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Math.Slov., 26,1976, No. 2, 119—129 

CHARACTERIZATION OF DISTRIBUTIVE MULTILATTICES 
BY A BETWEENNESS RELATION 

OEGA KLAUCOVA 

Some authors have studied the following betweenness relation: 

(1) (a A x) v (x A b) = x = ( a v x) A (x V b). 

In the metric lattices this relation is equivalent to 

(2) Q(a, x) + Q(X, b) = Q(a, b). 

A characterization of lattices by the relation (1) is given in paper [3]. I n t h e 
present paper an analogous characterization of distributive directed multi-
lattices is given (Thm. 2). Following [4] we take the ternary relation defined by 

(b) [(a A #) v (a; A b)]x = x, (a A X) A (X A b) <= a A b 

as the starting point. I n metric directed multilattices (b) is equivalent to (2) 
I n distributive multilattices (b) holds iff the relation 

(r) [(a A x) v (x A b)]x = x = [(a v x) A (X V &)]# 

is satisfied (see Thm. 1 and [6, Lemma 14]). I n lattices (r) reduces to (1). 
The author was stimulated by conversations with M. Kolibiar in developing 

this approach to the problem. 

Basic concepts and properties 

A multilattice [1] is a poset M in which the conditions (i) and its dual (ii) 
are satisfied: (i) If a, b, h e M and a ^ h, b ^ h, then there exists v e M such 
that (a) v ^ h, v ^ a, v ^ b, and (b) z e M, z^a, z^b, z^v implies z = v. 

Analogously as in [1] denote by (a v b)n the set of all elements v e M from 
(i) and by (a A b)d the set of all elements u eM from (ii) and define the sets: 

a v b U (av bҺ> a л b = (J (a л Ъ)d. 
aйћ dѓa 
bûћ dѓb 

Let A and B be nonvoid subsets of M, then we define 

Av B=\J (avb), A A B = \J (a A b), 
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where a e A and b e B. Troughout the paper we denote [(a v x) A (b v x)]x — 
= x ([(a A x) v (b A x)]x = x), if a, b, x e M and [(a v x) A (b v #)]# = {x} ([(a 
A #) v (b A x)]x = {x}). 

A poset ^1 is called upper (lower) directed if for each pair of elements a,b e A 
there exists an element he A (d e A) such that a ^ h, b ^ h (d ^ a, d ^ 6). 
The upper and lower directed poset .A. is called directed. 

A multilattice M is modular [1] iff for every a, b, b', d, h e 31 satisfying the 
conditions d ^ a ^ h, d ^ b ^ b' ^ h, (av b)h = h (a A b')d = d we have 
b = b'. 

A multilattice ilF is distributive [1] iff for every a, b, b', d, h e M satisfying 
the conditions d ^ a,b,b' ^ h, (a v b)u = (a v &')& = h, (a A b)a = (a A b')a = 
= fiwe have 6 = &'. 

Let J f be a multilattice and N a nonvoid subset of 31. N is called a sub-
multilattice [1] of M iff N n (a v 6)^ -7-= 0 and N n (a A b)a 7-- 0 for every a, 
b, rf, h e N satisfying a ^ h, b ^ h, a ^ d, b ^ d. I t is obvious that each 
interval is a submultilattice. 

Tne following definition and results are in [4]: 
Tne multilattices 31 and M' are said to be isomorphic (denoted as 31 ~ 31') 

if the partially ordered set M is isomorphic with the partially ordered set 31'. 
Let M be a cardinal product of two posets 3t\, ilF2. M is upper (lower) 

directed iff Mi and M2 is upper (lower) directed. M is a multilattice iff Mi 
and M2 are multilattices. Let x\, x% (xi e Mi) be Cartesian coordinates of any 
element x e M. For all a, b, h, v e M v e (a v b)h (v e (a A b)n) iff vt e (ai v 6£)7 

(t>i e (a* A &i)Al) for * = 1, 2. 

§ 1. 

Lemma 1. / / 31 is a distributive multilattice a,b, u v e 31, u e a A b, v e a b, 
then a mapping f : (u, a) -> (b, v) withf(x) = (b v x)vfor x e (u, a) (g : (b, v) -> 
-> (u, a) with g(y) = (a A y)u for y e (b, v)) is a isomorphism of (u, a) ((b, v ) 
onto (b, v) ((u, a)). 

