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Math. Slovaca 28,1978, No. 2,189—202 

DIRECTED GRAPHS AND MATRIX EQUATIONS 

JURAJ BOSAK 

1. Introduction 

Throughout the paper the symbols a, b, c, d denote non-negative integers such 
that a^b, and i, /, p denote positive integers. All considered matrices are square 
and all graphs are finite; loops and multiple edges are allowed. 

A directed graph G is said to be a Wa-graph (cf. [2]) if for any two vertices u and 
v of G there is in G exactly one (directed) walk [3] from u to v whose length c 
fulfils the inequalities a^c^b. 

A directed graph G is said to be regular of degree d (or, briefly, a graph of 
degree d) if for every vertex v of G there exists in G just d edges directed from v 
and just d edges directed to v. 

In this paper we prove that any W£-graph is regular. Moreover, we prove that 
a W*-graph of degree d has da +da+1 + ... + db vertices (we put 0°= 1) and we 
deduce a necessary and sufficient condition for the existence of a W* -graph of 
degree d. Thus, some results of [7] and those announced in [2] are generalized. We 
use standard matrix methods (see, e.g., [11]). 

By the adjacency matrix of a directed graph G with vertices vu v2, ..., vp we 
mean the p Xp matrix A =(fli/), where au is the number of edges of G directed 
from Vi to Vj. It is well-known that the (i, /) entry of Ac is the number of walks of 
length c from vt to Vj ([3], Theorem 16.8; [1], Chapter 14; [11]). Consequently, we 
have: 

Lemma 1. A directed graph G is a Wa -graph if and only if the adjacency matrix 
A of G satisfies the equation 

(1) Aa+Aa+1 + ...+Ab=J, 

where J is the matrix each entry of which is 1. 
(For every matrix A we put A° = I, the identity matrix, and we suppose the 

matrices J and / to be of the same order as A is.) 
Lemma 1 enables us to express some considerations concerning W* -graphs in 
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matrix terms, and conversely. We start with some simple auxiliary results concer­
ning matrices. 

2. Results concerning matrices 

Lemma 2. Let A be a matrix with non-negative integer entries such that (1) 
holds. Then we have: 

I. If b>a, then all diagonal entries of the matrix A c ( l =^c ^ b - a) are equal to 
zero. 

II. Every matrix A c ( 0 = ^ c ^ 6 ) is a 0-1 matrix. 
Proof. I. The equation (1) can be written in the form 

(2) (I + A + A 2 + . . . + A b - a ) A a = J . 

Suppose that there is a non-zero diagonal entry in some A c (l^c^b — a). Then 
the corresponding entry of/ + A + A 2 + ... +Ab~a is ^ 2 . From (2) it follows that 
in J there exists also an entry ^ 2: in the case a = 0 this evident; in the case a ^ 1 
this follows from the fact that in every row of A (and, consequently, of Aa as well) 
there is an entry ^ 1 (otherwise (1) cannot be true). 

II. Suppose that some A c , 0 ̂  c ^ b, has an entry ^ 2. Then evidently 0 < c < a, 
so that a — c ^ 1. Obviously, A (and, consequently, Aa~c as well) has in every row 
a non-zero entry. Therefore Aa =AcAa~c has an entry ^ 2 , which is impossible. 
Q.E.D. 

Lemma 3. Let fbe a polynomial and let Abe a p Xp complex matrix such that 
f(A) = J. Then all row and column sums of A are equal to a constant 8 and 
P = / ( S ) . 

Proof. Denote the row sums of A by au a2, ..., ap and the column sums of A by 
Pi,p2, . . . , | 3 P . We shall prove that a, =j3; for every i,j e {1, 2, ..., p}. Obviously, 

AJ = Af(A)=f(A)A =JA . 

Denote by atj the (i, /) entry of A , and by fel7 the (i, j) entry of AJ = J A. Then 

p p 

«i = X (a* • !) = ba = X C1 • <*"/) = ft • 
« = 1 n = l 

Thus all row and column sums of A are equal to the same number, say 8. Hence 
the row and column sums of A c are 8C. It follows that all row and column sums of 
f(A) = J a r e / ( 6 ) = p . Q.E.D. 

