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DIRECTED GRAPHS AND MATRIX EQUATIONS

JURAJ BOSAK

1. Introduction

Throughout the paper the symbols a, b, ¢, d denote non-negative integers such
that a<b, and i, j, p denote positive integers. All considered matrices are square
and all graphs are finite ; loops and multiple edges are allowed.

A directed graph G is said to be a W% -graph (cf. [2]) if for any two vertices 4 and
v of G there is in G exactly one (directed) walk [3] from u to v whose length ¢
fulfils the inequalities a <c <b.

A directed graph G is said to be regular of degree d (or, briefly, a graph of
degree d) if for every vertex v of G there exists in G just d edges directed from v
and just d edges directed to v.

In this paper we prove that any W;-graph is regular. Moreover, we prove that
a W, -graph of degree d has d* +d**' + ...+d" vertices (we put 0°=1) and we
deduce a necessary and sufficient condition for the existence of a W,-graph of
degree d. Thus, some results of [7] and those announced in [2] are generalized. We
use standard matrix methods (see, e.g., [11]).

By the adjacency matrix of a directed graph G with vertices v, v,, ..., v, we
mean the p X p matrix A =(a;), where a; is the number of edges of G directed
from v, to v;. It is well-known that the (i, j) entry of A° is the number of walks of
length ¢ from v; to v; ([3], Theorem 16.8; [1], Chapter 14 ;[11]). Consequently, we
have:

Lemma 1. A directed graph G is a W, -graph if and only if the adjacency matrix
A of G satisfies the equation

(1) A°+AM+ L +AY =T,

where J is the matrix each entry of which is 1.

(For every matrix A we put A°=1I, the identity matrix, and we suppose the
matrices I and J to be of the same order as A is.)

Lemma 1 enables us to express some considerations concerning W, -graphs in
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matrix terms, and conversely. We start with some simple auxiliary results concer-
ning matrices.

2. Results concerning matrices

Lemma 2. Let A be a matrix with non-negative integer entries such that (1)
holds. Then we have:

I. If b > a, then all diagonal entries of the matrix A°(1<c<b —a) are equal to
zero.

I1. Every matrix A°(0<c<b) is a 0-1 matrix.
Proof. I. The equation (1) can be written in the form

(2) IT+A+A*+ .. +A" A =],

Suppose that there is a non-zero diagonal entry in some A (1<c<b —a). Then
the corresponding entryof I+ A + A*+ ... + A*™*is =2. From (2) it follows that
in J there exists also an entry =2: in the case a =0 this evident; in the case a =1
this follows from the fact that in every row of A (and, consequently, of A* as well)
there is an entry =1 (otherwise (1) cannot be true).

I1. Suppose that some A, 0<c<b, has an entry =2. Then evidently 0<c <a,
so that a —c =1. Obviously, A (and, consequently, A°~° as well) has in every row

a non-zero entry. Therefore A“=A°A“"° has an entry =2, which is impossible.
Q.E.D.

Lemma 3. Let f be a polynomial and let A be a p X p complex matrix such that
f(A)=1J. Then all row and column sums of A are equal to a constant 6 and

p =f(6).
Proof. Denote the row sums of A by a;, a,, ..., @, and the column sums of A by
B1, B2, ..., B,. We shall prove that a; = g; forevery i, j e {1, 2, ..., p}. Obviously,

AJ=Af(A)=f(A)A=JA.
Denote by a; the (i, j) entry of A, and by b, the (i, j) entry of AJ =JA. Then

a.~=':sp_‘,=1(am . 1)=bii="§::l(1 < 8ni) =PB;.

Thus all row and column sums of A are equal to the same number, say . Hence

the row and column sums of A° are 6°. It follows that all row and column sums of
f(A)=J are f(8)=p. Q.E.D.

Theorem 1. Let A be a p X p matrix with non-negative integer entries such that

(1) holds. Then the row and column sums of A are equal to a non-negative integer
constant d and
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3) p=d*+d**"'+...+d".

Moreover, if p# 1, then A is a 0—1 matrix.
Proof. The first part follows from Lemma 3 for

4) fx)=x"+x"""+ ... +x".

(Evidently, now é =d is a non-negative integer.)
Let p#1. Then b#0 (b =0 implies J=A°=1 so that p =1). According to
Lemma 2, partII, A is a 0-1 matrix. Q.E.D.

