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(Commaunicated by Stanislav Jakubec )

ABSTRACT. In this paper a recent result of Philipp and Tichy (2000) on the
well-distribution measure of certain binary pseudorandom sequences in the unit
interval is generalized. Furthermore the average value of the L2 -discrepancy of se-
quences ({qnc'i})“>1 is calculated, where (g,,),,>; is a given sequence of positive
integers and & € [0, 1]¢.

1. Introduction

Let {z} := z — [z] denote the fractional part of a real number z and for
any set M let c,, be the characteristic function of M. In this paper we study
sequences of the type w = ({qnd'})n>l, where @ = (a,,...,a,) is a vector in
the d-dimensional unit cube U¢ = [0,1]¢ and (g,),,>; is a sequence of positive
integers. Here {g,,@} stands for the vector ({g,a,},{¢,2},---,{g,2,}). In the
special case ¢,, = n we have the so-called Kronecker sequence (nd), which is uni-

formly distributed mod1 if and only if 1,a,,...,a, are linearly independent
over Z (cf. [1]).

For such a sequence w = ({g,d}), ., the standard discrepancy with arbi-

N
trary weights k; >0 (i =1,...,N), where ) k; =1, is defined by
i=1

1

N
Dy (w) = up > kncs 5 ({9,83) = A (&,9))], (1.1)
z,§)€ n=1

where J¢ is the set of all intervals of the form

[Z,7) = [x17y1) X [-'L'zayz) X
e X [zgyy) with 0 <z, <y, < 1,4

1,...,d, and A, denotes the
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d-dimensional Lebesgue measure. Furthermore the LP-discrepancy of w is de-

fined by

D (w) := (
Jd

1
N P

ancmm({qna})—Ad([f,g))’ d.fdg) . (1.2)

n=1

The L?-discrepancy Dg\’,’)(w) for p =2 and d = 1 is known as a diaphony which
has been introduced by Zinterhof [12], see also Strauch [11].

For a survey on discrepancies and other important concepts in the theory of
uniform distribution, we refer to the textbooks of Drmota and Tichy [1]
and Kuipers and Niederreiter [5].

Let now Ey = Ey(w) = {e,...,ey} with

- d
o { +1  for {g,d@} € [0, 572)",
T - d
-1 for {q,a} ¢ [0, ﬁ) ,
An important measure of the pseudorandomness of such a binary sequence E,

is its well-distribution measure defined as
W(Ey):= max

e .
a€Z,b.teN Z atbj
1<a+bt<N J<t

1<n<N. (1.3)

, N>1.

Clearly, W(E)y) can be bounded by the discrepancy of the defining sequence
({4,@}),,5, in the form

W(Ey) = max

i {qna}) - t‘

a€Z,b,teN
1<atbt<N ' n=l 5i) (1.4)
<2 max  tDy({d,4,;d} J < 1),
1<a+bt<N

where D, is the discrepancy defined in (1.1) with equal weights k, = 1/N,
n=1...,N.

For q, = n* (n=1,...,N, k€N) and d = 1, sequences of type (1.3) were
considered by Mauduit and Sdrkézy [6], who, among other things, proved
metric results on asymptotic upper bounds for the right hand side of (1.4).
Recently these bounds were improved by Philipp and Tichy [8] and at
the same time generalized to arbitrary increasing sequences of positive integers
((In)nzl .

In this paper we will derive a metric result on the asymptotic upper bound
of (1.4) for arbitrary sequences of distinct positive integers (g,,),,~, and arbitran
dimension d > 1.

196



METRIC DISTRIBUTION RESULTS FOR SEQUENCES ({g,d})

Finally, in Section 3 we calculate the L?-norm of Dﬁ)({qnd‘}) and

N
D;V(z)({qnc'i}) for arbitrary weights k, > 0, n = 1,...,N, ¥ k, = 1 and
n=1
arbitrary dimension d > 1.

2. A metric theorem for bounding W (Ey)

THEOREM 2.1. Let (g,, n > 1) be a sequence of distinct positive integers and
let @ = (ay,...,a,) € [0,1]¢ for arbitrary d > 1. Then for almost all & and
arbitrary € > 0 we have

max(tDt({quj&}, j<t):a€Z, bteN 1<atbt< N)

2.1
< N2/3(log N)!+2¢/3+e &y

Remark. This result is an extension of Theorem 1of Philipp and Tichy (8],
where (2.1) has been established for increasing sequences (g,) for the one-

dimensional case d = 1 with the sharper estimate N2/3(log N)'*¢ on the right
hand side.