Theorem 1. Ler A be a p Xp matrix with non-negative integer entries such that 
(1) holds. Then the row and column sums of A are equal to a non-negative integer 
constant d and 
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(3) p = d a + d a + 1 + ...+d\ 

Moreover, it p±\, then A is a 0-1 matrix. 
Proof. The first part follows from Lemma 3 for 

(4) / ( x ) = JC f l+xa+1 + ...+Jc\ 

(Evidently, now d = d is a non-negative integer.) 
Let p ^ l . Then b=/=0 (b=0 implies J = A° = I so that p = 1). According to 

Lemma 2, part II, A is a 0-1 matrix. Q.E.D. 

3. Results concerning graphs 

By a pair of oppositely directed edges in a graph we mean a set consisting of two 
edges joining two different vertices u and v such that one edge is directed from u to 
v and the other one from t; to w. 

If we express Theorem 1 in terms of graphs, we get: 

Theorem 2. Let G be a Wa-graph with p vertices. Then G is regular and (3) 
holds, where d is the degree ot G. Moreover, ifp =£ 1, then G has no multiple edges 
except, possibly, for pairs of oppositely directed edges. 

Theorem 2 allows us to consider, when studying W„ -graphs, regular graphs only. 
Given integers d and a such that d ^ 1 and a ^ 0, we shall define two directed 

graphs A(d, a) and B(d, a) and study some basic properties of them. 
The graph A (d, a) is defined as follows. If a = 0, then A (d, a) is the one-vertex 

graph with d loops. If a ^ 1 , then the vertex set of A (d, a) is {1, 2, 3 ; . . . , da}. From 
a vertex y a directed edge goes to all vertices z such that 

(Ai) y=sd + g, 

(A2) z = (h-\)da~l + s + \, 

where s, g, h are integers satisfying the inequalities 

(A3) 0^s^da~x-\ 

(A4) \^g^d, 

(A5) \^h^d. 

Graphs A(2, a) for a = 0 , 1, 2, 3 are drawn in Fig. 1. 

Theorem 3. Let d^\ and a^0. Then A(d, a) is a Wa-graph of degree d. 
Proof. For a = 0 the assertion is trivial. Therefore we suppose a ^ 1. The proof 

will be divided into five parts. 
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I. Let u be a vertex of A(d, a). Denote by Vc(u) the set of vertices v of A(d, a) 
such that in A (d, a) there is a walk of length c from Mtov. We prove by induction 
on c that the following implication holds for c = 0 , 1, 2, ..., a: 

(Y) y , y ' e V c ( M ) = > y s y ' ( m o d d ° - c ) . 

A(2.0) A(2.1) A(2.2) A(2.3) 

Fig. 1. W^-graphs of degree two (O^a ^ 3 ) . 

For c = 0 (Y) evidently holds. Let (Y) hold for c = n, where n is an integer such 
that O^n^a-1. We want to prove that (Y) holds for c = n + 1 , i.e. 

(Z) z, z' 6 Vn+1(u)=>z=ť (modd '-"-1). 

Let z, z' e Vn+i(u). Then in A(d, a) there are directed edges (y, z) and (y', z') 
such that (A!)—(A5) and the following relations (A;)—(A5) hold (where s, g9 h,s', 
g', h' are integers): 

(AÍ) 

(AÍ) 

(AÌ) 

(AІ) 

(AŚ) 

y'=s'd + g', 

ť = (h'-l)ď-l+s' + l, 

O^s^d*-1-!, 

'l*íg'**d, 

l^h'^d. 

As y, y' eVn(u), the induction hypothesis implies that there is an integer / such 
that 

(A6) 

Then 
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y-y' = ld'-n. 

g-g' = (y-sd)-(y'-s'd) = ld°--d(s-s'), 



so that 

g=g'(modd). 

However, (A4) and (A4) imply g=g'. Therefore 

(A7) y-y' = (s-s')d. 