3. Results concerning graphs

By a pair of oppositely directed edges in a graph we mean a set consisting of two
edges joining two different vertices u and v such that one edge is directed from u to
v and the other one from v to u.

If we express Theorem 1 in terms of graphs, we get:

Theorem 2. Let G be a W:-graph with p vertices. Then G is regular and (3)
holds, where d is the degree of G. Moreover, if p# 1, then G has no multiple edges
except, possibly, for pairs of oppositely directed edges.

Theorem 2 allows us to consider, when studying W; -graphs, regular graphs only.

Given integers d and a such that d =1 and a =0, we shall define two directed
graphs A(d, a) and B(d, a) and study some basic properties of them.

The graph A (d, a) is defined as follows. If a =0, then A (d, a) is the one-vertex
graph with d loops. If a =1, then the vertex set of A(d, a)is {1, 2, 3;...,d"}. From
a vertex y a directed edge goes to all vertices z such that

(A) y=sd+g,
(A,) z=(h-1d* '+s+1,

where s, g, h are integers satisfying the inequalities

(As) 0ss<d"'—-1
(AY) 1sg=<d,
(As) 1<h<d.

Graphs A(2, a) for a=0, 1, 2, 3 are drawn in Fig. 1.

Theorem 3. Let d =1 and a=0. Then A(d, a) is a W;-graph of degree d.
Proof. For a =0 the assertion is trivial. Therefore we suppose a =1. The proof
will be divided into five parts.
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I. Let u be a vertex of A(d, a). Denote by V. (u) the set of vertices v of A(d, a)
such that in A (d, a) there is a walk of length ¢ from u to v. We prove by induction
on c that the following implication holds for ¢ =0, 1, 2, ..., a:

(Y) y,y' € V.(u)>y=y' (modd" )
A(2,0) A(2.1) A(2,2) A(2,3)

Fig. 1. Wi-graphs of degree two .(Oéa <3).
For ¢ =0 (Y) evidently holds. Let (Y) hold for ¢ =n, where n is an integer such
that 0<n<a —1. We want to prove that (Y) holds for c=n+1, i.e.
) 2,2' € Vou(u)>z=z' (modd*™").

Let z, z' € V,.,(u). Then in A(d, a) there are directed edges (y, z) and (y’, z')
such that (A,)—(A;) and the following relations (A})—(A}) hold (where s, g, h, s’,
g’', h' are integers):

(A1) y'=s'd+g’,

(A3) 2’ =(h'"=1)d* "+s'+1,
(A}) 0<s'sd" -1,

(Ad) 1<g'<d,

(A3) 1<h'<d.

Asy, y' € V,(u), the induction hypothesis implies that there is an integer / such
that

(As) y—y'=ld".
Then

g—g'=(y—sd)—(y'—s'd)=ld"" —d(s—s'),
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so that
g=g’'(modd).

However, (A,) and (A}) imply g =g’. Therefore
(A7) y—y' =(s-s')d.
If we compare (A¢) and (A,), we get
s—=s'=ld"",
But then
z=z'=(h—h")d*'+(s—s')=d" " '(I+hd"—h'd"),

thus (Z) holds. Hence (Y) has been proved.
II. We prove by induction that

|V.(u)|=d*

for c=0,1, 2, ..., a.

For ¢ =0 the assertion is true. Let it hold for ¢ =n, i.e. |V.(u)|=d", where
0<n <a—1. We show the assertion to be true for c =n + 1. Evidently, z € V,.,,(u)
if and only if there exists an edge (y, z) such that y e V,(#). The induction
hypothesis implies that the vertex y can be chosen in d" ways. According to (A;)
and (A;) from every vertex y of A(d, a) there go exactly d edges ending in d
mutually different vertices of A (d, a). Therefore it is sufficient to prove that if
A(d, a) has edges (y, z), (y', z'), where y, y’' € V,(u), z, 2’ € Vora(u) and y#y’,
then z# z'. Suppose again that (A,)—(As) and (A})—(A}) hold. Admit that z = z’,
i.e.

s—s'=(h'—=h)d*".
(As) and (A3) imply s —s' =0 so that
y-y'=(s-s'Yd+g-g'=g—g'.
Putting ¢ =n in (Y) we get (A¢) so that
g—g'=y-y'=ld—".
Asa—n=1,itfollows that g =g’ (modd) and according to (A,) and (A%) we have
g=g'.Hence y—y' = (s—s')d+(g—g')=0, i.e. y=y’, a contradiction.