Proof. The proof is based on a technique developed in [8]. Since the dis-
crepancy D, <1, we only have to consider

N2/3(lOgN)1+2d/3+€ S t S N (22)
and for the number b in the maximum we thus have without loss of generality
b< N/(t—1) < NY3(log N)~1~2d/3—¢ (2.3)

Furthermore, by application of the triangle equality, it is easy to see that we can
assume
o] < b (2.4)

without loss of generality.
Now, for h = (hy,...,h,) € Z% set

r(R) = H max(1, |h;|) and IRl = maxd|hj|.

i=1,...,
j<d !

Then for fixed a, b, t and @ the Erdés-Turdn inequality yields
tDl({qa+bja}’ J< t)

S(g)d<%+ 2 7-(1/1)

0<||Rlloo <H

>e((h {an&}))D 29

i<t
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where e(x) = exp(27ix), (-,-) denotes the dot product for d-dimensional vec-
tors and H is an arbitrary positive integer (see for example Drmota and
Tichy [1]). From (2.5) we obtain

t°D} ({4y44;0), 7 < t)

<(3) (swmree( ¥ o |Te(wnan)]) | @

|lloo <HI st

For cach . with |lEHOQ < H we have forall 1 <j, <j, <N

) 6(@’ {qa+bj&}>)'2 =E

J1<7<)2 J1<5<)2

:E< E (\27Ti(111(¥1+"'+h101)((1a+ul it _))

1<, 1252

2

]E Z e27ri(/L1(¥1+"'+Ild(Yd)q:+bJ

= j2 - j] +1,
since (g,,, n > 1) is a sequence of distinct positive integers.
But now we can apply Lemma A.1 (sce appendix) with v = 2 and the
superadditive function g(i,j) := j — i+ 1 (that g(¢,7) is indeed superadditive,
can be checked easily). Thereby we obtain

2
>e((h, {qa+bjd'}>)’ < ¢, & (og N)? (2.7)

j<t

E max
t<N/b

for some constant C|; > 1. By choosing H = [(N/b)%J + 1 we obtain for fixed
a and b from (2.6), (2.7) and Minkowski’s incquality

22 = s 3% N N CATN2 (T AT\ 2d
B max £°D; ({dass;0), 5 <) < (5) (027 + 7 - (log N)*(log N) )
(2.8)

for constants C,,C5; > 1 and thus

2 2 - N A\ 2d42
]Etrsnjs%t D} ({¢ay0;0), 7 <t) < T (log N)="*=. (2.9
Now we can apply M arkov’s inequality and together with (2.3) and (2.4) we

obtain
. - 2130100 AYLH2d 3+
P flél}(\l;;(b tD, ({qa+b](x}, Jj<t)>N**logN)

la <b<N'Y3(log Ny~ 1-2d/3=¢

<N S(log N)~14/3 > 2 max N/b- (log N)*! 7 - 1?
b<SNE 3(log N) U -d/3

<(logN) ' * .
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Hence we have for fixed r > 1

i}, j 2r/3,1+2d/3+¢ _1-36
¥ tgl'za")/(b tDt({qa-i—bja}’ J < t) >2 /3, / Lr
la|<b<on/3p—1-2d/3=¢

from which it finally follows by the Borel-Cantelli lemma that with probability 1

v}, j 2r/3, 142d/3+e
1<5"7b (tDt({qawa}, j< t)) & 22 /3y ,
la]<b<ar/3p—1-2d/3-¢

which completes the proof of (2.1). a

3. The mean of the L?-discrepancy of ({qno‘Z})

We now allow for arbitrary sequences of positive integers (g,),>; and define
for [£,i) € J¢ the remainder function

N d

Ry(Z,7,d) = z knCa,g) ({g.a}) - H(?/i - ), (3.1)

n=1 i=1

N
where k, > 0, n = 1,...,N and ) k, = 1. This can be considered as a

n=1

weighted local discrepancy function of the sequence ({g,@}).

Koksma [4] was the first to investigate the integral [ R3%(&,¥,@) da for

(0,1)¢

d =1 and equal weights k, = &, (n=1,...,N), and Strauch [10] obtained
an explicit expression for this case. The following proposition generalizes [10;
Theorem 1] in that it allows for arbitrary weights k, and arbitrary dimension
d>1.

PROPOSITION 3.1. Let (q,,,q,) denote the greatest common divisor of q,,
and q, . Then

/RN(x Z‘/,

U4

d
Z knknl H[ MT<'T1:? Yi» ( qm ) q” >] (32)

myn—1 i=1 q?n qn q1n’qn) (q1na(1n)

d
- H(?/i - -771‘,)2 )
1=1
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where

T(a"i) Y,»a, b) = ({yz(l} - {xia}) ({zzb} - {yzb}) - {yia} + {"I"ia}
+ max({y;a}, {z;b}) — max({z;a}, {z;b})
+ min ({yia}, {;b}) — min ({xia}v {y;b}) .

