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ASYMPTOTIC CRITERIA FOR DESIGNS 
IN NONLINEAR REGRESSION 

W I T H MODEL ERRORS 

A N D R E J P A Z M A N * — Luc PRONZATO** 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. We derive bounds for the design optimali ty criteria under the as­
sumption tha t the supposed regression model y(xk) = rj(xk16)-\-£k , k = 1 ,2 , . . . , 
does not correspond to the t rue one. The investigation is based on the asymptotic 
properties of the LSE of 9, and full proofs of these properties are presented under 
the assumption tha t the sequence of design points { x ^ / J ^ ! is randomly sampled 
according to a design measure £. The bounds and the asymptotic properties are 
related to the intrinsic measure of nonlinearity of the model. 

1. Introduction 

In optimal experimental design one often assumes that there are no errors in 
the considered model, a condition rarely satisfied in practice. Papers considering 
robustness to model errors are usually dealing with linear models, and the main 
stress is on bias issues, that is on the term ||.v(-) — rj(':6)\\, in Theorem 1, 
below (cf. [6], [9], [11]). Here we want to show that the situation is different in 
a nonlinear regression model 

y{xk)=v(xk,0)+ek, 0 E 6 , (1) 
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with ek i.i.d. random variables, E(ek) = 0, Vai(ek) = O~2, k = 1,2,. . . . The 
model error consists in that the true description of the data is 

y(xk) = "(xk) + £
k (-) 

where v(xk) are unknown, and are outside the model (1), i.e. there is no 9 G 0 
such that v(xk) = rj(xk,0), k = 1,2,. . . . We shall show that the asymptotic 
variance of the LS estimators is modified by this misspecification of the model. 
The main question to be answered here is "how far" from the model can be the 
values v(xk), so as not to influence too much the usual criteria for the design of 
the experiment. 

Assumptions on models . We take assumptions usual in experimental design 
theory. The set 6 is a compact subset of W having no isolated points, i.e. 
int(0) = 0 . Each xk is an element of X, the design space, which is a compact 
subset of an Euclidean space. The function rj(x, 9) is continuous on X x 0 , and 
its first and second order derivatives with respect to the components of 9 exist, 
and are continuous on X x int(O). The function v(x) is continuous on X. 

2. The asymptotic properties of the LSE 

The estimator considered is the LSE 

§W = aigmm\\yW - ri(NH0)\\2 

where yW = (y(xx),... ,y(xN))T, ^N\9) = ( r / ^ , 0 ) , . . . , r / ^ , 0 ) ) T . The se­

quence of estimators {&N^}™=1 has no stabilized asymptotic properties, even 
when model (1) is true, unless the sequences {v(xk^)}k=i^ { do* } _ ' 
{dde do }°° ^ a v e s o m e regularity properties. There are different ways how 
to formulate these properties. The classical approach in [5] requires that these 
sequences have "finite tail products", the book [4] requires assumptions formu­
lated as suprema and infima of very complex terms, the same is true for [2]. Here 
we start from the point of view that in the context of experimental design the 
stress should be on formulating the assumptions in terms of the design measure, 
which, by definition, is a probability measure £ on X. The standard interpreta­
tion of £ is that the sequence of frequencies of the design points {xk}k=1 must 
approach £ (in a certain sense). Here we restrict our attention to the particular 
case that {xk}k=1 is obtained by independent random sampling from £. This 
allows to obtain complete proofs of asymptotic properties of 9^N>} in a much 
simpler way than in classical papers on nonlinear regression, maintaining the 
main feature of a general approach. 

The proofs of the following statements are presented in Section 4. 
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LEMMA 1. If {xA.}^=1 is randomly sampled from the probability distribution £. 
then, with probability equal to one, for any real function a(x, e, 9) defined and 
continuous on X xR x Q, and such that 

/ / max \a(x,e,9)\ £(dx) P(de)<oo, 

R X 

the uniform strong law of large numbers (USLLN) holds, i.e. 

N 

}}^Nl£la(xk>ek>0) = J J a(x,e,6)((dx) P(de) 
k=1 R X 

uniformly over 6 G 0 , and a.s. with respect to P and £. 

Let us denote 

\n-)-v(;0)\\2
i = jHx)-v(x,e)}2^dx). 