II1. We prove thatforc =0, 1, 2, ..., a there are exactly d° walks of length ¢ from
u to a vertex of V,.(u) and these d° walks end in mutually different vertices of
A(d, a). For ¢ =0 the assertion holds. Suppose it to be true for ¢ =n, where

n<a - 1. According to (A,) and (A;) each of the walks of length n from u to some
of d” vertices of V,(u) can be prolonged in d ways. We get d"*' walks. They are
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mutually different and they end in different vertices of V,.,(u), as V,.,(u) has
according to II d"*' vertices.

IV. We prove that A(d, a) is a W:-graph. Without loss of generality it is
sufficient to prove that from u there exists to every vertex of A(d, a) exactly one
walk of length a. According to II we have |V,(u)| =d®. Thus V,(u) contains all
vertices of A (d, a). By III there exist from u to the vertices of V,(u) just d* walks
of length a, thus to every vertex of A(d, a) exactly one walk of length a.

V. Now Theorem 2 implies that A(d, a) is regular of degree d. Q.E.D.

The graph B(d, a) is defined as follows. If a =0, then B(d, a) is the complete
digraph (without loops) with d + 1 vertices (d =1). If a=1, d =1, then the vertex
set of B(d, a) is {1, 2, ..., d*+d°"'}. From a vertex y a directed edge goes to all
vertices z such that

(B1) y=sd+g,

(B.) z=h(d"'+d")-s,
where s, g, h are integers satisfying the inequalities
(Bs) O0sss<d*'+d" -1,
(B,) 1<g=<d,

(Bs) 1<h=d.

Graphs B(2, a), a=0, 1, 2 are drawn in Fig. 2.

B(2,0) B(2,1) B(2.2)

Fig. 2. Wa*'-graphs of degree two (0<a <2).

Theorem 4. Let d=1 and a=0. Then B(d, a) is a W,*'-graph of degree d.

Proof. The proof is analogous to that of Theorem 3, therefore we indicate only
changes to be made and we have left the details to a reader. Relations (A;)—(As)
are always replaced by (B,)—(B;), and those of (A})—(Aj%) by
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(B) y'=s'd+g’,

(B3) z'=h'(d""+d") -5,
(B}) 0<s'<d"'+d" -1,
(Bi) 1<g'<d,

(B3) | lsh'.sd,
respectively.

I. We prove the following implication
(Y") y,y' € V.(u)>y =y’ (modd" ™ +d°~<*1)

for c=0,1, 2, ..., a.

II. We prove by induction that |V.(u)|=d° for c¢=0,1, 2, ..., a+ 1.

III. We prove that for ¢ =0, 1, 2, ..., a + 1 there are exactly d° walks of length ¢
from u to a vertex of V() and these d° walks end in mutually different vertices of
B(d, a).

IV. To prove that B(d,a) is a W;"'-graph, we firstly prove that
V.(u)nV.(u)=0 for ¢=0, 1, 2, ..., a. Let us admit the existence of
y € V.(u)nV_.,(u) and suppose (B:), (Bs), (Bs) to be true. As y e V.,,(u), in
B(d, a) there is an edge (y’ y) such that y’'e V. (4) and (B}), (B}), (B:) hold.
According to (Y*) we have

sd+g=s'd+g' (modd"* +d* ")

so that there is an integer / such that
y=sd+g=s'd+g'+I1(d* < +d"*").
As (y', y) is an edge of B(d, a), we have
y=h'(d*+d* ") —s'
with k' satisfying (B5). Comparing the last two equalities, we get
g'=@d+1)(h'd* ' —s'—1d°"°).

Thus g’ is a multiple of d + 1, a contradiction to (Bi). We have proved V_.(u) n
‘/c+1(u) = ﬂ

Now II implies that V,(x)uV,..(u) has d° + 4+** different vertices, i.e., all the
vertices of B(d, a), and the assertion follows from III.

V. Theorem 2 implies that B(d, a) is regular of degree d. Q.E.D.
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4. Main results

Theorem 5. The following three assertions are equivalent:
1. There exists a W;-graph of degree d with p vertices.