Proof. Since for every pair of real numbers z and y with 0 <z <y <1
and a € N we have

1
/c[JL 0 ({aa}) da=y -z,
it follows from definition (3.1) that

/ R3(Z,7,@) da

- / (XN:knc[m-,,;,({qnff}))2
ge "=

d N d d
-2 H(yi - ;) Z /kn H Clzs,u:) ({qnai}) da + H(yz - xi)2
i=1 n=1 i=1 i=1
/(Zk H Clas,y:) {qnaz}))
v d N d d
- 2H(yi - z;) Z k, H(yi —-z)+ H(yi -z,;)

al[g / (Zk II—IC[Z i) {qnaz})) da, - d_ijl:(yi_ﬂfi):Z.
(3.3)

It has been shown in [10] that for every pair of real numbers = and y with
0 <z <y <1 and positive integers ¢,,, 9,

1

/ o) (10Dt ({0,0)) da

2
2 (qm’ qn) T( qm qn )
= —-T) +— z,y s s
(y ) m "~ In ’ (qm’ qn) (qma qn)
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which can now be used to calculate the integrals in (3.3) by using
1 1y,
/ / Hc[z. vi) {qmaz} Hc[x,,y, {qna1}) dal dad

=0 ag=0 =1
1

d
H / [a:‘ Yi) {qmal}) [7:.,1. ({qnaz}) da

a,_O

which completes the proof of (3.2). O

Proposition 3.1 can now be used to calculate the L?-norm of the L2-discre-
pancy Dﬁ)({qn(i}) with arbitrary weights k;:

THEOREM 3.1. We have

[P (a5, = (%— 1—;) XN: k,k,, (3.4)

m,n=1
dn=qm

Proof. By changing the order of integration we get

/( k{qna} da—///R2 d d&d7,

Jd yd
which by (3.2) yields
2
2 —
/(Dﬁv’({qna})) da
Ud
< (9> 9) q q
k. k // [ 24 ’"’—"T(:v.,y,, mo_ " )] dZdy
,,;1 ;I;Il ( ) m n ’ ) (qm’qn) (qm’qn)
Jd
d
- // H(yi —x;)? d¥ dy
Ja i=1
N d
SO | G R
m,n=1 =1 0<z;<yi<1
(4> 9,)° ( q q )]
+ - Tz, Y., m__ 1 dz, dy,
qm ’ qn ’ Jl (qm’qn) (qm’ qn) Y

‘ﬁ // (y; — z;)* dz; dy; .

=logei<yi<t
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But from [10; Corollary 2] it follows that for all a,b € N

0 for b,
// T(wi,yi,(l,l)) dmi dy¢ — { ) or a # )]

0<ai Ly <1 3 fora=b,

so that

[ (P2 a.an)” aa

U

d
N d
— . qm ? qn
- Z k"km H ( ) Z knkm H 12 d

m,n=1 i=1 (]mqn m,n=1
In=Aqm qnyéqm
N N
1 1 1
= Z kn m 12(1 Z knkmﬁ + Z knkm@ - —]_—ﬁ
m,n=1 m,n=1 m,n=1
dn=qm gn=qm
N
1 1
= (G—d - Tz_d) Z knkm'
m,n=1
dn=Qqm

O

EXAMPLE 1. For equal weights k, = & (n=1,...,N) and d =1 in (3.4), we
obtain

[ (08 tasan) = i 3

m,n=1
{In—‘Im

which is given in [10; Theorem 2].

EXAMPLE 2. If (¢,),>; is a sequence of distinct positive integers, equation (3. 1)

gives
(2) - 2 — 1 1 N 2 [
/(DN ({%p})) da = (@ _ Tz_d) Sk (3.5)
Ud n=1
Remark. In [9], Schoissengeier pointed out that for ¢, = n (n =
L,...,N), equal weights k, = & and d = 1, the asymptotic order of the

L%-norm of D, is 1/V/N. Equation (3.5) shows that in this case 1/VN is

also the right order of magnitude of the L?-norm of Dﬁ) and, more generally,
that this asymptotic result also holds for arbitrary, but fixed dimension d and
arbitrary sequences of distinct positive integers (g,,),,>1 -
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In the theory of uniform distribution it is of particular interest to consider
the discrepancy of sequences with the underlying set system J(‘,i consisting of
intervals of the form [0,%) = [0,¥,) x [0,¥,) X --- X [0,y,) with 0 <y, <1,

i =1,...,d, which is called the star discrepancy D} of w = ({qnd'})n>] , SO
N
D) = s |3 kg (6,81 - A (0.7)],
[0,37)ng n=1

and correspondingly

D;v(p)( ( /

1
p I3
dg‘) .
Jg

By Roth’s theorem (see e.g. [1]), for any dimension d there exists an ab-
solute constant ¢; > 0 such that (D;‘Vu))2 > cd%d—t for any N points
I,..., Ty €[0,1]¢.