X 

THEOREM 1. Suppose that the sequence {xk}kL1 is randomly sampled from £. 
Then under the assumptions on the model (2), the sequence of estimators 
{0(N)}N=1 converges a.s. to the set 

6 , = argmm|| i /(-)-77(- ,f l) | | | . 

Moreover the usual estimator of a2 

y k=i 

converges a.s. to a2 + min \\v(-) — rj(-, 9)\\2 . 

Remark. According to [5], the estimator 0(N) is a measurable function of 
xk,ek, k = 1 , . . . , TV, if it is defined uniquely, otherwise, there is a measurable 
choice for §(N). 

THEOREM 2. Suppose that the sequence {xk}^=1 is randomly sampled from £. 

Suppose that Q, — {9 } is a one-point set, and that 9 G in t (0 ) . Suppose that 

A/(f, 0) is nonsingular, where 

M(t fi\ f dvfaO)dri(x,0) tfA^ M(€,0) = J —^ ^r -£( d x ) 
д д т 

x 
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and that 

Cu*{tJ)H)-*W)k<1 (3) 
where 

Oы (£>*) = max 
*J 

intvs ' ^y ueiKwo ^TM(e, 0)u 
is £/ie generalized intrinsic measure of nonlinearity (curvature) of Bates and 
Watts (cf. [1]) in model (1). at the point 0. and under the design £. Denote 

D„& 0) = / [>.(*, )̂ - "(*)] ^ g ^ £(<-*), 
AT 

MMO)=JHX,O) - t ^ y y ^ ) • 
ЛГ 

T/ien M ( f , 0 ) +£>.,(£, 0 ) , M(f, 0) + O-_2Ml/(C;, 0) are nonsingular matrices, 

and the sequence <y/N(9^N^ — 0) j converges in distribution to a random 

vector distributed normally, iV(0, o~2J~l (£, 0 ) ) . iv/iere 

= [M(e,e) + Z?^,e)][M(e it9)+<7-2M iy(e (e)]"1[Af(^e f)+0,(^,0)]. 

Remarks. Cf. [7] for a detailed derivation of the intrinsic curvature for the case 
of a finite number of design points; the generalization to F2 (£) is straightforward. 
We denoted by I the identity operator in L2(£) > a n (^ - ^ *s a n orthogonal 
projector in L2(Q defined by 

(PU)(x) =
 d^M-H^)Jd-^H^^n 

x 

for any (/>(•) € £ 2 (£) . Notice also that without the assumption of nonsingularity 
of M(f, 0) we can have irregularities of the distribution of 0 ^ , even when 
model (1) is correct (cf. [8]). 

3. Bounds for the criteria of optimality 

When model (1) is correct, and 0 is the true parameter value, then 

O-2[M(£,0)1 is the asymptotic variance matrix of 6^NK The experimenter 
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designing the experiment does not know that model (1) is wrong, and even if 
he suspects that, he does not know the true mean function v(-). The usual 
approach consists in taking a point 0(°) £ in t (0 ) , which is supposed to be close 
to the hypothetical true value of 0, and applying an optimality criterion $ on 
the information matrix M(£, 9^). One then computes the optimum design in a 
standard way, still supposing that model (1) is true. The question is how efficient 
is the resulting design in model (2). 

Any optimality criterion should respect the ordering of information matrices, 
hence a standard assumption on optimality criteria is the monotonicity 

M < M* = > $[M] < $[M*] 

where M < M* means uTMu < uTM*u for every u E W. A good design £ 
should thus give a large value of $ [M(£ , 0(°))1. This ordering is opposite to the 
standard one in most books and papers on optimum experimental design, but it is 
recommended in [10] using information arguments: the criterion should measure 
the amount of information contained in the experiment. From this interpretation 
other important properties also follow: the positivity of <E> ($[M] > 0), and the 
homogeneity of $ 

$[JfcM] = k$[M], k>0. 

For example $[M] = d e t ^ f M ] is a positive homogeneous monotone form of 
the criterion of D-optimality. 

A design £* is called locally $-optimal (in the locality of 0 ^ ) when 
$ [ M (£*, 0<°))] = max$[M(c;, 0 (o))] . On the other hand, when model (2) holds, 

the criterion function $ should be applied to «/„(£, 0 ) . Suppose 0 = 0 ^ and 

compare both criteria. The following theorem gives limits for $[«/.,(£, 0)1 in 

terms of $ [ M ( f , 0 ) ] . 

