M(m, k; 1, 1; 0, d) has been proved by
Malkevitch [11].

In Fig. 14 and 15 there are complexes belonging to the classes M(4, 3; 1,1,
1,0)and M(3,5; 1, 1; 1, 0), respectively. The duals of these complexes belong to
the classes M(3,4; 1,1; 1,0) and M(5, 3; 1, 1; 1, 0), respectively. Combining
procedures from Lemmas 2 and 3 our Theorem is proved.

a a, u, a, a,
Uy
u, a, Qax u,
b, " bi
by b,
b, b,
b, b,
U
a a u, a a Y, a, a, U, -
Fig. 14 ‘ Fig. 15

Theorem 4. Let g be a non-negative integer.

a) For (m, k)e{(3,3), (3,4), (4,3), (3,5), (5,3)} the class M(m, k; 0,2;
g, 0) is empty iff g=0. _

b) If (m, k)e{(@3,3), (3,4), (4,3), (3,5), (5,3)} and d is a non-negative
integer, the class M(m, k; 0, 2; g, d) is non-empty.

c) Forde{0,1,2,...} the class M(4,4; 0,2; g, d) is empty iff g <2.

Proof.

a) The emptiness of the classes mentioned in the statement is proved in
Malkevitch [11]. Examples of complexes belonging to M(m, k; 0,2; 1, 0) are
drawn in Fig. 16, 17, 18, 19 and 20 for (m, k)=(3, 3), (3, 4), (4, 3), (3, 5) and
(5, 3), respectively. Now use Lemma 2.
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b) Fig. 21, 22, 23, 24 and 25 show complexes from M(m, k; 0,2; 0, 0) for
(m, k)=(3, 3), (3,4), (4,3), (3,5) and (5, 3), respectively. Now use Lemmas 2

and 3.
a, a a, q
b, b,
b b,
<u A
Uz
a, a, [o}) a,
Fig. 16
a, g G q a % 9 a,
] Y
U, b, b,
b, ! b, ]
Us
b a ® b,
b2 \ b2
N 1
a . a; a a a G a,
Fig. 17 Fig. 18 '
a, a a; aj
Uy a, e a,
U
b4 b,
b1 U2 »b1
Us
b2 bZ b2 }bz
a a a; a, a, a a, a,
Fig. 19 Fig. 20
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c) The emptiness of the class M(4, 4; 0, 2; 0, d) follows, for every d, from the -
relation (*). For g =1 from the same relation and from the obvious equality (**) it
follows that in a complex from the class M(4, 4; 0, 2; 1, d) the exceptional faces
could be only a triangle and a pentagon with remaining faces being quadrangles and
all vertices being 4-valent. In Barnette—Jucovi¢c—Trenkler [1] it is proved
that such decompositions of the torus do not exist. So it remains to show that for all
pairs (g,d), g€{2,3,...}, de{(0,1,2,...), the class M(4,4; 0,2; g,d) is
non-empty.

: (V)
Uy U !
1
U.
2 U
U,
Fig. 21 Fig. 22 Fig. 23
\ Ur
) ' ]
Uy
U
(V'
)
Fig. 24 ‘ Fig. 25

First a similar decomposition of the torus as in the proof of Theorem 1 is
constructed, see Fig. 26 (full lines). In it we have two octagons H,, H,,_, and
hexagons H,, H,, ..., H,,5 as openings for handles forming, the adjacent excep-
tional faces U,, U, (hexagons), one 8(g —1)-gon W and quadrangles. The complex
constructed so far belongs to M(4,4;0,2; g, 0). _

A member of M(4,4;0,2; g, d) can be obtained by adding 4 strips containing
three quadrangles each at the ‘“‘end” of the map in Fig. 26 (dotted lines). To avoid
the shortest path which joins the exceptional faces going, for a sufficiently great d,
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Fig. 26

through edges of the face W, a *‘great’” number (=d/2) of edges parallel to x,w,
and to x,,_,w,,_, meeting the openings H,, H,, , have been added. The
decomposition of the handles can be done so that the shortest path joining the
exceptional faces does not meet vertices on the handles.

Lemma 4. Let g be a non-negative, d, a positive integer and (m, k)€ {(3, 3),
4, 3), (5,3)}. If the class M(m, k; 2,0; g, d,) is non-empty, so is the class
M(m, k; 2,0; g, d) for every integer d > d,,.

Proof.