Proposition 3.1 allows us to investigate the average value of D;V(z) (w) (with
respect to the L?-norm):

Zk 0,7 (12,8}) — 24((0, %))

n=1

THEOREM 3.2. We have

. 2
[ (2 a,a)" da
Ud
1 (¢, 9,) 5\ 1
mglk k ( 12 (Im q” ) mzn:lkm "( <T2-) >—3_d
(3.6)

dn=qm
Proof. We proceed similarly to the proof of Theorem 3.1. As we now have
z, =0 (i=1,...,d), we see from (3.2) that

/( '(2)({(1"(1}))

Ud

1
[ [R05.8) daay, -,

yd_O vd

|5 T (i} s )

m,n=1

1 1
qnY; 4,,9;
_ mJi nJi dy, ---dy, — / / 2d ...da
{(qm,q”)}{(qm,qn)})} o W J Hy’ Yool

y1=0 ya=0 =1

<
-

I
L~~~

1
\H

Il
<)

n
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N o[ (04 Y 1,Y;
- k‘ Y + m? in mln({ mJi }’{ nJ1 })
Z kn m H / [/1 qmqn (an’ qn) (qm’ qn)

- { qmyi }{ qnyi } dy _ i ‘
(qm’ qn) (q1na qn) ! Sd

Since
h L for a#b
i Y {by.}) — {ay, }{by, =) ’
/(mm({ay,},{ vi}) - oy, Hb,} ) dy, { 1 forach
0
for arbitrary a,b € N (see [10]), we conclude that
2
/(DN(2)({qnd’})) da
Ud
1 (g %)
= k ~Am’ In/s _—
m;] n 1n< 12 qmq” m;_ knkm 2d d
qmqun Gm=Qn
1 1 (q,q,) 5\ 1
— k — Mmoo dn/ - .
n;_ < T2y, Z ok 2d (12) 3

m,n=1
an —’Im

EXAMPLE 3. For d =1 equation (3.6) gives

1 1
N
— 1 (qm’qn
/ /R O.y,0) dyda = > k,k, = Z

q
y=0 a=0 m,n=1 Inn m,n=1
qm =d4n

which for k, =& (n=1,. . , V') was already derived in [10].

ExampLE 4. If (¢,,)

n>1 18 a sequence of distinct positive integers, then it follows
from (3.6) that

/(D*( )({qnﬂ }))2(107

U
N 1 oy d
= Z k7 k (— i(qm’qn)~ | _1_ _ (i)d ]\2 _ i
m,n=1 A3 * 12 Iy i 2¢ 12 Z ! 3¢
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Remark. Gal [3] showed that

(G 90)’
Z M«N(loglogN)'z

m,n=1 man

for every finite sequence (g, ), >, of distinct positive integers." This bound is
also tight. Thus for equal weights k, = & (n =1,...,N) and arbitrary, but
fixed d > 1 we can determine the asymptotic behavior of (3.7):

[ (93 (ta.a1) " aa

yd

N 2
1 d (4 0,)° 1 ((qm,qn) )
=30t TaNT g Z N2Z 3 Z=1 U

mn=1 dmn

< (loglog N)?

N bl
so that the L2-norm of Di'*)({q,&}) is of asymptotic order lﬂg\l/—"—]sﬂ

Appendix

Let ¢(7,7) be a superadditive function, i.e. a function satisfying

9(4,7) 20 forall 1<i<j<n,
9(3,7) <g(,j+1) forall 1<i<j<m,
9(i,5) + 9 + 1,k) < g(i, k) forall 1<i<j<n.

The following lemma is a special case of [6; Corollary 3.1]:

LEMMA A.l. Let X,,..., X, be arbitrary random variables and put S(i, j) =
X;+--+X; and M(3,j) = max{|S(i,9)|,|SG, i+ 1)],..., 1S 5|} for 1 <i <
Jj < n. Suppose that there ezists a superadditive function g(i,j) such that

EISGE N <g@,j)  forall 1<i<j<n
for a given real v > 1. Then
EM"(1,n) < g(1,n)(llogn) +1)"

!This result was extended for weighted sums in Dyer and Harman [2].
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