If we compare (A6) and (A7), we get 

s-s' = lda~n-\ 

But then 

z-z' = (h-h')da-1 + (s-s') = da-n-l(l + hdn-h'dn), 

thus (Z) holds. Hence (Y) has been proved. 
II. We prove by induction that 

\Vc(u)\=dc 

for c = 0, 1, 2, ..., a. 
For c = 0 the assertion is true. Let it hold for c = n, i.e. \Vn(u)\=dn, where 

0^n^a-l. We show the assertion to be true for c = n + 1. Evidently, zeVn+l(u) 
if and only if there exists an edge (y,z) such that yeVn(u). The induction 
hypothesis implies that the vertex y can be chosen in dn ways. According to (A2) 
and (A5) from every vertex y of A(d, a) there go exactly d edges ending in d 
mutually different vertices of A(d, a). Therefore it is sufficient to prove that if 
A(d,a) has edges (y, z), (y\ z'), where y, y' e Vn(u), z, z'eVn+l(u) andy=£y', 
then z^ z ' . Suppose again that (A-)—(A5) and (AJ)—(A5) hold. Admit that z=z\ 
i.e. 

s-s' = (h'-h)da-\ 

(A3) and (A3) imply s — s' = 0 so that 

y-y' = (s-s')d + g-g' = g-g'. 

Putting c = n in (Y) we get (A6) so that 

g-g' = y-y' = lda-n. 

As a — n ^ 1, it follows that g = g' (modd) and according to (A4) and (A4) we have 
g = g'. Hence y-y' = (s -s')d + (g -g') = 0, i.e. y=y\ a contradiction. 

III. We prove that for c = 0 ,1 , 2 , . . . , a there are exactly dc walks of length c from 
u to a vertex of Vc(u) and these dc walks end in mutually different vertices of 
A(d, a). For c = 0 the assertion holds. Suppose it to be true for c-n, where 
n^a-1. According to (A2) and (A5) each of the walks of length n from u to some 
of dn vertices of Vn(u) can be prolonged in d ways. We get dn+1 walks. They are 
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mutually different and they end in different vertices of Vn+1(u), as Vn + l(u) has 
according to II dn+l vertices. 

IV. We prove that A(d,a) is a W*-graph. Without loss of generality it is 
sufficient to prove that from u there exists to every vertex of A(d, a) exactly one 
walk of length a. According to II we have \Va(u)\ = da. Thus Va(u) contains all 
vertices of A(d, a). By III there exist from u to the vertices of Va(u) just da walks 
of length a, thus to every vertex of A(d, a) exactly one walk of length a. 

V. Now Theorem 2 implies that A(d, a) is regular of degree d. Q.E.D. 
The graph B(d, a) is defined as follows. If a = 0 , then B(d, a) is the complete 

digraph (without loops) with d + 1 vertices (d^l).U a^l, d^l, then the vertex 
set of B(d, a) is {1, 2, ..., da +da+1}. From a vertex y a directed edge goes to all 
vertices z such that 

(BO y=sd + g, 

(B2) z=h(da~l + da)-s, 

where s, g, h are integers satisfying the inequalities 

(B3) O ^ s ^ ^ F ^ - l , 

(B4) l^g^d, 

(B5) l^h^d. 

Graphs B(2, a), a=0, 1, 2 are drawn in Fig. 2. 

B ( 2 , 0 ) B(2.1) B ( 2 . 2 ) 

Fig. 2. W"+,-graphsof degree two (O^a *S2). 

Theorem 4. Let d^l and a^O. Then B(d, a) is a W°a
+l-graph of degree d. 

