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ON QUASI-UNIFORM CONVERGENCE
OF A SEQUENCE OF S.Q.C. FUNCTIONS
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(Communicated by Lubica Hold)

ABSTRACT. It is proved that every almost everywhere continuous function is
the limit of a quasi-uniformly convergent sequence of Darboux strongly quasi-
continuous functions.

Let R be the set of all reals and let p, (1) denote the outer Lebesgue measure
(the Lebesgue measure) in R. Denote by

d,(A,z) = limsup u, (AN (z — h,z + h)) /2h
h—0+

(dy(A,z) = liminf (AN (z — h,z + h))/2h)
h—0t

the upper (lower) density of the set A C R at a point . A point z € R is
called a density point of the set A C R if there exists a Lebesgue measurable
set B C A such that d;(B,z) = 1. The family

T, ={A CR; A is measurable and every point = € A is a density point of A}

is a topology, called the density topology ([1]).

A function f is said to be strongly quasi-continuous (in short s.q.c.) at a
point z if for every set A € 7, containing x and for every positive real 7 there
is an open interval I such that TN A # 0 and |f(t) = f(z)| <n forallte ANI
(12)).

Let f: R — R and z € R. If there is an open set U such that d,(U,z) > 0
and the restricted function fl(UU {z}) is continuous at x, then f is s.q.c.
at = ([3)).

By an elementary proof, we obtain:
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Remark 1. The limit f of a uniformly convergent sequence (f,),, all of whose
terms are s.q.c. at a point z is also s.q.c. at .

A sequence of functions f,: R = R is said to be quasi-uniformly convergent
to a function f on R ([7]) if

vn>0¥m3pVe  (min(|fpe1 () = F@)] - | g (@) = F(@)]) <7) .

It is known ([2], [3]) that every s.q.c. function f is almost everywhere con-
tinuous (with respect to p). Then, the limit of a quasi-uniformly convergent
sequence of s.q.c. functions is almost everywhere continuous.

We shall prove the following:

THEOREM 1. If a function f: R — R is almost everywhere continuous
then there is a quasi-uniformly convergent sequence of Darbouz s.q.c. functions
9,: R—= R such that f = l_ig.logn.

n

Proof. Let cl denote the closure operation, let int(X) denote the interior
of X and let

B={yeR; p(c(f'(y) >0}.

We can suppose that p(cl(f~*(0))) = 0, since, in the opposite case, we can
consider instead the function ¢ = f — a, where the constant a is such that
p(cl(f~'(a))) = 0. Since f is almost everywhere continuous, the set B is count-
able. Let E(B) be the linear space over the field Q of all rationals generated
by the set B. Since the set E(B) is countable, there exists a positive number
¢ € R\ E(B). Denote by Z the set of all integers and by N the set of all positive
integers. Let k € Z and let n € N be integers. If

ke/2™ < f(z) < (kK + 1)c/2"
then let
fo(x) = kc/2™.

Observe that every function f,,, n € N, is almost everywhere continuous and
if D(f,) denotes the set of all discontinuity points of f, then D(f,) is a
closed set of measure zero. Moreover, D(f,) C D(f,,,) for n € N and if
z € D(fr,,) \ D(f,) for some k € N then for every m > k the inequality

osc f, (z) < ¢/2F! (1)

holds. Let C(f,), n € N, be the set of all continuity points of the function
fnrie C(f,) =R \ D(f,)- For a closed set X C R and for a positive real

r denote by A,(X) the set {a:; dist(z, X) = 1g§( lz —y| < r}. Since the set
Yy
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D(f,) is closed and of measure zero, there are disjoint closed intervals Loviji=
[an,k,l,]'.i’ bn‘k,l,j,i] C C(fn)) k<n,j=1,2,i€N, l€Z,such that:
(2) for every k < n, for every | € Z, for j = 1,2 and for every z € D(f,)
(for every = € D(fy ) \ D(f;)) we have du( U In.l,z,j,i>37) >0
i€EN
(du( U In,k+l,l,j,i7x) >0);
i€N . .
(3) if the limit sl—l—)nc}o A k1,54, OF ODE-tO-ONE sequence (an,k,l,,j,.z,)seN exists
then lim a4, j,4, = Mmb, 5, € D), k < ny gy = 1,2,
l,eZ,i, €N;
(4) Lo py55 C Ayn(D(f) for k<, j=1,2,l€Z,i€N; |
(5) forall k<n, l€Z,j=1,2 and for every = € D(f;) the point z is a
bilateral accumulation point of the set 'LeJN In,k,l,j,i'
1