I1. There exists a p X p matrix A with non-negative integer entries such that all
row and column sums of A are d and (1) holds.

II1. One of the following conditions holds:

(i) b=a,d=1,p=d".
GGi) b=a+1,d=1,p=d"+d".
(iii) b=a+2,d=1,p=b—-a+1.
(iv)] b=a=0,d=0,p=1.

Proof. III=>>1. In each of cases (i)—(iv) we give an example of a W;-graph of
degree d with p vertices:

(i) A(d, a) (see Theorem 3).
(ii) B(d, a) (see Theorem 4).
(iii) Z,-.+: (the graph induced by the edges of a directed cycle on b —a +1

vertices).

(iv) K, (the graph with one vertex and no edges).

I=>1I. This implication follows from Lemma 1.

II=>III. According to Theorem 1 we have (3). If d =0, then a =0 (otherwise
p =0, a contradiction) and p = 0°=1 so that (iv) holds. Therefore we can suppose
d=1.1f b=a or b=a+1, we have (i) or (ii), respectively.

It remains to deal with the case b =a +2 and d =1 so that p >=3. We use the
method from the proof of Theorem 3 of [7].

The eigenvalues of J are A, =A,=...=1,_,=0, A, =p. Then for the eigenvalues
Wiy U2y o5 Wp-1, U, Of A we have
&) fu)=4,=0,
f(u)=4,=0,
f(o-1)=4,_,=0,
fu)=4,=p,

where f is defined by (4). Evidently, d is an eigenvalue of A. According to
Theorem 1, f(d) =p, therefore u, =d.

From (4) and (5) it follows that each of the eigenvalues Uis U2y ...y Pooy is either
zero or a root of the binomial equation x*~**' = 1 different from one, Therefore for
everyje{l,2,...,p — 1} either u; = 0 or there exists n € {1,2,...,b —a} such that

H=w",
where
W = eln’

>
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T

r=b—a+l'

Denote the multiplicity of the eigenvalue " in A by m,. (The eigenvalue u, =d
has multiplicity 1 ; the eigenvalue 0 has multiplicity p —m—m,— ... —m,_,—1.)

From Lemma 2 (part I) it follows that for c =1, 2, ..., b —a the trace of a° is zero
so that

us+us+...+u, =0,

This equality can be written in the form

(6) m,o° +my(0®)° + ...+ my_(w* ™)y +d° =0,
(c=1,2,...,b—a).

(6) can be considered as a system of b — a linear equations for the unknows m,,
my, ..., m,_,. The (Vandermonde) determinant of (6) is

(H o) )mll (0" = 0™))#0.

However, for our purposes we need to determine only the first unknown m;, :

d(d—-—w>)d-w?)..(d—-w"*)
0 (1l-w)(1-w?)..l-w®*™")’

@) m,= —

As all roots of the equation
xP T+ xPTTT L+ x?+x+1=0
are w, w? ..., ®*7%, we have the identity
xP+xP T L tx+l=(x—0)(x —0?)...(x —w®™?)
so that
d*“+d" '+ ... +d+1=(d-w)d-0?)..(d-w"").
Therefore (7) can be written thus:

- dd’™+d"'+..+d+1)
@-o ~ I-o)I-0). .0-0"

m,=

Since m, and d are non-zero and real, there is real also the denominator
8) t=d-0)o*(1-w)(1-w?...(1-w®").
We observe that for every integer n we have
) 1-0"=ig,e™,
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where g, is real. In fact,
1-w"=1~cos 2rn —isin 2rn =
=2 sin? rn — 2i sin rn cos rn =
= =2isinrn (cos rn +isinrn)=
=iq, ™,
where g, = — 2 sin rn. Substitutingn =1,2, ..., b —a — 1in (9), we get from (8)
t=(d-w) € ig, ¢ iq, e*...igy 0y €* 7 =
— (d _ w) eri(b-—a) ib\a_lq;q:--ﬂb—n—.l el 424+ —a))'
However,

ri —ri

eri(b—a)=eri(b‘a+l) e li=elei= —¢ ,

eri+2+.Fb-ay (éni/2)b—a =jt-e
b

therefore
t=—d-w)e " P Vig,qs...qp-a-r=q(d — ) e i,
where
q =(‘ l)b_EQIQr--(Ib—a—n

is non-zero and real. Hence

(d—e*)ei=i(de " —e™)=i(d cosr —id sinr —
—cosr—isinr)=(d +1) sinr +i(d — 1) cosr
is a real number so that

(d-=1)cosr=0.