Proof. The proof is analogous to that of Theorem 3, therefore we indicate only 
changes to be made and we have left the details to a reader. Relations (Ai)—(A5) 
are always replaced by (Bi)—(B5), and those of (A!)—(A5) by 
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( B ; ) y'=s'd + g\ 

(BJ) z> = h'(da~x + da)-s', 

(B3) 0^s'^da-1 + da-\, 

(Bi) \^g'^d, 

(B'5) \^h'^d, 

respectively. 
I. We prove the following implication 

(Y*) y, y' e Vc(u)^>y =y' (modda~c + da~c+l) 

for c = 0 , 1, 2, ..., a. 
II. We prove by induction that | VC(M)| =dc for c = 0, 1, 2, ..., a + 1. 
III. We prove that for c = 0, 1, 2 , . . . , a + 1 there are exactly dc walks of length c 

from w to a vertex of Vc(u) and these dc walks end in mutually different vertices of 
B(d,a). 

IV. To prove that B(d,a) is a Wr'-graph, we firstly prove that 
Vc(u)nVc+1(u) = 0 for c = 0, 1, 2, ..., a. Let us admit the existence of 
yeVc(u)nVc+1(u) and suppose (BO, (B3), (B4) to be true. As yeVc+l(u), in 
B(d, a) there is an edge (y' y) such that y'eVc(u) and (BJ), (B^), (B4) hold. 
According to (Y*) we have 

sd + g=s'd + g' (modda-c+ da~c+l) 

so that there is an integer / such that 

y=sd + g=s'd + g' + l(da-c + da-c+l). 

A s (y\ y) is an edge of B(d, a), we have 

y=h'(da+da-l)-s' 

with h' satisfying (B5). Comparing the last two equalities, we get 

g' = (d + \)(h'da-1-s'-lda-c). . 

Thus g' is a multiple of d +1, a contradiction to (Bi). We have proved Vc(w) n 
VC+1(W) = 0. 

Now II implies that Va(u)uVa+1(u) has da +da+l different vertices, i.e., all the 
vertices of B(d, a), and the assertion follows from III. 

V. Theorem 2 implies that B(d, a) is regular of degree d. Q.E.D. 
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4. Main results 

Theorem 5. The following three assertions are equivalent: 
I. There exists a Wb-graph of degree d with p vertices. 

II. There exists a p xp matrix A with non-negative integer entries such that all 
row and column sums of A are d and (1) holds. 

III. One of the following conditions holds: 
(i) b=a, d^l, p=da. 

(ii) b=a + l, d^l, p=da+db. 
(iii) b^a+2, d = l, p=b-a + l. 
(iv) b^a=0, d = 0, p = l. 

Proof. III=>I. In each of cases (i)—(iv) we give an example of a W*-graph of 
degree d with p vertices: 

(i) A(d, a) (see Theorem 3). 
(ii) B(d, a) (see Theorem 4). 

(iii) Zb-a+x (the graph induced by the edges of a directed cycle on b—a + 1 
vertices), 

(iv) Ki (the graph with one vertex and no edges). 
I=>II. This implication follows from Lemma 1. 
II---Mil. According to Theorem 1 we have (3). If d = 0, then a=0 (otherwise 

p = 0, a contradiction) and p = 0°= 1 so that (iv) holds. Therefore we can suppose 
d^l. If b =a or 6 = a + 1, we have (i) or (ii), respectively. 

It remains to deal with the case b^a+2 and d^ 1 so that p ^ 3 . We use the 
method from the proof of Theorem 3 of [7]. 

The eigenvalues of J are Xx = A2 = ... = AP_! = 0, Ap =p. Then for the eigenvalues 
ju,, p,2, ..-, jUp-i, \LP of A we have 

(5) /(^1) = A1 = 0, 

/(^2) = A2 = 0, 

/(iup_1) = Ap_1 = 0, 

/(/^p) = A p = p , 

where / is defined by (4). Evidently, d is an eigenvalue of A . According to 
Theorem 1, f(d) = p, therefore \ip=d. 

From (4) and (5) it follows that each of the eigenvalues \iu /i2, ..., \ip_x is either 
zero or a root of the binomial equation xb~a+l = l different from one. Therefore for 
every/ e {1,2 , . . . , p - 1} either ^ = 0 or there exists n e { l , 2 6 - A } such that 

fr-(on, 
where 

co^e 2" , 
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r~b-a+l' 

Denote the multiplicity of the eigenvalue (on in A by m„. (The eigenvalue (ip=d 
has multiplicity 1; the eigenvalue 0 has multiplicity p — mi — m2 — ... — mb-a — 1.) 