Next, forall k <n, j =1,2,1 € Z,i € N wefind a closed interval J, , , ., C
int(In,k’l’j,i) such that for every = € D(f,) (for every x € D(f,)\ D(f,_1),

1<k<n)andforall [ €Z and j = 1,2 the inequalities

du( U Jn‘ly,,jﬂ.,x) >0 (6)

i€EN
(dy ( U Tk x) > 0) (6”)
1EN
are true.
Let

o g (@) =lc/2rifxed, ;€L ieN;

* gy, i(x) = f.(x)+1c/2"
if g€J, 1 1<k<n, =217k << ont1-k e N;

® g,,_, be linear on all components of the sets I, 111 \ int(Jn,lleI’i),
leZ,ieN;

® g,,_, be linear on all components of the sets Ik \ int(‘]n,k,l,l,i)’
l<k<n, —2ntl-k < p<ontl=k 4 cN:

® gy,_1(x) = f, (x) otherwise on R.

and let

* g (x)=lc/2"ifx el 5, €L, i€EN;

* gy,(2) = f(z) +1c/2m
if 2 €J, 04 1<k<n, 20tk <] <ot Qe N;

® g,, be linear on all components of the sets I, 1 2, \ int(‘]n,l,l,2,i)’
leZ,i€eN;
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* g,, be linear on all components of the sets I, x1,2,i \ int(J, 12.i)
1<k<n, —2ntl-k <) <ontl-k e N;
® g,,(z) = f,(z) otherwise on R.
Evidently,
min(|g3,—1 = fol 1920 = fal) = 0- (7)
By (6) and (6’) the functions g,,,_, and g,, ares.q.C..
Observe that the reduced functions hg,_; = ga_1| (R\'D(f,)) and h, =
92n| (R\ D(f,)) are continuous. By (5) we obtain that for every = € D(f,,) and

for every r > 0 the images g,, ([z — ,7]) and g,,([z,2 +7]) are intervals. So
95, has the Darboux property. Similarly, the function g,,_, has the Darboux
property.
Fix a positive real n and z € R. If x € D(f,) for some n € N then for
m > n we have
fm(.'L‘) = 92,,”_1(1') = gzm(x)

and consequently

lim g,,_;(z) = lim g, (z) = f(z).

n—00 n—oo

So, let z € R\ |J D(f,). There is k € N such that ¢/2"~' < 7. Let m € N be
neN
such that dist(z, D(f,,)) > 1/m and m > k. By (4) for n > m we obtain that

max (|91 (2) = fo(@); 1920 (2) = f,(2)]) < ¢/2" <.
Since ILm fn(x) = f(z), we obtain nli)rgo g,(z) = f(z). So, by (7), the sequence

(9,), quasi-uniformly converges to f. O

A function f: R — R is said to be quasi-continuous at the point = (cliquish
at the point x) if for every positive real 1 and for every open set U containing
z there exists a nonempty open set V C U such that |f(¢t)— f(z)|<nforteV
(oscy, f < m). In [4] it is proved that every cliquish function f is the limit of
a quasi-uniformly convergent sequence of Darboux quasi-continuous functions.
This theorem is an immediate consequence of Theorem 1. Indeed, if f is a
cliquish function then the set D(f) of all discontinuity points of f is of the
first category ([5]) and there is a homeomorphism A: R — R such that the set
h(D(f)) is of measure zero ([6]). Thus the function foh™! is almost everywhere
continuous and, by Theorem 1, there is a sequence of Darboux s.q.c. functions
f,, n € N, which converges to f o h™! quasi-uniformly. Now, it suffices to
observe that all the functions f, o h, n € N, are quasi-continuous with the
Darboux property and that the sequence (f, o h), converges quasi-uniformly

to f.
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