However, as b —a =2, we have 0<r <m/2, hence cosr+ 0 and d = 1. Substituting
this result into (3), we get p=b —a +1 and (iii) holds. Q.E.D.

Remark. Evidently, the only W;-graph satisfying (iii) or (iv), is Z,_..: or K,
respectively. Thus we have:

Corollary 1. Every W.-graph with b =a + 2 is either Z,_,., or K, (this case can
occur only for a =0).

To find all W} -graphs satisfying (i) or (ii) seems to be a difficult problem. A very
special case a =b =2 (corresponding to the matrix equation A>=J) has been
studied by several authors (see, e.g. [5], [8]) but it is still not completely settled. We
are able to describe only some general properties of W -graphs.
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Lemma 4. The number of closed walks of a length ¢ =1 in a W', -graph of degree
dis
dc, if b=a;
dc+d(—1)y, if b=a+1.

Proof. Let A be the adjacency matrix of a W, -graph of degree d. If b =a, then
A®=J and the eigenvalues of A are u,=u,=...=u,_,=0, u, =d (cf. (5)). Thus
the eigenvalues of A€ are u;=us;=...=u,_,=0, u, =d°. The number of closed
walks of length c is equal to the trace of A, trA =i+ us+ ...+, +u,=4d".

Ifb=a+1,then A*+ A°*'=J and then A has one eigenvalue d, d eigenvalues
(—1) and the other eigenvalues are equal to zero. The matrix A has one
eigenvalue d°, d eigenvalues (— 1)° and the others are zero. Thus the number of
closed walks of length ¢ is trA°=d°+d(—1)°. Q.E.D.

Theorem 6. Let G be'a W) -graph of degree d. Then we have:
I. G has exactly d loops if a=b, and no loops if a<b.
II. The number of pairs of oppositely directed edges of G is

dy
(2) if b=a>1,
<d+1

N ) if b=a+1,

0, otherwise.
III. G has diameter
b if d=2,

b—a if d=1,
0 if d=0.

Proof. 1. If a<b <a + 1, it is sufficient to put c=1 in Lemma 4. If b=a + 2,
the result follows from Corollary 1.

II. If b =a =1, according to Lemma 4 the number of closed walks of length two
in G is d’. However d of these walks are formed by loops and each pair of
oppositely directed edges corresponds to two closed walks. Thus we obtain the
number

(d*~d)/2= (‘21) .

For b =a + 1 the proof is analogous. The rest of the proof follows from Theorem 5
and Corollary 1.

III. For d =0 the assertion is evident. If d =1, then G is Z,_,., and has the
diameter b —a.
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Let G be a W;-graph of degree d =2. Obviously, for the diameter k of G we
have k <b. If k <b, then every vertex of G is reachable from a fixed vertex of G
by a walk of length <b — 1. But in a regular directed graph of degree d there exist
only

d* -1
2 b-1__
1+d+d*+...+d _—d—l
such walks, so that
<d”—1
P=4a1

and, consequently, d® =1+ p(d — 1). Thus, according to (3) we have
p=d°+d*"'+..+d*=d*>1+pd—-1)=1+p,

a contradiction. Therefore Kk =b. Q.E.D.

5. Related problems and results

In [7] the following class of graphs has been introduced (we use a somewhat
adapted terminology):

A digraph G is said to be a graph G, if the following conditions hold:

1° The diameter of G is b.

2° G is a W-graph. _

3° G has no closed walks of a length ¢, where 1<c<b —a.

[By a digraph we mean a (finite) directed graph without loops or multiple edges ;
however, we admit pairs of oppositely directed edges.]

From Lemmas 1 and 2 (Part I) it follows that 3° is superfluous as it is
a consequence of 2°.

