Mathematica Slovaca

OrIga Klaucovéa
Characterization of distributive multilattices by a betweenness relation

Mathematica Slovaca, Vol. 26 (1976), No. 2, 119--129

Persistent URL: http://dml.cz/dmlcz/128857

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/128857
http://project.dml.cz

Math. Slov., 26, 1976, No. 2, 119—129

CHARACTERIZATION OF DISTRIBUTIVE MULTILATTICES
BY A BETWEENNESS RELATION

OLGA KLAUCOVA

Some authors have studied the following betweenness relation:

(arnx)v(@Aab)=2x=(ava)A (xVvDb).

(1)
In the metric lattices this relation is equivalent to
(2) e(a, %) + e(, b) = o(a, b).

A characterization of lattices by the relation (1) is given in paper [3]. In the
present paper an analogous characterization of distributive directed multi-
lattices is given (Thm. 2). Following [4] we take the ternaryrelation defined by

(0) [arz)v(@ad)lz=2 (earz)r(xAb)<anrbd

as the starting point. In metric directed multilattices (b) is equivalent to (2)
In distributive multilattices (b) holds iff the relation
(r) [@arz)v (@ad)]g=2x=[(avz)Ar(xVDd)]:
is satisfied (see Thm. 1 and [6, Lemma 14]). In lattices (r) reduces to (1).

The author was stimulated by conversations with M. Kolibiar in developing
this approach to the problem.

Basic concepts and properties

A multilattice [1] is a poset M in which the conditions (i) and its dual (ii)
are satisfied: (i) If @, b, he M and @« < h, b < h, then there exists » € M such
that (@) v < h,v = a,v = b,and B)2e M,2 = a,z = b,z < vimplies z = v.

Analogously as in [1] denote by (a v b), the set of all elements v € M from
(i) and by (@ A b)s the set of all elements » € M from (ii) and define the sets:

avb= (@vbdn, anrb=] (anrb).
dZa

ash
b=h asb

Let A and B be nonvoid subsets of M, then we define
AvB=J(@vd), ArB=] (anrbd),
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where @ € 4 and b € B. Troughout the paper we denote [(av @) A (bV )]z —
=z([(@arz)v (bra)s==2),ifa, b xeMand[(ava)r (bv )= {z} ([(a
Ax)v (b x)z = {x}).

A poset 4 is called upper (lower) directed if for each pair of elements a, b € A
there exists an element h € 4 (d € 4) such that a < 5, b £ h (d = a,d = b).
The upper and lower directed poset 4 is called directed.

A multilattice M is modular [1] iff for every a, b, b’, d, h € M satisfying the
conditions d £ a £ h, dSb=ZbW Zh, (avbdr=~h (@arb)g=d we have
b=1"".

A multilattice M is distributive [1] iff for every a, b, b, d, h € M satisfying
the conditions d < @,b,0" £ h,(avbdr=(avdlh=h, (arba=(anrb)e=
= d we have b = b'.

Let M be a multilattice and N a nonvoid subset of M. N is called a sub-
multilattice [1] of M iff N N (a v b)r #= 0 and N N (a A b)a # O for every a,
b, d, h e N satisfying a < h, b £ h, a 2d, b 2 d. It is obvious that each
interval is a submultilattice.

Tae following definition and results are in [4]:

Tne multilattices M and M’ are said to be isomorphic (denoted as M ~ ")
if the partially ordered set M is isomorphic with the partially ordered set A1’.

Let M be a cardinal product of two posets My, My. M is upper (lower)
directed iff M; and M, is upper (lower) directed. M is a multilattice iff My
and M, are multilattices. Let 1, z2 (2; € M;) be Cartesian coordinates of any
element x € M. For all a, b, h,ve M v e(av b)r (v € (a A b)n) U v € (as v by),
(vs € (as A bg),,) for 2 =1, 2.

§ 1.

Lemma 1. If M is a distributive multilattice a, b, uve M, wu€arb,vea b,
then a mapping f : (u, ay — b, v)> with f(x) = (b v x), for x € <u, a) (g : <b, v> -
- {u, ay with g(y) = (a A y)u for y € (b, v)) is a isomorphism of {u, a)y ({b,v )
onto <{b, v) ({u, a)).