The proof of the Lemma 1 follows from 6.4, § 6 of paper [1]. 

Lemma 2. If M is a distributive multilattice, a, b,u,ve 31, ueaAb,veawb, 
then a mapping m : (u, v) -> (a, v) x (b, v) with m(x) = ((a v x)v, (b v x)v) 
for x e (u, v) (n : (a, v) X (b, v) -> (u, v) with n(x±, X2) = (#1 A X2)U forx\ e 
e (a, v) and x^ e (b, v)) is a isomorphism of (u, v) ((a, v) x b, v)) onto (a, 
v) X (b, v) ((u, v)). 

This Lemma is a corollary of 3.2, 3.4, 3.7 of paper [2]. 
R e m a r k . Evidently the dual assertion with respect to Lemma 2 is valid 

too. Throughout the paper we consider one of the isomorphisms from Lemma 1 
(Lemma 2) if we have the isomorphism of any interval onto another interval 
(of any interval onto a direct product of two intervals). 
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Lemma 3. Let M be a distributive multilattice, a, b, u, v, x, x\, y e M, u e a A 
A b, v e a v b, u ^ x ^ v, x± e (a A X)U, y E (X±V b)v, then x± <; x ^ y. 

Lemma 3 is dual to Lemma 12 from [5]. 

Lemma 4. Let M be a distributive multilattice a, b, p, q, r, x E M, r ea v x, 
r eb v x, p ea N x, p e a A x, q eb A x, p ^ q, then a ^ b. 

Proof . I t is obvious that the intervals (a, r) and (p, x) are isomorphic. 
Denote by s e <a, r) the image of the element q e (p, x) in this isomorphism. 
There hold (a v q)r = s and (s A X)P = q. Evidently r ES v x and 

(s A x)a = q = (x A b)q, (s v x)r = r = (x v b)r. 

By distributivity s = b and consequently a ^ b. 

Lemma 5 ([5, Lemma 13]). Let M be a distributive multilattice, a, b, c, d, e, 
f e M. If f eev d, c ee A d, d ecv b, a e e A b, a ^ c, then f e e v b. 

Theorem 1. Let M be a directed distributive multilattice, a, b, x e M. Then 
the following conditions are equivalent. 

(r) [(a A x) v (b A X)]X = x = [(a v x) A (b v x)]x. 

(s) (a A x) A (b A x) c: a A b, (a v x) v (b v x) <-= a v b. 

Proof . Let us choose x± e a A X, X2 e b A X, X[ G a v x, x2 e b v x, u e xi A X2, 
v e x[v x2. First we prove that (r) implies (s). I t is sufficient to show that 
u e a A b (the proof of the assertion v e a v b is dual). First we show 

(3) u Ea A X2, u Eb A xi, v Eav x2, v Eb v x[ 

(4) x[ E a V X2, x2 E b V Xi, Xi E a A X2, X2 E b A x[. 

Choose f E (a A X2)u and g E (a A x)f. By (r) 

(5) x E g v X2. 

Next let us choose h e (x\ v f)x. From the isomorphism of the intervals (u, X2), 
(x\, x) it follows that (h A X2)U = / , hence 

(6) fEhAX2-

Since / e a A X2, f ^ g ^ a, we get 

(7) fEgAX2. 

From x EXIV X2 it follows that 

(8) x Eh v #2. 

By distributivity and using (5), (6), (7), (8) we get g = h, hence g = x±. 
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Consequently/ ^ x± a n d / = ^l. We have proved that u ea x2. By symmetry 
and duality we get the other assertions from (3). The assertions in (4) can be 
proved by Lemma 5 and its dual. 

Next we prove u e a A b. Let r e (a A b)u, s e (a v b)v, a± e (xi v r)a, a2 e 
e (a± v x)x^, c e (r v x2)a2. From (3), (4) and the dual of Lemma 2 we get 

(9) (u, x±y ~ (u, ay X (u, x2y, 

where a h> (a, u), c H> (r, x2), x f-> (xi, X2), a2 l-> (ai, x2). (We use the isomorphism 
of the intervals (x±, ay, (x, x[y and the isomorphism of the intervals (x2, x[ , 
(u, ay, where (ai v x)Xx. = a2 and (a2 A a)Xl = a\ = (a2 A a)w . Because c e 
e (r v a;2)aa it follows that c e j r v #2)3/ and we get r e (a c)u.) Now we prove 

(10) a2 EC V X, X2 EC A X. 