From Theorems 5 and 6 we have:

Corollary 2 ([7], Theorem 3).
I. The graphs G,, are just the complete digraphs.
II. For b =2 the only graphs G, , are Z,.,.
II1. The graphs G,., do not exist if a>0 and b=a +2.
The authors of [7] left open the question of existence of graphs G,.,-, (b=2)
and G,,, (b =0) with a given number of vertices (there is given one example of G, ,
with 6 vertices). However, from Theorems 2, 5 and 6 it easily follows:

Corollary 3.
I. There is no graph G,,, except for K, (with b =0).
II. A graph G, ,-, (b=2) with p vertices exists if and only if

(10) p=d"7'(d+1),
where d is an integer, d =2 (and then this digraph is regular of degree d).
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(The necessity of (10) has been also mentioned in [7].)
Now we replace equation (1) by a more general equation

(11) A+ A%+ . +AR=A].
It is easy to obtain the following result.

Theorem 7. Let p, n and A be positive integers and a,, a,, ..., a, be non-negative
integers with a,<a,<...<a,. Let A be a p X p matrix with non-negative integer
entries satisfying (11). Then the row and column sums of A are equal to
a non-negative integer d and

D =% dn+d=+...+d*).
Proof. It is sufficient to use Lemma 3 for

f(x) =§1: (xM+x%24+ .. +x™).
Q.E.D.

Problem. For what parameters p,n,d, A, a,, a,, ..., a,, satisfying the conditions
of Theorem 7, has the equation (11) a solution A with non-negative integer entries
such that the row and column sums of A are d?

The problem has also an obvious graph-theoretical interpretation: When does
there exist a regular directed graph of degree d with p vertices such that for any
two vertices ¥ and v of G there are in G exactly A walks from u to v whose lengths
are in the set {a,, a,, ..., a,}?

Theorem 5 answers the question in the special case

A=1, az_a1=a3_a2=...=a,._a,|_|=1.

Also other special cases may be of interest.

All graph-theoretical problems studied in this article may be modified in such
a way that the conditions concerning the uniqueness (or the number 1) of walks are
related only to different vertices u and v of G. This leads to the matrix equation

A+ A%+ . +A=D+MJ

with two unknown matrices (having non-negative integer entries) A and D, where
D should be diagonal. A special case n =1, a, =2 has been studied in [6] and [8]. It
is interesting that in this case the assertion concerning the regularity of a graph has
some exceptions (see [8]).

Finally, let us mention that (1) can be modified so that it is only demanded that
all the entries of A°+ A°*'+...+ A® are positive. This leads to the study of
irreducible matrices (or relations) and strongly connected directed graphs. These
questions have been studied in many papers, see e.g. [4], [9] and [10].
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OPHUEHTUPOBAHHbBIE 'PA®bl U MATPUYHBIE YPABHEHHS
I0Opait Bocak

Pesome

IMycTb a u b — HeoTpHLATENbHBIE LEeNble YHcsa. KOHeuHbIH OpHeHTHPOBaHHBII rpad G Ha3bIBaeTCs
Wt -rpacdrom, eciiv AN NPOM3BOJILHBIX €r0 BEPLIMH U U U cymecTByeT B G TOYHO OJAMH OpMapuIyT U3
BEpIUMHBI 4 B BEPUIMHY U, JJIMHA ¢ KOTOPOTrO YNOBJNETBOPSET HEPABEHCTBAM a <C <b.

B pa6ote nokasauo, 4To W2-rpa¢d Bcerna OQHOPOAHBIA U CIAEAYIOLIME YCIOBUS PaBHOCWIBHBI:

1. CymecrByeT W:-rpad crenenu d ¢ p BepUIHHAMH.

2. CymecTByeT KBajip:ITHa MaTp{La A NMOPSAAKA p C HEOTPHLATENbHBIMH 3JIEMEHTAMH TaKas, YTO
CyMMa BCEX 3JIEMEHTOB MPOU3BOJIBLHON CTPOKH (MPOU3BONBLHOIO cToN6Ua) paBHad u A+ A" + .. +
A®=J, rape J — MaTpHILia, Bce 3N1€MEHTbI KOTOPOH paBHbI 1.

3. BumonHseTcs OAHO M3 YCIOBHI :

(i) b=a,d=1,p=d".

(ii) b=a+1,d=1,p=d"+d".
(ili) b=a+2,d=1,p=b—a+1.
(iv) b=a=0,d=0,p=1.

Takum 06pa3oM, 0606LIEHbI pe3yabTaThl CTaThi [7]. KpoMe TOro, ccnenoBaHO HECKONBLKO CMeEX-
HbIX BONMPOCOB, OOOOLUEHHA H OTKPBLITBHIX MPOGaEM.
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