THEOREM 3. When $ is positive, monotone and homogeneous, and when 
the assumptions of Theorem 2 hold, then we have the following bounds for 

Y$[M(S,d)] < *[Ju(Z,0)] < A2$[M(£,d)] 

where 

6=l-CbA(tJ)M-)-ri{;ë)\\i 

A = l + Cint(Ç,è)\\v(-)-r1(;è)\\i 

max \v(x) — T/(x, 0)1 
Ь=l+xex 
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P r o o f . Denote M = M(£,6), Mv = MV(U), Dv = Dv{Z,0), J = 

jv(Z,e),j* = [M((,6)+D„(z,e)][M(z,e)Y1[M(z,e)+D^,e)],v = v(-), 
fj = 7](-,6), C = Cint(£,9), P = Pe. From the definition of 0 we have 
u — i) = {I — P)(u — fj). So for every u eW , u ^ 0, we have 

uT(M + Dv)u = uTMu i + 
fl-v,(I-P)uT^M\ěu 

uTMu 

where (a, b)* = j a(x)b(x) £(dx). From the Schwarz inequality 
x 

uT(M + Dv)u < (1 + \\v - fj\\^C)uTMu = AuTMu , 

uT(M + Dv)u > (1 - \\u - fj\\^C)uTMu = SuTMu . 

Hence, since uTM_1u = max[(HTcY)2/cYTMa] (cf. [3]), we have 

^-uTM-lu < uT(M + Dv)~
lu < \uTM-lu . 

A v v) ~ S 

Set u = (M + Dv)v, v e Rp , to obtain 

]rVTJ*v < vT(M + D)v < \vTJ*v 
A v v) ~ 5 

which together with (4) gives 

S2vTMv < vTJ*v < A2vTMv. 

Since Mv is p.s.d., wre have 

vTJv < vTJ*v < bvTJv 

so that 

S2vTMv < bvTJv, 

A2vTMv > vTJv. 

Since <£ is monotone and homogeneous, it follows that 

y*[M(C,£) ] < *[/„(£, *)] < A2$[M(Z,9)] . 

(4) 

D 
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4. Proofs of asymptotic properties 

P r o o f of L e m m a 1. Denote 2 = R x ^ , and z = (e, x)1 the random 
vector distributed P x ( o n 2 . Take some fixed 01 G 0 , and consider the set 

B(01,6) = {0ee: H0-01!! <s}. 

Define as(z) and as(z) as the maximum and the minimum of a(z,0) over 
the set ^(O1^). We have that E{|a(5(2:)|} and .E{|aj(z)|} are bounded by 
El max|a(2,#)|} < oo. Moreover, as(z) — as(z) is an increasing function of 5. 
Hence we can change the order of the limit and the mean to prove that 

Jim [E{as(z)} - E{as(z)}} = E { \im [as(z) - as(z)}} = 0 , 

which proves the continuity of E{a(z, 9)} at 61, and implies 

(V/J > O)(35(0) > 0)(\E{am(z)}-E{am(z)}\ < f) . 

Hence we can write for every 6 € B(91,5((3)) 

v E - j ( « w - £{-.w)W} -?.<• j y E ^ ) ^ ) - Eias(P)(z)} 
k 

<}jYla(zk'e)-E{a(z>0)} 
k 

< ^YlaH0)(Zk) ~ Ei^6(f})(Z)} 
k 

<• ^ E s w ) ^ ) - Eias(0)(z)} +«• 

k k 

N
 k 

By the strong law of large numbers we have that 

(V7>0)(3N(/? ) 7)) 

PTob{(yN>N(P,1))(\j7Zasw(zk)-E{am(z)}\ < f )} 
k 

> 1 - |Prob{(ViV> 7V(/? )7))(|i £ a , ( / 3 ) ( ^ ) - E{as(/3)(z)}\ < f ) } > 1 - \ . 