From Lemma 2 (part I) it follows that for c = 1, 2 , . . . , b - a the trace of ac is zero 
so that 

li\+lic
2 + ...+lic

p=0. 

This equality can be written in the form 

(6) mx(o
c +m2((o

2)c + ... + mb.a((o
b-a)c + dc = 0, 

(c = l , 2 , . . . , f o - a ) . 

(6) can be considered as a system oib —a linear equations for the unknows mu 

m2, ..., mb-a. The (Vandermonde) determinant of (6) is 

\n = l / / l-£m<:n«£b-a / 

However, for our purposes we need to determine only the first unknown mx 

d(d-o)2)(d-a)*)...(d-o)b-°) 
a)b-°(l-æ)(l-a)2)...(l-cob-°-1) (7) m i = ^b-*f1 , , \ M ,,2X / ! , , b - a - l 

As all roots of the equation 

*b _ a +jcb"a_1 + ... +x2 + x + 1 = 0 

are (o, (o2, ..., (ob~a, we have the identity 

jcb_a +jcb_a_1 + ... +x + 1 = (x - (o)(x - (o2)...(x-(ob~a) 

so that 

db-a+db-a-l + ... + d + l = (d-(o)(d-(o2)...(d-(ob-a). 

Therefore (7) can be written thus: 

d(db-a+db~a-l + ... + d + l) 
m, = — (d-tí))æb-°(l-o))(l-o)2)...(l-(ob-°-í) 

Since m, and d are non-zero and real, there is real also the denominator 

(8) t = (d-o))o)b-°(\-o))(\-o)2)...(\-o)b—'). 

We observe that for every integer n we have 

(9) l - o T ^ e " " , 

197 



where qn is real. In fact, 

1 — (on = 1 — cos 2ra — i sin 2ra = 

= 2 sin2 ra - 2i sin ra cos ra = 

= "~ 2i sin ra (cos ra + i sin ra) = 

= *<?« rrni, 

where qn = - 2 sin ra. Substituting tt = 1,2, ..., 6 - a - 1 in (9), we get from (8) 

t = (d-co) e2ri<b-a)iqi e" iq2e
2ri...iqb.a.l e(6— ,)ri-= 

= (d - co) eri(b"a) ^a-1q1q2...qb-ail eri(1+2+ +(b"a)). 

However, 

e r i ( b - f l ) = e r i ( ^ a + 1 ) e - r i = e „ i e - r i = _ . - r i ^ 

r i ( l+2 + . .-«-(6-a)) _ / .ni/2\b -a _ ; b - a 

c — ^e ; — i , 
therefore 

r=-(d -a j )e- r i i 2 ( b ' a ^ 1 ) ia 1 ( 7 2 . . . ( 7 b ___ 1 = t 7 (d - e 2 r i ) e - r i i , 

where 
q=(-l)b-aqlq2...qb_a_l 

is non-zero and real. Hence 

(d - e2ri) e"r i = i(de~ri - eri) = i(d cos r - id sin r -

- c o s r - i sinr) = (d + l ) sinr + i ( d - 1) cosr 

is a real number so that 

( d - l ) c o s r = 0. 

However, as b —a ^ 2 , we have 0 < r < j i / 2 , hence cosr =£0 and d = 1. Substituting 
this result into (3), we get p =b —a + 1 and (iii) holds. Q.E.D. 

R e m a r k . Evidently, the only W_-graph satisfying (iii) or (iv), is Zb_a + 1 or Ku 

respectively. Thus we have: 

Corollary 1. Every Wb-graph with b?za+2is either Zb__+1 or Kx (this case can 
occur only for a=0). 

To find all W_-graphs satisfying (i) or (ii) seems to be a difficult problem. A very 
special case a = b = 2 (corresponding to the matrix equation A2 = J) has been 
studied by several authors (see, e.g. [5], [8]) but it is still not completely settled. We 
are able to describe only some general properties of W_-graphs. 
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Lemma 4. The number of closed walks of a length c ̂  1 inaWa -graph of degree 

d is 

dc, if b=a\ 

dc+d(-l)c, if b=a + l. 