Let z E (x v c)aa. Evidently ZE(u,x[y. In the isomorphism (9) zf->(zi, z2), 
where Zi e (#1 V r)fll and Z2 E (X2 V O;2)^2 = x2. Since (#1 v r)fll = a±, we get 
2X = a±, z2 = x2. Since (ai, x2) corresponds to the element a2 in theisomorphism 
(9), it follows z = a2. The assertion x2 e c A X can be proved analogously. 

Now we shall show that the assertion u e a A b follows from 

(11) c ^ s. 

Indeed, if (11) holds fr6m c e (r, s>, r E (a A C)U by Lemma 3 it follows tha t 
r ^ c ^ b. Hence we get #2 ^ c tS b, #2 ^ c ^ #{. Since x2 E X[ A b, we get 
c = #2 and therefore r ^ #2. Since u ^ r ^ a, u E a A X2, we have r — u. 
This gives u Ea A b. 

I t remains to prove (11). Let a3 = (a2 v ^Jv . By Lemma 2 

(12) <£2, ^> — (x[, vy X <b, v>. 

In this isomorphism x[ \-> (x[, v), x f-> (x[, x2), a2 (-> (a^, a3), s F> (v, s) and 
#2 F> (#1, b). Let b2 E (s A x2)b and w e (s A a^)b\- I t is obvious that b'2E^o \ x'2. 
As v E s v x2, b2 E s A x2, the intervals <b2, $>, <#2>

 v> a r e isomorphic and from 
w = (s A as)b2' we get a3 = (w v x'2)v. Denote d = (x[ A W)XZ. In the isomorphism 
(12) d !-> (#1, w). We shall prove that d e (a2 A «S)^2. Let k E (a2 A S)XZ. The 
element k corresponds to an element (ki, £2), where ki e (x[ v)Xt* and k2 e 
E (as A s)b. Since (x[ A v)Xl* = x[ and (a3 A S)& = w, we have ki — x[ and 
k2 = w. To the element ( ^ , w) there corresponds the element d under the 
isomorphism (12), hence k = d and 

(13) d Ea2 A s. 

Next we denote y == (x[ A b'2)Xz, then y \-> (x[, b2) under the isomorphism (12) 
We shall show that 
(14) y E (x d)Xz, a2 E (x d)Xl>. 
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Let n e (x A d)Xz. The element n corresponds to an element (m, n%) under the 
isomorphism (12) and m e (x[ A X[)XI' = x[ n%e (x'2 A w)b = b2. Since in (12) 
y\-> (x[, b2), we get n = y and consequently y e (x A d)Xz. The assertion a% e. 
e (a; v rf)^' can be proved analogously. From (10), (14) by Lemma 4 we get 
c ^ d. This and (13) imply (11). We have proved that (r) implies (s). 

By Lemma 2 and its dual (s) implies (r). 
Let M be a multilattice, a,b, c e M. We shall write abc, iff (r) and (5) is 

valid. From Theorem 1 it follows that in a directed distributive multilattice 
M we have abc iff (r) holds. Analogously as in [3] denote by B(a, b) the set of 
all elements x e M for which axb holds. 

Lemma 6. If M is a multilattice, a, b e M, then B(a, b) = B(b, a) and 
a, b e B(a, b). 

Proof . The assertion follows directly from (r) and (s). 

Lemma 7. Let M be a multilattice, a, b, x e M. If a ^ b, then x eB (a, b) iff 
a ^ x ^ b, consequently B(a, b) = (a, b). 

Proof . Evidently from a <: x ^ b it follows that axb, hence xeB(a,b). 
Conversely, let x e B(a, b), u e a A X, U' e (b A X)U. Then x = (u v u')x = u', 
hence x e b A X and x ^ b. The proof of the assertion a ^ x is dual. 

Lemma 8. Let M be a multilattice, a, x, b e M. If x ^ a and x ^ b, then 
x e B(a, b) iff x e a A b. 

Proof . Evidently from x e a A b it follows that x e B(a, b). Conversely, let 
x e B(a, b). Since a v x = a, b v x = b, we get x = [(a v x) A (b v a;)]* = (a A 
A b)x, hence x e a A b. 