The proof of the Lemma 1 follows from 6.4, § 6 of paper [1].

Lemma 2. If M is a distributive multilattice, a, b, w,v € M,uca rb,veav b,
then a mapping m : {u, v) ><a, vy X <{b, v)> with m(x) = ((a v )y, (bV )y)
Jor x elu, vy (n:<a,v) X (b, v) > {u, v) with n(x1, x2) = (21 A T2)u forx €
e{a,v) and xz € b, v)) is a tsomorphism of {u,v) ({a,v> X b, v>) onto {a,
vy X <b, vy (u, v).

This Lemma is a corollary of 3.2, 3.4, 3.7 of paper [2].

Remark. Evidently the dual assertion with respect to Lemma 2 is valid
too. Throughout the paper we consider one of the isomorphisms from Lemma 1
(Lemma 2) if we have the isomorphism of any interval onto another interval
(of any interval onto a direct product of two intervals).
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Lemma 3. Let M be a distributive multilattice, a, b, u, v, , 21, y € M, u €a A
Abveavb,u S xS v, x1€(@ANL), YyE(@LV b)y, then 21 S = < y.
Lemma 3 is dual to Lemma 12 from [5].

Lemma 4. Let M be a distributive multilattice @, b, p, ¢, r, x € M, rea v x,
rebve,peanz,peanrz,gebrx, p < q,then a < b.

Proof. It is obvious that the intervals <{a, > and (p, x> are isomorphic.
Denote by s € {a, r) the image of the element ¢ € {p, x> in this isomorphism.
There hold (a v q)r = s and (s A 2)p = ¢. Evidently r es v x and

(sra)g=g=(xArb)g, (sva)=r=(xvb).
By distributivity s = b and consequently a < b.

Lemma 5 ([5, Lemma 13]). Let M be a distributive multilattice, a, b, ¢, d, e,
feM.Iffeevd,ceend,decvb,acenrb,a =c,then feevb.

Theorem 1. Let M be a directed distributive multilattice, a, b, x € M. Then
the following conditions are equivalent.

(r) [@rz)vbrx)lz=xz=[(aVva)r (bV ).
(s) (@rz)yr(brz)y<anb, (avz)v(bvz)<avbd.

Proof. Let us choose x1 €a Az, 22 €b A%, 2, €EaV X, Xy €DV T, U €21 A T3,
v ex, v x,. First we prove that (r) implies (s). It is sufficient to show that
u € a A b (the proof of the assertion » € @ v b is dual). First we show

(3) UEANT2, UEDATL, VEQV Xy, vEDV T,

4) T EQV X2, Ty €DV X1, T1 EA ATy, X2 ED A ;.
Choose f € (a A x2)y and g € (@ A x)y. By (7)

(5) TEQGV 2.

Next let us choose % € (z1 v f)z. From the isomorphism of the intervals {u, z5),
{1, x it follows that (k A z3)s = f, hence

(6) fehax.
Since fearzs, f < g < a, we get

(7) fegnas.
From z €« v 2 it follows that

(8) zehvas.

By distributivity and using (5), (6), (7), (8) we get g = h, hence g = x;.
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Consequently f < x; and f = u. We have proved that w € ¢ 2. By symmetry
and duality we get the other assertions from (3). The assertions in (4) can be
proved by Lemma 5 and its dual.

Next we prove ucarb. Let r€(anb)y, s€(@V by, a1 €(XLV r)a, a2 €
€ (a1V &)y, € € (rV 3)q,. From (3), (4) and the dual of Lemma 2 we get

(9) <u’: xl> ~ <u, a> X <u7 x2>a

where a = (a, w), ¢ > (r, %), > (21, X2), @2 > (a1, x2). (We use the isomorphism
of the intervals {x1, @), {z, ;> and the isomorphism of the intervals {x,, z; ,
{u,ay, where (a1V 2)s, = az and (az A a)y, = a1 = (a2 A a),. Because ce
€ (r v 2)q, it follows that ¢ € (r v x2); and we get r € (@ ¢)».) Now we prove

(10) Az ECV X, T2 ECA X.