Proof. Let A be the adjacency matrix of a W*-graph of degree d. If b =a, then 
Aa =J and the eigenvalues of A are \ix = \i2 = ... =[iP-\ = 0, \ip=d (cf. (5)). Thus 
the eigenvalues of Ac are \i\=\ic

2 = ... = \ic

P-\ = 0, \ic

p =dc. The number of closed 
walks of length c is equal to the trace of A c, trAc = \i\ + \ic

2 + ... + \ic

p-x + \ic

p = dc. 

If b =a + 1, then A a + A a + 1 = J and then A has one eigenvalue d, d eigenvalues 
( - 1 ) and the other eigenvalues are equal to zero. The matrix Ac has one 
eigenvalue dc, d eigenvalues (— l) c and the others are zero. Thus the number of 
closed walks of length c is trAc = dc + d(- l ) c . Q.E.D. 

Theorem 6. Let G be'a Wa-graph of degree d. Then we have: 
I. G has exactly d loops if a=b, and no loops if a<b. 

II. The number of pairs of oppositely directed edges of G is 

Й) if b=а^\, 

III. G has diameter 

( + 1\ 
2 / 

if b=ал 

0, otherwise. 

b if d^2, 

b-а if d = \, 

0 if d = 0. 

Proof. I. If a s^b ^a + 1, it is sufficient to put c = 1 in Lemma 4. If b ^a + 2, 
the result follows from Corollary 1. 

II. If b = a ^ 1, according to Lemma 4 the number of closed walks of length two 
in G is d2. However d of these walks are formed by loops and each pair of 
oppositely directed edges corresponds to two closed walks. Thus we obtain the 
number 

(d>-d),2 = Q. 

For b = a + 1 the proof is analogous. The rest of the proof follows from Theorem 5 
and Corollary 1. 

III. For d = 0 the assertion is evident. If d = l, then G is Zb-a+l and has the 
diameter b —a. 
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Let G be a W*-graph of degree d^2. Obviously, for the diameter k of G we 
have k ̂ b. If k <b, then every vertex of G is reachable from a fixed vertex of G 
by a walk of length ^b - 1. But in a regular directed graph of degree d there exist 
only 

db-\ 
l+d + d2+... + dь-l=-

db-\ 

d-\ 

such walks, so that 

d-\ 

and, consequently, db^\+p(d — \). Thus, according to (3) we have 

p = da+ da+x + ... + db ^db ^ 1 + p(d - 1 ) ^ 1 + p , 

a contradiction. Therefore k = b. Q.E.D. 

5. Related problems and results 

In [7] the following class of graphs has been introduced (we use a somewhat 
adapted terminology): 

A digraph G is said to be a graph G6, a if the following conditions hold: 

1° The diameter of G is b. 
2° G is a W* -graph. 
3° G has no closed walks of a length c, where \^c^b — a. 
[By a digraph we mean a (finite) directed graph without loops or multiple edges; 

however, we admit pairs of oppositely directed edges.] 
From Lemmas 1 and 2 (Part I) it follows that 3° is superfluous as it is 

a consequence of 2°. 
From Theorems 5 and 6 we have: 

Corollary 2 ([7], Theorem 3). 
I. The graphs Guo are just the complete digraphs. 

II. For b^2 the only graphs Gb,0 are Zb+X. 
III. The graphs Gb,a do not exist if a > 0 and b^a+2. 

The authors of [7] left open the question of existence of graphs Gb,b-X (b^2) 
and Gb,b (b^O) with a given number of vertices (there is given one example of G2, i 
with 6 vertices). However, from Theorems 2, 5 and 6 it easily follows: 

Corollary 3. 
I. There is no graph Gbtb except for K, (with b = 0 ) . 