Combining with the previous inequality we obtain: 

(V7>0)(3JV(/3)7)) 

P r o b { ( V A r > ^ ( / 3 ) 7 ) ) ( ^ B m a x ^ J i T : a ( ^ ) ^ - J E ; { a ( . ^ ) } | < / ? ) } > l - 7 . 
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It only remains to cover the compact set 9 by a finite numbers of open sets 
B(6\5((3)), i = l , . . . ,n(/?) . For any a > 0 take 7 = a/n(/?), N(0) = 
maxjV.(/?, 7). We obtain 

i 

PTob{(VN>N(j3))(wag\±j:a(zk,0)-E{a(z,6)}\<l3)}>l-a, 

which completes the proof. • 

P r o o f of T h e o r e m 1. For any 9 G 0 

jfT,[y(xk)-v(xk,9)]2 

k=i 

= ^E e * + ^EHaf*)-^*'(?)le* + ^EHa:*)-^*^)l2 

k=i k=i k=i 

since ek = y(xk) — v(xk). The function (x,0,e) -» e2 4- 2[/v(x) - 7/(x,f9)]e + 

[t/(x) — 77(2;, 0)] is continuous on X x 6 x M, so the USLLN holds, and 

1 ^ 
,lim AT E !>(**) - ^ * ^ ) ] 2 = ^ + HO " ^ 0)11* (5 

TV-^oo IV 
fe=l 

a.s., and uniformly over 0 , since E(e) = 0. Denote zk = (sk,xk) and take a 
fixed sequence z = {zk}

(^=1 such that this limit holds, and denote by 9#(z 
a limit point of {6^N\z)}™=1. It exists since 0 is compact, and there is a 
subsequence {0^Nk\z)}°° converging to it. Take any 6 G 0 . By the definition 
of the LSE we have 

j-f:iy(xk)-v(xj)}2 >^Ely(xk)-v(xk,^Hz))]2. 
1 k=l l k=l 

According to (5), the left hand side converges to a2 -f \\v(') ~v('^) |L while the 

right hand side to a2 -f \\v(m) — v('i @^(z)) |L ? consequently 6#(z) G 0 . Hence 

all limit points of {§(N)(z)}™=1 , for any sequence z = {zk}k=1 which satisfies 

(5), are in 0 . 

The limit value of [s2]W then follows from (5). • 
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P r o o f of T h e o r e m 2 . For any v £ W we have by the Schwarz in­
equality 

vт[M(ţ, ) +Du(^, )]v 

f[ф,è)-ф)][i-pö]x[v dedoT \e v] ţ(dx) 
= \vTM(zJ)v] 1 + .^ , -X 

L V ; J vTM(^9)v 

hence M(f ,0)+£. , (£ , 0) is p.d.. Evidently M^J) is p.s.d., hence M(£,0) + 
a~2Af,(£,0) is also p.d.. 

Take a sequence z -= { z / . } ^ such that { # ^ H ^ ) } J V = I converges to 0. Ac­
cording to Theorem 1, the probability of sampling such a sequence is equal to 

N 2 

one. Denote JN(0, z) = -^ ^ [y(xit) ~7l(xk^ ^)] • By t n e Taylor formula we have 

0 = aJлr(M) 
д 

дJN( ,z) 

д + 
d2JN(6,z) 

d6d6T 

U(N)(z) 

with fi(N) a point between §(N)(z) and 0. We have 

jv 

iß{N) 

(N\z)~ (6) 

-x/ÎV 
ldJN(6,z) 
2 d0 ,-^-Llx-.)-('..*)] 

дфk, ) 

д 
N 

= ̂ tl[єk + (v(ч)-фk,Щ 
Ќ = I 

дфk, ) 
д 

According to the central limit theorem, the last term converges in distribution 
to a random vector distributed iVYo, O"2M(£, 0) + M^f, 0)) since 

and 

£Jþ+(K*)-r?M))] 

Varjþ+^-т?^^))] 

= я j [ є + ( . v ( x ) - . 7 M ) ) ] 

= < т 2 M ( £ , 0 ) + M „ M ) . 

fo?(s,0) 
д 

дф, ) 
д 

дф, ) дф, ) 
д д т 
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Further we have 

d2JN(0,z) _ 

O6d0T 

N 
k=i 

N 
к=l 

дr](xк, )дr](xк, ) 

д д т 

and according to Lemma 1 this expression converges a.s. with respect to xk 

and ek, and uniformly with respect to 6 to 

E<И*)«-,(M)]Í^|Ѓ } + s { ^ ^ } = ад«+A,«,„. 
'd2jN(e,z)' 

dOddT 

converges a.s. to 9. The required result now follows from (6). • 

Consequently d/^(/TZ) converges a.s. to Dv(^9) + M ( f , 0 ) since 3<N) 
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