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PRODUCT DECOMPOSITION OF A a-RING 

JOZEF DRAVECKV 

Recently, A. D. Joshi of Poona University, India, raised the question: "When is 
it possible to decompose a given a-ring of subsets of a Cartesian product X x Y of 
abstract sets X and Y as a measure-theoretic product of a-rings in X and Y?" The 
present note gives a necessary and sufficient condition for such decomposability in 
the sense that a certain decomposition is proved to be the only possible. The 
characterization may be of some interest because once we can decompose 
a a-algebra T o n X x Y endowed with a measure m, we may try to express the 
measure m as a product of measures in X and Y, thus reducing integration on the 
measure space (Xx Y, Y, m) to iterated integrals in the most important cases. 

1. Notation and Notions 

A a-ring is a nonempty class °U of subsets of an underlying set U such that, for 
any E9 Fe°U, the set-theoretic difference E\F is in tyl and, for every sequence 
{En}n-i of sets in °U we have u„ En e°U.\iU itself is an element oi the a-ring °U, 
then °U is called a a-algebra. Given any family 2L of subsets of U, we denote by 
o(2t) the a-ring generated by 2t, i.e. the smallest a-ring including 2£. If Sf is 
a a-ring of subsets of X and :T a a-ring of subsets of Y, their product Sf (x) rX is the 
a-ring (in X x Y) generated by the family of all sets S x T with Se Sf and le ST. 
Given a set EcXxY and a point xeX, we call Ex = {ye Y: (x, y)eE} the 
x-section of E and, for a given yeY, the y-section of E is Ey = {xeX: 
Or, y) 6 E}. It is known that for E e Sf®ST we always have Ex e Sf and Ey e ST. 
(Cf.[l].) 

2. Main result 

Let X, Y be abstract sets and Y a a-ring of subsets of the Cartesian product 
X x Y. We shall deal with ihe nontrivial case Yj= {0} only, because evidently 
{0} = {0}®:T=S?(x){0} with any a-rings Sf on X and :JonY and no other 
decomposition is possible. 
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Theorem. A o-ring Y41 {0} of subsets of X x Y is a product of some o-rings on 
X and Y if and only if 

Y=o({Ey: EeY,ye Y})®o({Ex: EeY,xe X}). 

Proof. The "if" part is obvious. Suppose, therefore, that Y=&)®J where <f 
and ST are a-rings on X and Y, respectively. Denote 3£ = o({Ey: EeY, y e Y}), 
® = o({Ex: EeY, xeX}). We prove that &=% and :T= <3/. Let Setf, take 
a nonempty Be ST. (If ST={0}, then Y={0}, a contradiction.) Evidently, S x 
B e S?(g) 3T = T and hence, for y e B, we have (SxB)y = Se %. This proves Sf cz 3? 
and the proof of :Xcz <3/ is analogous. To prove that #? cz 5f, observe that, for any 
EeY = tf(x)?r and each y e Y, we have Ey G Sf. Therefore 5̂  includes a generator 
of #f and, being a a-ring, it includes the whole a-ring dC. Similarly, 3/cz ST and the 
proof is complete. 

3. Remarks 

1. If X x Ye Y, then Xe 3? and Y e 3/, so an analogy of the Theorem is true for 
decomposing a a-algebra into a product of a-algebras. 

2. An example of a non-decomposable a-ring can be obtained by considering 
X=Y={a, b}, Y={0, {(a, a), (b, b)}}. If there were Y=<f®?T, we would 
have {a} e3>, {b}e?T, hence {(a, b)} e Y, a contradiction. 
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РАЗЛОЖЕНИЕ а-КОЛЬЦА В ПРОИЗВЕДЕНИЕ 

1о.ге! ^гаVеску 

Резюме 

В статье доказано необходимое и достаточное условие для того, чтобы а-кольцо подмножеств 
произведения двух абстрактных множеств было произведением а-колец в 'координатных прос­
транствах. В самом деле, доказано, что а-кольца, порожденные сечениями множеств из данного 
а-кольца, образуют единственное возможное его разложение. 
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