II. A graph Gb,b-X (b^2) with p vertices exists if and only if 

(10) p=db~1(d + \ ) , 

where d is an integer, d^2 (and then this digraph is regular of degree d). 
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(The necessity of (10) has been also mentioned in [7].) 
Now we replace equation (1) by a more general equation 

(11) Aa> + A a*+ . . .+A f l«=AJ . 

It is easy to obtain the following result. 

Theorem 7. Let p, n and A be positive integers and au a2, ..., an be non-negative 
integers with ai<a2<...<an. Let A be a p xp matrix with non-negative integer 
entries satisfying (11). Then the row and column sums of A are equal to 
a non-negative integer d and 

p=l(da* + da*+... + da»). 

Proof. It is sufficient to use Lemma 3 for 

Q.E.D. 

/(*) = (x°'+x°* +... +*"-). 

Problem. For what parameters p, n, d9 A, au a2, ..., an, satisfying the conditions 
of Theorem 7, has the equation (11) a solution A with non-negative integer entries 
such that the row and column sums of A are dl 

The problem has also an obvious graph-theoretical interpretation: When does 
there exist a regular directed graph of degree d with p vertices such that for any 
two vertices u and v of G there are in G exactly A walks from u to v whose lengths 
are in the set {au a2, ..., #„}? 

Theorem 5 answers the question in the special case 

A = 1, a2-al = a3-a2= ... = an —an-x = 1. 

Also other special cases may be of interest. 
All graph-theoretical problems studied in this article may be modified in such 

a way that the conditions concerning the uniqueness (or the number A) of walks are 
related only to different vertices u and v of G. This leads to the matrix equation 

Afl' + A f l *+. . .+A f l "=D+A . / 

with two unknown matrices (having non-negative integer entries) A and D, where 
D should be diagonal. A special case n = 1, ax = 2 has been studied in [6] and [8]. It 
is interesting that in this case the assertion concerning the regularity of a graph has 
some exceptions (see [8]). 

Finally, let us mention that (1) can be modified so that it is only demanded that 
all the entries of A ° + A a + 1 + . . . + A b are positive. This leads to the study of 
irreducible matrices (or relations) and strongly connected directed graphs. These 
questions have been studied in many papers, see e.g. [4], [9] and [10]. 
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OPИEHTИPOBAHHЫE ГPAФЫ И MATPИЧHЫE УPABHEHИЯ 

Юpaй Б o c a к 

P e з ю м e 

Пycть a и b - нeoтpицaтeльныe цeлыe чиcлa. Koнeчный opиe гиpoвaнный ф a ф G нaзывaeтcя 
W*-фaфoм, ecли для пpoизвoльныx eгo вepшин u и v cyщecтвyeт в G тoчнo oдин opмapшyт из 
вepшины u в вepшинy v, длинa c кoтopoгo yдoвлeтвopяeт нepaвeнcтвaм a^c^b. 

B paбoтe пoкaзaнo, чтo Wj-фaф вceгдa oднopoдный и cлeдyющиe ycлoвия paвнocильны: 
1. Cyщecгвyeт Wj-фaф cтeneни d c p вepшинaми. 
2. Cyщecтвyeт квaдpaтнaя мaтpицa A пopядкa p c нeoтpицaтeльными элeмeнтaми тaкaя, чтo 

cyммa вcex элeмeнтoв пpoизвoльнoй cтpoки (пpoизвoльнoгo cтoлбцa) paвнa d и A в + A в + l + . . . + 
Aь =J, гдe J - мaтpицa, вce элeмeнты кoтopoй paвны 1. 

3. Bыпoлняeтcя oднo из ycлoвий: 
(i) b=a,d^\, p=da. 

(ii) b=a + \, d^\, p=da+dь. 
(iii) b^a+2, d = \, p=b-a + \. 
(iv) b^a=0, d = 0, p = \. 

Taким oбpaзoм, oбoбщeны peзyльтaты cтaтьи [7]. Kpoмe тoгo, иccлeдoвaнo нecкoлькo cмeж-
ныx вoпpocoв, oбoбщeний и oткpытыx пpoблeм. 
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