Let the complex DeM(m, k; 2,0; g,d,). The edges e, =u,w, e,=
=uw,, ..., e, = u,w, incident with the exceptional vertex «, can be marked so that
¢, belongs to the shortest path P joining u, with the second exceptional vertex ..
Inside the edge e, two points x,, y, are chosen, both are joined with w,, w, forming
four triangles. Two of these triangles are subdivided to form two subcomplexes D7
employed already in the proof of Lemma 1 (see Fig.27a). In Fig.27b as an
example for (m, k)=(4, 3) the result of this procedure is drawn. In the new
complex D, the valencies of the vertices w,, w, have increased by m, the valencies
of the vertices x,, y, are 2m, the faces W1, W} are multi-3-gonal ( W/ has the same
number of edges as W, in the complex D), the remaining added faces are triangles,
all added vertices are m-valent. The only exceptional cells remain the vertices u,
and u,. If P’ is a part of the path P joining the vertices u, and w,, then the path
P,={P', wx,, x,, x,u,, u,} has length d,+ 1.

The next arrangement follows the goal to get a complex with the only exceptional
cells u,, u, joined by P, as the shortest path. For this purpose inside e, two new
vertices x,, y, are chosen and the whole procedure above with the four triangles
and two subcomplexes D7 is performed; we get a complex D,. In D, the same is
done with the edge e; and so is proceeded with all edges ¢,. A sequence of
complexes D, D,, D,, ..., D, is reached whose last member belongs to M(m, k ;
2,0; g,d,+1);init P, is the shortest path joining «, and «,. The induction can be
applied.
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Lemma 5. Let g be a non-negative, d, a positive integer and (m, k) e {(3, 4),
(3. 5)}. If the class M(m, k; 2,0 g, d,) is non-empty, so is the class M(m, k ;
2,0; g,d,+2z) for every positive integer 7.

The proof
proceeds equally as that of Lemma 4. All edges ¢, are subdivided into three edges
and the subcomplexes D} of the cube and the regular dodecahedron are used.

7/
7’

N \VJ W2

7/
d
w,
W
N 4] !
AN € W
\
N
AN 1
AY
\
Y p % Y W
©n-1
€ !
W, W
Wh-1
7
Vh K
N
N
Fig. 27b
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However in the complex D, the distance from «, to w, is three in this case (X is a
k-gon, ke {4,5}) and the shortest path joining u, and u, contains three edges
appearing in the subdivision of e,. Therefore the last member in the sequence of
complexes D, D,, ..., D, belongs to the class M(m, k; 2,0; g, d,+2).

Theorem 5. Let g be a non-negative and d a positive integer.

a) If (m, k)e{(3,3), (3,4), (4,3), (5,3)}, the class M(m, k; 2,0; g, d) is
empty iff (g, d)=(0, 1).

b) The class M(3,5; 2,0; g, d) is empty iff (g, d)€{(0, 1), (0, 3)}.

c) The class M(4,4; 2,0; g, d) is empty iff g<2.

The proof
in general will follow the pattern of the proof of Theorem 4. However in the case b)
and partly in the case a) the induction will step on residue classes mod 2 and not
directly on all positive integers.

a) The emptiness of M(m, k; 2,0; 0, 1) is mentioned in Malkevitch [11].

The dual of a complex belonging to M(m, k; 0, 2; g, 0) is a complex belonging
to M(k,m; 2,0; g, 1) and so we have secured the existence of complexes in
M(m, k; 2,0; 1, 1) by Theorem 4a). In Fig. 28a (D} has the same meaning as
before) a complex from M(m, k; 2,0; 0, 2) is schematically represented; W, are
k-gonal faces, w; are 2m-valent vertices, the only two exceptional cells are the
vertices u,, u, whose valencies are m + 1 and m* — 1, respectively, and the distance
between them equals two (the shortest path is P={u,, u,w,, w,, w,u,, u.}). In
Fig. 28b an example for (m, k) =(3, 4) is depicted.

uy u,

Fig. 28b
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Fig. 29 represents a complex belonging to M(3,4; 2,0; 0,3). Now using
Lemmas 2, 4 and 5 the assertion is proved.

b) For the emptiness of M(3,5;2,0;0, 1) see Malkevitch[11]. To prove the
emptiness of M(3,5; 2,0; 0, 3) it is necessary to distinguish a large number of
possible shapes of the path joining the exceptional vertices and the faces meeting it.
We omit the proof here, it is contained in Hornak [6].

u,

U,

u,
Fig. 29 Fig. 30

From Theorem 4a) by duality there follows the existence of complexes from
M(@3,5; 2,0; 1,1) and by Lemmas 2 and 5 the existence of complexes from
M@3,5;2,0;g, d) for every positive integer g and every odd positive integer d.

The construction used in Fig. 28a for (m, k) =(3, 5) reaches a complex belong-
ing to M(3,5; 2,0; 0, 2). Fig. 30 represents a complex from M(3,5; 2,0; 0, 5).
To conclude the proof of our Theorem use Lemmas 2 and 5.