Let z € (x v ¢)q,. Evidently z € (s, z;>. In the isomorphism (9) z+> (z1, 22),

where 23 € (1 V 7)g, and 22 € (w2 V X2)z, = X2. Since (X1 V r)s, = a1, we get

21 = a1, 22 = %2. Since (a1, x2) corresponds to the element as in theisomorphism

(9), it follows z = as. The assertion zz € ¢ A x can be proved analogously.
Now we shall show that the assertion u € @ A b follows from

(11) ¢ = 8.

a
r <c¢=b Hence we get 2z ¢ = b, 22 =
¢ = xs and therefore r < x3. Since % < r
This gives w €a A b.

It remains to prove (11). Let as = (a2 v 3),. By Lemma 2

(12) (@2, vy ~ Cwy, v) X <b, ).

In this isomorphism x| > (z;,v), x> (¥, Zy), azb> (¥, as), s> (v,s) and
xs > (27, ). Let by € (s A x3)p and w € (s A a3)y,. It is obvious that by € w \ a5.
Asvesva,, by s A x,, the intervals (b,, s), (x;, v are isomorphic and from
w = (s A ag)p;y We get az = (w v 23)y. Denote d = (z; A w)g,. In the isomorphism
(12) d > (xy, w). We shall prove that d € (a2 A 8)z,. Let k € (a2 A 8)z,. The
element k& corresponds to an element (ki, k»), where ki € (¥; )z and Lz e
€ (as A 8)p. Since (x; A )y =, and (as A s)» = w, we have ky — x; and
ks = w. To the element (x;, w) there corresponds the element d under the
isomorphism (12), hence k = d and

(13) deazns.

Next we denote y = (x; A bs)s,, then y > (2, by) under the isomorphism (12)
We shall show that
(14) ye@ d), ase(@ d).
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Let n € (x A d)z,. The element n corresponds to an element (n1, n2) under the
isomorphism (12) and 71 € (%, A 1)z = &; N2 € (%5 A W)p = by. Since in (12)
y > (2, by), we get n = y and consequently y € (2 A d)s,. The assertion az €.
€ (z v d)z can be proved analogously. From (10), (14) by Lemma 4 we get
¢ £ d. This and (13) imply (11). We have proved that (r) implies (s).

By Lemma 2 and its dual (s) implies (r).

Let M be a multilattice, a, b, c € M. We shall write abe, iff (r) and (s) is
valid. From Theorem 1 it follows that in a directed distributive multilattice
M we have abe iff (r) holds. Analogously as in [3] denote by B(a, b) the set of
all elements x € M for which axb holds.

Lemma 6. If M is a multilatiice, a, b € M, then B(a,b) = B(b, a) and
a, b € B(a, b).
Proof. The assertion follows directly from (r) and (s).

Lemma 7. Let M be a multilatiice, a, b, x € M. If a < b, then x € B (a, b) iff
a £ x £ b, consequently B(a, b) = <a, b).

Proof. Evidently from a £ « £ b it follows that axb, hence x € B(a, d).
Conversely, let x e B(a,b), ucanrz, ' €(brx)y. Then 2 = (uv o) =1,
hence x € b A z and # £ b. The proof of the assertion ¢ £ z is dual.

Lemma 8. Let M be a multilattice, a, x, be M. If x < a and x < b, then
zeB(a,b) iff xreanb.

Proof. Evidently from x € a A b it follows that « € B(a, b). Conversely, let
x€B(a,b). Sinceave=a, bva=2> we get x=1[(ava)r(bva)l;=(anr
A b)z, hence z €a A b.

Lemma 9. Let M be a distributive directed multilattice. Then B(a,b) 1s an
interval iff a A b and a v b are one-element sels.

Proof. Let B(a, b) = (u, v). By Lemma 8 and its dual we get w €anbd
and vea v b. Let u1 €a A b. By Lemma 8 it follows that u; € B(a, b), hence
u £ w1, consequently v = u;. The proof of the assertion a v b = {v} is dual.