Lemma 9. Let M be a distributive directed multilattice. Then B(a, b) is an 
interval iff a A b and a v b are one-element sets. 

Proof . Let B(a, b) = (u, v). By Lemma 8 and its dual we get u e a A b 
and v eav b. Let n\ e a A b. By Lemma 8 it follows tha t u± e B(a, b), hence 
tt^tti, consequently u = u\. The proof of the assertion a v b = {v} is dual. 

Conversely, let a A & and a v 6 be sets with exactly one element. Denote 
a A b = {u}, a v & = {#}. We prove £(a , b) = <w, v>. First we show B(a, b) a 
a (u, v). Let x G B(a, b). Bv theorem 1 we get 

(a A x) A (b A x) = u, (a v x) v (b v #) = v, 

which implies w ^ x ^ v. Next we prove (u, v) <= £(a , b). Let a; e <w, v), we 
show that (r) holds. First we prove 

[(a A x) v (b A x)]x = x. 

Denote x± e (a A X)U, #2 e (b A X)U. From the dual of Lemma 2 we get 
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(u, v) ~ O , a> X (u, b}, 

where a f-> (a, u), b l-> (u, b), x t-» (#1, a-2). E v i d e n t l y [(a A a;) v (b A cr)]^ -=. x iff 

[{(a, w) A (x±, x2)} v {(w, 6) A (xi, x2)}](Xl, *,) = (a?i, #2). 

Since 

[{(a, w) A (xi, x2)} v {(%, 6) A (xi, x2)}]{Xl, x%) = 

= [(a A Xi, U A #2) v (^ A Xi, b A Ofe)]^-, x%) = 

= [(&i,tt) V (%, X2)](Xl, x2) = 

= (a?i v U,UM x2){XltXi) = (a?i, x2), 

we get [(a A X) M (b A #)]# = x. The assertion [(a v x) A (b v #)]z = a; follow s 
by duality. Hence (u, v) c J5(a, b). 

Lemma 10. Let the elements a, b, x of a distributive directed multilattice satisfy 
the condition 
(m) there exist elements xi e a A X, X2 e b A X and u e xi A X2 such that x EX±M x2 

and u ea hb. 
Then axb. 

Proof . 1. First we prove that (m) implies 

[(a v x) A (b v x)]x = x, (a M x) M (b M x) ^ a M b. 

Choose y\ ea v x, y2eb v x, y e (y± A ?/2/.r, v ey±M y2. W e show t h a t y = x. 
Clearly w e #1 A b. By Lemma 5 we get 

(15) y2 exi v b. 

Choose r e (a A 2/2)^. Then u er Ab. I t implies (by (15) using modularity) 
r = #1. Hence 

(16) x±ea A y2 

and xxea Ay. From this and from 2/1 e a v a; we get x = y. Consequently (m) 
implies [(a v x) A (b v a;)]^ = #. Next we prove that v ea v b. By Lemma 5 
from (16) we get v ea M y2. From this and from (15), (16) and u e a A b we 
have by Lemma 5 v ea M b. Hence (m) implies (a M x) M (b M x) ^ a M b. 

2. "By the first part of the proof, (m) implies the dual condition of (m). Hence 
we get 

(a A x) A (b A x) <= a A b, [(a A X) M (b A X)]X = x 

by duality. 
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Lemma 11. A directed multilattice M is distributive iff B(u, v) = (u, v) <= 
<= B(a, b) for each a, b eM, u ea A b, v ea v b. 

Proof . Let M be a directed distributive multilattice. By Lemma 7 B(u, v) = 
== (u, v). We prove tha t (u, v) <-= B(a, b). Let x e (u, v), x± e (a A X)U, %2£ 
e (b A x)u. By the dual Lemma of Lemma 2 we get (xi v X2)x = x. Hence the 
assertion (m) holds, consequently x e B(a, b). I t remains to prove the second 
part of Lemma 11. Let i f be a non-distributive directed multilattice. Then M 
contains a submultilattice M5 or N5 of Figures 1 and 2. In M5 and Ns x e 
e (u, v) and x <£ B(a, b). Hence if M is non-distributive, then B(u, v) c B(a, b) 
do not hoid. 

