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ON QUASI-UNIFORM CONVERGENCE 
OF A SEQUENCE OF S.Q.C. FUNCTIONS 

ZBIGNIEW G R A N D E 

(Communicated by L'ubica Hold ) 

ABSTRACT. It is proved tha t every almost everywhere continuous function is 
the limit of a quasi-uniformly convergent sequence of Darboux strongly quasi-
continuous functions. 

Let R be the set of all reals and let /ie (/I) denote the outer Lebesgue measure 
(the Lebesgue measure) in R. Denote by 

du(A,x) = lim sup \ i e(A n (x - h,x + h))/2h 
h-»o+ 

( dt(A, x) = lim inf fie (A n (x - h, x + h))/2h) 
h-»o+ 

the upper (lower) density of the set A C R at a point x. A point x G R is 
called a density point of the set A C R if there exists a Lebesgue measurable 
set B C A such that dt(B,x) = 1. The family 

Td = {A CR; A is measurable and every point x G A is a density point of A} 

is a topology, called the density topology ([1])-
A function / is said to be strongly quasi-continuous (in short s.q.c.) at a 

point x if for every set A G Td containing x and for every positive real rj there 
is an open interval I such that In A ^ 0 and \f(t) - f(x)\ < r\ for a l l* G An I 

([2])-
Let / : R —> R and x G R. If there is an open set U such that du(U,x) > 0 

and the restricted function f\(U\J{x}) i s continuous at x, then / is s.q.c. 
at x ([3]). 

By an elementary proof, we obtain: 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 26A15, 54C08, 54C30. 
K e y w o r d s : continuity, strong quasi-continuity, density topology, sequence of functions, quasi-
uniform convergence. 
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R e m a r k 1. The limit / of a uniformly convergent sequence ( / n ) n all of whose 
terms are s.q.c at a point x is also s.q.c at x. 

A sequence of functions / n : R —r R is said to be quasi-uniformly convergent 
to a function / on R ([7]) if 

V*j>0Vm3pV~ ( m i n ( | / m + 1 ( x ) - / ( x ) | , . . . , | / m + p ( x ) - / ( x ) | ) < 77). 

It is known ([2], [3]) that every s.q.c. function / is almost everywhere con­
tinuous (with respect to fi). Then, the limit of a quasi-uniformly convergent 
sequence of s.q.c. functions is almost everywhere continuous. 

We shall prove the following: 

THEOREM 1. If a function f: R -» R is almost everywhere continuous 
then there is a quasi-uniformly convergent sequence of Darboux s.q.c. functions 
gn : R —> R such that f = lim gn . 

n—>oo 

P r o o f . Let cl denote the closure operation, let int(X) denote the interior 
of X and let 

B = { y G R ; fi(cl(rl(y))>0}. 

We can suppose that li(cl(/-1(0))) = 0, since, in the opposite case, we can 
consider instead the function g = f — a, where the constant a is such that 
fi(cl(f~1(a))) = 0. Since / is almost everywhere continuous, the set B is count­
able. Let E(B) be the linear space over the field Q of all rationals generated 
by the set B. Since the set E(B) is countable, there exists a positive number 
c G R\E(B). Denote by Z the set of all integers and by N the set of all positive 
integers. Let k eZ and let n G N be integers. If 

kc/2n < f(x) <(k + l ) c /2 n 

then let 
fn(x) = kc/2n. 

Observe that every function / n , n G N, is almost everywhere continuous and 
if D(fn) denotes the set of all discontinuity points of fn then D(fn) is a 
closed set of measure zero. Moreover, D(fn) C D(fn+l) for n G N and if 
x G D(fk+l) \ D(fk) for some k G N then for every m > k the inequality 

o s c / m ( x ) < c / 2 f c - 1 (1) 

holds. Let C ( / n ) , n G N, be the set of all continuity points of the function 
/ n , i.e. C(fn) = R \ D(fn). For a closed set X C R and for a positive real 

r denote by Ar(X) the set \x\ dist(x,K) = inf \x - y\ < r\ . Since the set 
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D(fn) is closed and of measure zero, there are disjoint closed intervals Jn^kjJl = 

[anMlj%i>Kktijti\
 C C ( / n ) ' * < rc, j == 1,2, i G N, Z € Z , such that: 

(2) for every k < n , for every / E Z , for j = 1,2 and for every x E FK/J 

(for every x E -D(/fc+1) \ D(fk)) we have d t t ( U ^uj^x) > ° 

(3) if the limit Hm a n ^ lsJs ^ of one-to-one sequence (an ,u. , j . , i , ) ,€N e x i s t s 

then lim ankl j { = Hm bn fc - • • E - 0 ( 4 ) , & < n , j = 1,2, 
5 _ > o c n,h,,ls,Js^s 5 - > 0 0 n>K^s,Js^s w « ' A 

/s E Z , i , E N ; 
(4) / n f f c | W

C i 4 i / n ( Z ? ( / ^ ) for A: < n , j = 1,2, / E Z , i E N ; 
(5) for all k < n, / E Z , j = 1, 2 and for every x E D(fk) the point x is a 

bilateral accumulation point of the set IJ I . , • {. 