Conversely, let a A b and ¢ v b be sets with exactly one element. Denote
anb={u}, avbd= {v}. We prove B(a, b) = {u, v). First we show B(a, b)
< {u,vy. Let x € B(a, b). Bv theorem 1 we get

(@rx)yrn(brz)=wu, (@va)v (bvz)=uyv,
which implies # < # £ v. Next we prove {u, v> < B(a, b). Let x € {u, v), we
show that (r) holds. First we prove
[(@arz)v (brx)]= 2.

Denote z1 € (@ » %)y, 22 € (b A Z)u. From the dual of Lemma 2 we get
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Cu, v ~ L, ay X (u, b),
where a > (a, u), b (%, b), x +> (21, x2). Evidently [(@ A ) v (b A @)]; = « iff
(@, w) A (@1, 22)} v {(w, b) A (21, 22)}]iay, 29 = (21, @2)-
Since
(@, u) A (@1, @2)} v {(u, b) A (@1, %2)}]iay, 2 =
=[(@rzr,unz)V (UL, bAT)](z,, 2) =
= [(21, ) v (4, %2)]@,, 20 =
= (T1V U, UV X2)(z,, ) = (T1, X2),

we get [(a A z)Vv (bAx)]s =2 The assertion [(av z) A (bVv x)]z = « follows
by duality. Hence <{u, v) < B(a, b).

Lemma 10. Let the elements a, b,  of a distributive directed multilattice satisfy
the condition
(m) there exist elements 1 €a n x, 22 €b A x and u € x1 A T2 such that x € xy v @2
and w €a A b.
Then axb.

Proof. 1. First we prove that (m) implies
[@ave)a(dva)lz==, (ava)v(ibvz)<avb.

Choose yreave, y2ebva, ye (Y1 AY2)z, v €y1 Vv y2. We show that y = =.
Clearly w € 21 A b. By Lemma 5 we get

(15) ya €z v b.

Choose r € (@ A y2)z,. Then w er A b. It implies (by (15) using modularity)
r = z1. Hence

(16) T1EQ A Y2

and z1 € @ A y. From this and from y, € a v & we get x = y. Consequently (m)
implies [(@ v &) A (b v #)]e = x. Next we prove that v ea v b. By Lemma 5
from (16) we get v €a v y>. From this and from (15), (16) and v €a A b we
have by Lemma 5 v € a v b. Hence (m) implies (¢ va) v (bv x)< a v b.

2. By the first part of the proof, (m) implies the dual condition of (m). Hence
we get

(@rzx)radrz)sand, [(arz)v(barx)==2

by duality.
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Lemma 11. 4 directed multilattice M s distributive iff B(u, v) = (u, v) <
< B(a,b) for each a,beM,ucanrb,veavhb.

Proof. Let M be a directed distributive multilattice. By Lemma 7 B(u, v) =
= {u, v). We prove that {u, v)> = B(a,b). Let x € {u, v), 1 € (@ A Z)u, T2E
€ (b A z)u. By the dual Lemma of Lemma 2 we get (21 v #2); = . Hence the
assertion (m) holds, consequently = € B(a, b). It remains to prove the second
part of Lemma 11. Let M be a non-distributive directed multilattice. Then M
contains a submultilattice M5 or N5 of Figures 1 and 2. In M5 and N5 x €
€ {u, v) and z ¢ B(a, b). Hence if M is non-distributive, then B(u, v) = B(a, b)
do not hoid.

v v
X
b
a b
a
u u
Fig. 1 Fig. 2

Lemma 12. Let M be a distributive directed multilattice, a, b € M. Then
B(a,b)= U <{u ).

ueaAdb
veaVd

Proof. By Lemma 11 we get
U <, v) < B(a,b).

uea Adb
veaVd

We prove the converse inclusion. Let x € B(a, b). Denote z1 €a n x, z2 €b A @
yieave, y2ebva. By Theorem 1 y1vy:<avbd and z1a22< aab. Let
UEXTL AX2, VEYLV Yo, then w ea A b, vea v b. Hence there exist u €a A b,
v €a v b such that = € {u, v).

Lemma 13. Let M be o directed distributive multilattice, a, b, x € M. x €
€ B(a, b) iff B(a, z) N B(b, x) = {x}.