Lemma 12. Let M be a distributive directed multilattice, a, b e M. Then 

B(a, b) = U <u> *>>• 
uєaЛb 
vєaV b 

Proof . By Lemma 11 we get 

(J (u,vy cr B(a, b). 
uea Ab 
v e a V b 

We prove the converse inclusion. Let x e B(a, b). Denote x± e a A X, X2 e b A X 
yx G a v x, 2/2 e b v x. By Theorem 1 y± v 2/2 c a v b and x\ A X2 c a A b. Let 
u ex\ AX2, v e 2/1 v 2/2, then u ea Ab, v ea v b. Hence there exist u ea Ab, 
v e a v 6 such that a; G <W, #>. 

Lemma 13. Let M be a directed distributive multilattice, a, b, x e M. x e 
e B(a, b) iff B(a, x) n B(b, x) == {x}. 

Proof . Let x e B(a, b) and y e B(a, x) n B(b, x). Obviously y e B(a, x) and 
by Lemma 12 there exist x± e a A X and x[ e a v x such that 

(17) xi ѓ У ѓ- xг. 
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Similarly y eB(b, x) and there exist x%eb A x, x'2 eb v x such that 

(18) x2^y ^ x2. 

Choose u ex± A X2, v e x[ v x'2. Since x GB(a, b) by Theorem 1 u e a A b and 
v e a v b. By the dual assertion with respect to Lemma 2 we have 

(19) (u, v) ~ (u, a) X (u, V}, 

where x !-> (x±, x2), x± f-» (x±9 u), X2 V> (u, X2), x[ t-> (a, x2), x2 l-> (xi, b) and 
y V» (2/1,2/2). From (17), (18), (19) it follows 

(xi,u) ^ (2/1,2/2) -S (a,x2), 
(u,x2) ^ (2/1,2/2) ^ (xi, b). 

From this we get x± ^ y±, 2/2 ^ #2, #2 ^ 2/2? 2/i = ^i? consequently x\ = yi, 
x2 = 2/2 and x = y. We have proved that # G i?(a, b) implies 

(20) B(a, x) n £(b , a;) = {x}. 

Conversely, let (20) hold. Choose x\ e a A X, X2 e b A x, X\ G a v x, x2 e b v x, 
t G (xi v X2)x. Clearly t e (x±, x[y c B(a, x) and t e (X2, x2y <= B(b, x). From 
(20) we get t = x. The assertion x = (x[ A X2)X follows by duality. Consequently 
(20) implies (r), hence x eB(a, b). 

Lemma 14. Let M be a distributive directed multilattice, a, b, c e 31. Then abc 
and acb iff b = c. 

Proof . If abc and acb, then b e B(a, c) and c e B(a, b). By Lemma 13 B(a, 
b) n B(b, c) = {b}. Since c G B(a, b) and c G B(b, c) we get c e B(a, b) n B(b, 
c) = {b}, consequently c = b. The converse assertion is obvious. 

Lemma 15. Let M be a distributive directed multilattice, a, b, c, d e 31. If 
abc and acd, then bed. 

Proof . Let abc and acd, hence b G B(a, c) and c G B(a, d). Then we have 

(21) [(a A b) v (b A c)]b = b = [(a v b) A (b v c)]b, 
(22) [(a A c) v (c A d)]c = c = [(a v c) A (C V d)]c. 

Choose xi G b A C, X2 £ c A d, y± e a A b, u G X± A 2/1 • From (21) we get by Theo­
rem 1 u G a A c. Hence if x± eb A c, then there exists u e a A C such that 
u ^ x±. From (22) it follows that (u v X2)c = c. Consequently we have 

(23) (xi v x2)c = c. 

Let x[ G 6 v c, x'2 G c v d. By duality we get 

(24) (x[ A x'2)c = c 

(23) and (24) implies c G B(b, d), hence bed. 
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§2. 

Let A be a set with a ternary relation axb and with a specified element o e A 
such that the next conditions hold: 

(i) B(a, b) = B(b, a); 
(ii) abc and acb iff b = c; 

(hi) from abc and acd it follows that bed; 
(iv) for each two elements a, b e A there exist sets 
{ui | i G / } , {̂ y I j e - / } contained in J5(a, b) such tha t : 

1. oavj, obvj, ou\a, ouHb for a l i i e I and j e J; 
2. for each c e B(a, b) there exist i e I, j eJ such tha t ou^c, ociy, 
3. if d e A, oad, obd (oda, odb), then there exists j e J (i e I) such that ovjd 

(odut); 
4. if z GA, oaz, obz and OZVJ (oza, ozb and ou%z) for some j eJ (i el, then 

~ = Vj (z = ^*). 
(v) if for x e A there exist ut, v3- e B(a, b) such that ouix, OXVJ, then x e B(a, b). 

