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PRODUCT DECOMPOSITION OF A o¢-RING
_JOZEF DRAVECKY

Recently, A. D. Joshi of Poona University, India, raised the question: “When is
it possible to decompose a given o-ring of subsets of a Cartesian product X X Y of
abstract sets X and Y as a measure-theoretic product of o-rings in X and Y ?” The
present note gives a necessary and sufficient condition for such decomposability in
the sense that a certain decomposition is proved to be the only possible. The
characterization may be of some interest because once we can decompose
a og-algebra ¥ on X X Y endowed with a measure m, we may try to express the
measure m as a product of measures in X and Y, thus reducing integraticn on the
measure space (XX Y, ¥, m) to iterated integrals in the most important cases.

1. Notation and Notions

A o-ring is a nonempty class % of subsets of an underlying set U such that, for
any E, Fe U, the set-tkeoretic difference E\F is in % and, for ever; sequence
{E,}n=1 of sets in % we have U, E, € %. If U itself is an element oi the o-ring %,
then % is called a o-algebra. Given any family & of subsets of U, we denote by
0(%) the o-ring generated by %, i.e. the smallest o-ring including Z. If & is
a o-ring of subsets of X and J a o-ring of subsets of Y, their product &) J is the
o-ring (in X X Y) generated by the family of all sets S X T with Se ¥ and Te J.
Given a set Ec XX Y and a point xe X, we call E,={yeY: (x, y)e E} the
x-section of E and, for a given yeY, the y-section of E is E’={xcX:
(x, y)e E}. It is known that for E€e X J we always have E.€ ¥ and E’€ J.
(ct.[1]1)

2. Mgin result

Let X, Y be abstract sets and 7" a o-ring of subsets of the Cartesian product
X x Y. We shall deal with ihe nontrivial case ¥'# {@} only, because evidently
(0} ={0)RT =FX®{P} with any o-rings ¥ on X and J on Y and no other
decomposition is possible.
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Theorem. A o-ring V'# {@} of subsets of X X Y is a product of some o-rings on
X and Y if and only if

V=0({E’:EeV,ye Y}))®0o({E:: E€V, xe X}).

Proof. The “if” part is obvious. Suppose, therefore, that ¥'=%XQ J where ¥
and J are o-rings on X and Y, respectively. Denote X =c({E’: E€ V¥, ye Y}),
Y=0({E.: EeV, xeX}). We prove that =% and T =%. Let Se ¥, take
a nonempty Be J. (If 7 ={0)}, then V'={0}, a contradiction.) Evidently, S X
Be X T =V and hence, for y € B, we have (S X B)” =S € Z. This proves ¥ <&
and the proof of J = ¥ is analogous. To prove that £ = &, observe that, for any
EeV=%®J and each ye Y, we have E” € &. Therefore ¥ includes a generator

of & and, being ao-ring, it includes the whole o-ring . Similarly, % = J and the
proof is complete.

3. Remarks

1.If XX YeV,then XeZ and Y € ¥, so an analogy of the Theorem is true for
decomposing a o-algebra into a product of o-algebras.

2. An example of a non-decomposable o-ring can be obtained by considering
X=Y={a, b}, V={0, {(a, a), (b, b)}}. If there were V=R T, we would
have {a}e ¥, {b} € T, hence {(a, b)} € ¥, a contradiction.
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-PA3JIOXEHHUE 0-KOJIbIIA B ITPOU3BENEHUE
Jozef Dravecky
Pe3ome
B craThe foka3aHO HEOGXOAMMOE ¥ JOCTATOYHOE YCJIOBHE AJIS TOTO, YTOObI O-KOJIBLO MOAMHOXECTB
NpoU3BeAEHUA ABYX aGCTPaKTHBIX MHOXECTB GbLIO MPOM3BEAECHMEM O-KOJEL B ‘KOOPAMHATHBIX MpPOC-

TPAaHCTBaAX. B caMoM pene, fOKa3aHo, YTO O-KOJbLA, TNOPOXNEHHBIEC CCYCHUSIMH MHOXECTB U3 JAHHOTO
0-KOJiblia, 06pa3y10'r €AUHCTBCHHOE€ BO3MOXHO€ €ro pa3jioXCHHE.
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