Next, for all k < n, j = 1, 2, / E Z , i E N we find a closed interval Jn^)lJyi C 
int(Jn,A,/,i,») s u c h t h a t for e v e r^ x e ^ ( A ) (for e v e r^ x E D^k) \D(fkL1), 
1 < k< n) and for all / E Z and j = 1, 2 the inequalities 

rf«fUJn,l,W*)>° (6) 

(*u(\JJ*MJ,i>*)>°) ( 6 , ) 

are true. 

Let 

• fcn-iW = / c / 2 n i f * G JnA,/,i,;> / e Z , i E N; 
• 22n-l(*) = /n(*) + ' C / 2 n 

if x E </ n , M , M , 1 < A: < n , - 2 n + 1 - * < / < 2 n + 1 ' / e , i e N; 

• #2n-i D e linear o n a ^ components of the sets In,i,/,i,i \ i n t(^ n , i , /A , J ' 
/ E Z , i E N; 

• g2n-i D e linear o n aH components of the sets ln,k,i,\,i \ m^\Jn,k,i,i,i)» 
1 < k < n, -2n+l~k < / < 2 n + 1 ~ ^ , i E N; 

• #2n-i( x) = fn(
x) otherwise on R. 

and let 

• 92n(
x) = lc/2n if x Є Jn ! , 2 ť , / Є Z , i Є N; 

• <?2„(*) = /„ (-0 + lc/2" 
i f x £ Jn,k,i,2,n 1 < A: < n , - 2 n + 1 - * < / < 2 n + 1 ^ , * € N; 

• O2n be linear on all components of the sets ln^ U2,i \ mtWn,i,i,2,i)' 
/ E Z , i E N; 
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• g2n be linear on all components of the sets In?u,2,i \ in t (J n fc / j 2 > i ) , 

1 < k < n , -2n+1~k < I < 2n+1"A;, i G N; 

• #2n(x) — fn(
x) otherwise on R. 

Evidently, 
m i n ( | f l 2 n _ 1 - / n | , | c i 2 n - / n | ) = 0 . (7) 

By (6) and (6') the functions g2n_a and g2n are s.q.c. 

Observe that the reduced functions h2n_x = g2n-i\ (^\D(fn))
 a n d ^2n = 

g2n| (R \ D(f )) are continuous. By (5) we obtain that for every x G D(fn) and 

for every r > 0 the images g2n([x - r,r]) and g2n([x,x + r]) are intervals. So 

g2n has the Darboux property. Similarly, the function 52n-i has the Darboux 

property. 
Fix a positive real rj and x G R. If x G D(fn) for some n G N then for 

m > n we have 
fm(X) = 92m-l(X) = 92m(X) 

and consequently 

lim g2n_lvz) = lim g2n(x) = f(x). 
n—>oo n—>oo 

So, let x G R \ IJ D(fn). There is k G N such that c/2*"1 < n. Let m G N be 
n6N 

such that dist(x,D(/A;)) > 1/m and m > fc. By (4) for n > m we obtain that 

m a x f l f c ^ s ) - / » | , |g2n(x) - /n(x)|) < c/2" < iy • 

Since lim /„(x) = / ( x ) , we obtain lim gn(x) = f(x). So, by (7), the sequence 
n—>oo n—)-oo 

(gn)n quasi-uniformly converges to / . D 

A function / : R -> R is said to be quasi-continuous at the point x (cliquish 
at the point x) if for every positive real rj and for every open set U containing 
x there exists a nonempty open set V C U such that \f(t) — f(x)\ < r\ for t G V 
(oscv / < 77). In [4] it is proved that every cliquish function / is the limit of 
a quasi-uniformly convergent sequence of Darboux quasi-continuous functions. 
This theorem is an immediate consequence of Theorem 1. Indeed, if / is a 
cliquish function then the set D(f) of all discontinuity points of / is of the 
first category ([5]) and there is a homeomorphism h: R -> R such that the set 
h(D(f)) is of measure zero ([6]). Thus the function f °h~l is almost everywhere 
continuous and, by Theorem 1, there is a sequence of Darboux s.q.c. functions 
/ n , n G N, which converges to / o h~l quasi-uniformly. Now, it suffices to 
observe that all the functions /_ o /i. n G N, are quasi-continuous with the 
Darboux property and that the sequence (fn o h)n converges quasi-uniformly 
to / . 
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