Proof. Let « € B(a, b) and y € B(a, z) N B(b, ). Obviously y € B(a, ) and
by Lemma 12 there exist 21 € @ A x and 2] € @ v # such that

(17) x1 £y < .
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Similarly y € B(b, x) and there exist z2 €b A z, x; €b v x such that
(18) 2 =Y S xé

Choose u € 21 A @2, v €2, V &,. Since x € B(a, b) by Theorem 1 u €a » b and
v €a v b. By the dual assertion with respect to Lemma 2 we have

(19) Cu, v) ~ <, @y X {u, b,

where x > (1, #2), 21 b (21, u), @2 B (u, x2), 2 B> (@, 22), x, > (21, b) and
Yy B (Y1, y2). From (17), (18), (19) it follows

(1, u) £ (41, 92) £ (a, x2),
(u, 22) < (Y1, 92) < (%1, b).

From this we get 21 = y1, 2 < 22, 22 = ¥2, y1 < 21, consequently x, = yi,

%3 = ¥y and & = y. We have proved that x € B(a, b) implies
(20) B(a, ) N B(b, x) = {x}.

Conversely, let (20) hold. Choose z1 €a A, 23 €b A%, ¥, €Ea v, ¥y €b v 2,
t € (v1V 2)z. Clearly ¢ e (w1, %) < B(a,x) and t e {xs, x> < B(b, z). From
(20) we get t = x. The assertion x = (2, A %) follows by duality. Consequently
(20) implies (), hence x € B(a, b).

Lemma 14. Let M be a distributive directed multilattice, a, b, ¢ € M. Then abc
and acb iff b = c.

Proof. If abc and ach, then b € B(a, ¢) and ¢ € B(a, b). By Lemma 13 B(a,
b) N B(b, ¢) = {b}. Since ¢ € B(a, b) and ¢ € B(b, c) we get ¢ € B(a, b) N B(b,
¢) = {b}, consequently ¢ = b. The converse assertion is obvious.

Lemma 15. Let M be a distributive directed multilattice, a, b, ¢, d € M. If
abc and acd, then bed.

Proof. Let abc and acd, hence b € B(a, ¢) and ¢ € B(a, d). Then we have

(21) [(@ad)vdaclo=0b=1[avd)a(dvc)l,
(22) are)vicad)ec=c=1[(ave)r(cvd)l.

Choose z1€bac,z2€cnd, y1€a nb, w €21 A y1. From (21) we get by Theo-
rem 1 weanac. Hence if 2, €b ac, then there exists # €a A ¢ such that
% < x1. From (22) it follows that (u v x3)e = ¢. Consequently we have

(23) (21 v 22)e == c.
Let @, €b v ¢, o, €c v d. By duality we get
(24) (2] A Tg)e = C.

(23) and (24) implies ¢ € B(b, d), hence bcd.
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§ 2.

Let A4 be a set with a ternary relation axb and with a specified element o € 4
such that the next conditions hold:
(i) B(a, b) = B(b, a);
(ii) abc and ach iff b = c;
(iii) from abc and acd it follows that bed;
(iv) for each two elements a, b € 4 there exist sets
{ui | 2 € I, {v; | j € J} contained in B(a, b) such that:
L. oav;, obv;, ousa, ou;b for all ¢ € I and j € J;
2. for each ¢ € B(a, b) there exist ¢ € I, j € J such that ouc, ocvy;
3.if d € 4, oad, obd (oda, odb), then there exists j € J (¢ € I) such that ov;d
(odus);
4. if z € 4, oaz, obz and ozv; (oza, 0zb and ouz) for some j €J (¢ € I, then
2= (2 = w).
(v) if for x € 4 there exist u;, v; € B(a, b) such that ou;z, oxv;, then x € B(a, b).

Lemma 16. Let A be a set with a ternary relation axb which satisfies (i), (ii)
and (ii1). I/f a, b, x € A, x € B(a, b), then

B(a, ) N Bz, b) = {z}.

Proof. Let y € B(a, ) N B(z, b). Clearly ayx, byx and we suppose axb.

By (¢it) from ayx and axb we get yxb. By (i) and (ii) from byx and yxb it follows
that y — ..