¢) The proof follows by duality of the complexes described in the proof of
Theorem 4c). '

4. Remarks

a) In Theorems 1, 2, 3, 4 and 5 a very small portion of nearly regular
decompositions of 2-manifolds of higher genus has been treated. While for the
parameters m, k of the nearly regular cell-decompostitions from Euler’s formula it
follows that m, k<5 for the sphere only, for manifolds of higher genus these
parameters can be greater. We do not know of a general procedure allowing to
decide whether, for given parameters m, k, g, d, the classes M(m, k; 1,0; g),
M(m,k; 0,1; g), M(m,k; ¢,,&; g,d) and even M(m, k; ¢€,,¢&; g) for
(e, &)€{(2,0), (1, 1), (0,2)} are empty or not. We are unable to decide this
problem even for maps which are not required to be cell-complexes. Our
knowledge of different properties of cell-decompositions of 2-manifolds leads to
the following working conjecture: To every sequence of non-negative integers
(m, k, €,, &, d) with ¢, + & <2 there is a non-negative integer g, such that the
class M(m, k; ¢, &; g, d) is non-empty iff g = g,.

b) Another problem not touched above is: If nearly regular complexes of a
certain class M(m, k; &,, &; g) do exist, what are all possible numbers of edges
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incident with the exceptional cells? (Cf. Crowe [2] and Jendrol [7] for the
sphere.)

c) For (m, k)e{(4,5), (5, 4)} a decomposition, with a unique exceptional cell,
of the manifold of genus g such that all 2-cells are topological discs, does exist iff
g =2. However the decompositions of manifolds of genus =2 we know are not
complexes. So this gap should be filled up.’

d) Solutions of the mentioned existence questions concerning nearly regular
cell-decompositions of 2-manifolds are only first steps in the study of these
complexes. What can be told about the structure of their 1-skeletons? How many
faces of certain kind and vertices of certain valency can they have? What can be
stated about the valencies of their adjacent vertices (cf. Jucovic [9])?

e) Probably nothing has been published about nearly regular decompositions of
2-manifolds which are geometrical complexes. Finding general assertions concern-
ing the existence of such complexes seems to be a difficult task.
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MOYTHU NMPABUIBHBIE KIIETOYHBIE PA3JIOXEHUW
OPUEHTUPYEMBIX MOBEPXHOCTEN C<2 UCKIIOYUTEJIbHLIMU
KIIETKAMH

Mmupko N'opu sk—3IpHect OnoBuy

Pe3oMme

Myctb m, k>1, &, €, g =0 uenvble yncna; cumsonoM M(m, k; ,, € ; g) 0603HaYMM Kiacc Bcex
KJIETOYHBIX Pa3NlOXXEHUH CBA3HOM OPHEHTHPYEMO# MOBEPXHOCTH pofia g oONajatoUMx CIeAyOLIUMH
CBOWCTBAMM: a) CTENMeHW  BceX BeplIMH (0-KJIETKH) — MHOXHMTENM YHCIAa m 32 MCKIIOYEHHEM &,
BepLUHH ; 6) YMCNa BEPUINH BCeX rpaHel (2-KIETKH) — MHOXHTENH k 32 HCKITIOYEHHEM &, rpaHeit. Ecin
€,+&=2, To cumBon M(m, k; €,, &; g,d) oGo3HavaeT mopknacc knacca M(m, k; &€,,&; g),
KOTOPbIA COAEPXKUT BCE PA3NOXEHHS C MUCKITIOUNTENLHBIMM KIETKAMH MMEIOLIMMHU paccTosinue d (B
cMbIciie Teopun rpacos).

B craThe fnoKa3bIBalOTCA ciefyiowme yreepxaenns: Hns (m, k) e {(3, 4), (4,3), (3.5), (5, 3)}
a) knaccelt M(m, k;0,0; g)u M(m, k;0,2; g, d) ve nyctble ; 6) knaccet M(m, k;1,0; g), M(m, k;
0,1; ) u M(m, k; 1,1; g, d) nycrble TOrAa u TONbLKO TOrAa Korga g =0.

Knaccot M(4,4;0,2; g, dyu M(4,4;2,0; g,d) nna d=1 nycrele TOoraa M TOJNLKO TOrAa Koraa
g<2.

Knacc M(4,4; 0,0; g) nycroit Torga u Tonsko Torga korga g =0.

Knmacc M(3, 3; 1, 1; g, d) nycToit Torga u Tosicko Toraa korna g =d =0 a kmacc M(3,3;0,0;g) n
M(@3,3;0,2; g, d) e nycToi.

Ons d>0u(m, k)e {(3,3), (3, 4), (4, 3), (5, 3)} knacc M(m, k;2,0; g, d) nycroi TOraa 1 TOIbLKO
Toraa kxorga (g,d)=(0,1). Knacc- M(3,5; 2,0; g,d) nycToii Torga M TONBLKO TOrga KOrja
(g9, d)€{(0, 1), (0, 3)}.

AHANOTHYHbIE BONPOCHI PACCMOTPEHBI AN PA3NIOXKEHHWH C JBYMS MCKIIOYHUTENbHBIMU TPaHAMH
paccrosinus 0.
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