Lemma 16. Ljet A be a set with a ternary relation axb which satisfies (i), (ii) 
and (hi). / / a, b, x e A, x e B(a, b), then 

B(a, x) n B(x, b) = {x}. 

Proof . Let y e B(a, x) n B(x,b). Clearly ayx, byx and we suppose axb. 
"By (Hi) from ayx and axb we get yxb. By (i) and (ii) from byx and yxb it follows 
that y — x. 

Theorem 2. Let A be a set with a specified element o and with a ternary relation 
axb such that (i), (ii), (hi), (iv), (v) are satisfied. Then there is a directed distribu­
tive multilattice on A with the least element o in which axb iff (r) is valid. Con­
versely, if in a directed distributive multilattice we define axb by (r), then the 
conditions (i), (ii), (hi), (iv), (v) are satisfied. 

Proof . Assume that (i) — (v) hold. First we prove tha t A is a poset. We 
define a ^ b iff odb, hence a e B(o, b). From (i) and (ii) it follows that a, b e 
eB(a,b). Consequently oaa and the relation ^ is reflexive. Suppose a ^ b 
and b ^ a, hence odb and oba. By (ii) a = b and the relation a ^ b is anti­
symmetric. Let a ^ b and b ^ c, hence odb and obc By (hi) abc, therefore 
b e B(a, c). By (iv) for b e B(a, c) there exists Vj e B(a, c) such that oavj, obvj, 
oevj. Now by (iii) from odb, obvj we get 

(25) abvj, 

from obc, OCVJ we get 

(26) bevj, 
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and finally (25) and aVjC imply 

(27) bvjC. 

From (26), (27) and (ii) it follows c = Vj. Since oavj we get oac, hence a ^ c 
and the relation ^ is transitive. We proved that A is a poset. Since o e B(o, x) 
for each element x e A, o is the least element of A. 

The condition 1 of (iv) implies that A is a directed set. 
Now we shall show that A is a multilattice. The property (a) from the defi­

nition of the multilattice follows from 1 and 3 of (iv). The property (b) from 
the definition of the multiiattice follows from 4 of (iv). Consequently 

a v b = {VJ | Vj e B(a, b), j e J}, 

a A b = {ut | ui e B(a, b), i e I}. 

Next we suppose that a, x, b e A and axb, hence x e B(a, b). We shall show 
that (r) holds. Let u% e a A X, un eb A X, VJ ea v x, vjc eb v x where ut, Vje 
e B(a, x) and un, vjc e B(b, x). We shall prove 

(Ui V Un)z = X, (Vj A Vjc)x = X. 

Let (ui v un)x = z. Clearly z ^ x, u% ^ z, un ^ z, x ^ Vj, x ^ Vjc. Hence 
z e (ui, Vj) and z e (un, vjc}. By (v) z e B(a, x) and z e B(b, x), consequently 
z eB(a, x) n B(b, x) and by Lemma 16 from x e B(a, b) we get z = x. The 
assertion (VJ v vjc)x = % follows by duality. Hence axb implies (r). 

Now we shall show that A is a distributive multilattice. Let a, b, b', uy 

v e A and u ^ a ^ v , u ^ b ^ v , u^b'-^v, 

(a v b)v = (a v b')v = v, (a A b)u = (a A b')u = u. 

Obviously u, v eB(a, b). By (v) V e B(a, b) and (r) implies 

(28) [(a A b') v (b' A 6)> = b' 

Let te(bAb')u. Since (a A J % = %, from (28) we get b' = (u v t)p t, 
hence b' ^ b. Analogously we obtain b ^ b'. We have proved that J. is a dis 
tributive multilattice. 

I t remains to prove that (r) implies axb. Let (r) hold. By Lemma 12 x e 
eB(a,b), hence axb. 

The converse assertion follows from Lemma 6, Lemma 12, Lemma 14 and 
Lemma 15. 
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