Theorem 2. Let A be a set with a specified element o and with a ternary relation
axb such that (i), (ii), (iii), (iv), (v) are satisfied. Then there is a directed distribu-
tive multilattice on A with the least element o in which axb iff (r) is valid. Con-
versely, if in a directed distributive multilattice we define axb by (r), then the
condittons (i), (ii), (iii), (iv), (v) are satisfied.

Proof. Assume that (i) —(v) hold. First we prove that 4 is a poset. We
definc ¢ = b iff oab, hence a € B(o, b). From (i) and (ii) it follows that a, b €
€ B(a, b). Consequently oaa and the relation = is reflexive. Suppose @ < b
and b = a, hence oad and oba. By (ii) @ = b and the relation ¢ < b is anti-
symmetric. Let ¢« < b and b = ¢, hence oab and obc. By (iii) abc, therefore
b € B(a, ¢). By (iv) for b € B(a, c¢) there exists v; € B(a, ¢) such that oav;, obv;,
ocv;. Now by (iii) from oab, obv; we get

(25) abvy,

from obc, ocv; we got

(26) bevy,
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and finally (25) and avjc imply
(27) bvjc.

From (26), (27) and (ii) it follows ¢ = v;. Since oav; we get oac, hence a = ¢
and the relation < is transitive. We proved that 4 is a poset. Since o € B(o, x)
for each element x € 4, o is the least element of 4.

The condition 1 of (iv) implies that 4 is a directed set.

Now we shall show that A4 is a multilattice. The property (a) from the defi-
nition of the multilattice follows from 1 and 3 of (iv). The property (b) from
the definition of the multiiattice follows from 4 of (iv). Consequently

avb={v|v;eBab),jel}
anb={u;|u €Ba,b),iel}

Next we suppose that a, z, b € 4 and axb, hence x € B(a, b). We shall show
that (r) holds. Let usear®, up€bax, vjeave, vp €bvx where u;, v4€
€ B(a, ) and uy, v € B(b, x). We shall prove

(Ui v Un)e = 2, (5 A Vi) = .

Let (usv un)z =2 Clearly z < &, s <2, un <2, * < v5, £ vx. Hence
z elug, v5» and z € (g, viy. By (v) z € B(a, ) and z € B(b, ), consequently
z € B(a, ) N B(b, ) and by Lemma 16 from z € B(a, b) we get z = x. The
assertion (v; v vx); = « follows by duality. Hence axb implies (r).

Now we shall show that A is a distributive multilattice. Let a, b, b, u,
veEdandu 2 a v, usb=v,usb 2o,

(@avd)py=(avd)=2v (arb)y=(arb)y=u.
Obviously %, v € B(a, b). By (v) b" € B(a, b) and (r) implies

(28) [(@and)yv (B Ab)]y =10

Let te(ab)y. Since (@ Ad)y =wu, from (28) we get ' = (uv i)y ¢,
hence " = b. Analogously we obtain b < b'. We have proved that 4 is a dis
tributive multilattice.

It remains to prove that (r) implies axb. Let (r) hold. By Lemma 12 x €
€ B(a, b), hence axb.

The converse assertion follows from Lemma 6, Lemma 12, Lemma 14 and
Lemma 15.

128



REFERENCES

[1] BENADO, M.: Les ensembles partiellement ordonnées et le théoréme de raffinement:
de Schreier. II. Czechosl. Math. J. 5, 1955, 308— 344.

[2] BENADO, M.: Bemerkungen zur Theorie der Vielverbénde IV. Proc. Cambridge
Philos. Soe. 56, 1960, 291 —317.

[3] KOLIBIAR, M.: Charakterisierung der Verbdnde durch die Relation ,,zwischen‘‘.
Z. math. Logik und Grundl. Math. 4, 1958, 89—100.

[4] KOLIBIAR, M: Uber metrische Vielverbinde I. Acta Fac. rerum natur. Univ.
Comenianae. Math. 4, 1959, 187—203.

[6] KLAUCOVA, O.: b — equivalent multilattices. Math. Slovaca 1, 1976, 63— 72.

Received November 28, 1974
Katedra matematiky
a deskript vnej geometrie
Strojn’ckej fakulty
Slovenskej vysokej Skoly technickej
880 31 Bratislava
Gottwaldovo ndm. 50

129



		webmaster@dml.cz
	2012-07-31T20:41:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




