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A NOTE ON COMPARISON THEOREMS FOR THIRD —
ORDER LINEAR DIFFERENTIAL EQUATIONS

JOZEF ROVDER

In this paper we prove some comparison theorems for the differential equation-
of the third-order

(a) y'"+b(x)y" +c(x)y=0,

where b(x), c(x) and b'(x) are continuous functions in (0, ®).

As usual, a solution of (a) is called nonoscillatory iff it has no zeros for arbitrarily
large x and (a) is said to be nonoscillatory iff all its nontrivial solutions are
nonoscillatory.

The following theorem is analogous to. Theorem 2 in [4] for differential
equations of class V.

Theorem 1. Suppose the coefficients of (a) satisfy the assumption 2c(x)—
b'(x)=0 in (0, ). Let (a) be nonoscillatory. Then there exists a number y >0
such that the equation (a) has no solution with more than two zeros in [y, ®).

Proof. Since the equation (a) is nonoscillatory, there exists a solution y(x) of
(@) and a number y >0 such that y(y) =0, y(x) # 0 for x> y. Let z(x) be a solution
of (a) with the properties z(y)=z'(y)=0, z"(y)#0. If y'(y)#0, then from
Theorem 4 in [1] it follows z(x) # 0 for x > y. If y'(y) =0. then z(x) = cy(x) and so
z(x) # 0 for x > y. Consequently, the equation (a) always has a solution z(x) such
that z(y)=2z'(y)=0, z(x)>0 in (y, ©), y>0.

Now we show that every solution of (2) has not more than two zeros in [y, ). At
first, consider the solution of (a) with a zero at y. Let u(x) be a solution of (@) such
that u(y)=u(x))=u(x,)=0, y<x,<ux,. If y=x,<x,, then u(x)=cz(x) and so
u(x)#0 for x>y. Also the case y<ux,=ux, leads to a contradiction with the
identity

by =2y 42 b(x)y7] = 1 [2¢(x) = b"()]y* .

Now let y<x, <ux,. Suppose u(x)>0 in (x,, x,). Then there exist a number ¢>0
and 7€ (x,, x;) such that the solution z(x)— cu(x) has a double zero at 7 and
a simple zero at y, which is in contradiction with the above identity. So every
solution of (@) with a zero at y has not more than two zeros in [y, ©).
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Finally we prove that every solution v(x) of (a) such that v(y) # 0 has not more
than two zeros in [y, ©). Suppose to the contrary that v(x,)=v(x,)=v(x;)=0,
y<x,<x,<x,. (As we have showed above, the case x,<x,=x, leads to
a contradiction.) Let v(x)>0 in (x,, x;). Let w(x) be a solution of (a) such that
w(y)=w(x,)=0, w(x)<O0in (y, x,). Then w(x)>0 in (x,, ). Then by Lemma 2
1n [1], there exist numbers ¢ >0 and 7 € (x,, x,) such that the solution w(x) — cv(x)
of (a) has a double zero at 7 and a simple zero at x, which contradicts the above
id ntity. Theorem is proved completely.

Co ol ary 1. Suppose the inequality 2¢(x)— b'(x)=0 (2c(x) — b'(x)<0) holds
(0, ). Then (a) is nono cillatory in (0, ») if and only if there exists a number
y>0 uch that the equation (a) is disconjugate in [y, ), i.e. the equation (a) has
no solution with more than two zeros in [y, ®).
Proof. If 2c(x)—b'(x)=0, then the assertion follows from Theorem 1. If
c(x)—b'(x)<0 and (a) 1s nonoscillatory, then, by Theorem 3 in [1], its adjoint
equation is nono cillatory The coefficients of the adjoint equation, denoted by
b(x) and ¢é(x), satisfy the as umption 2¢(x) — b'(x)=0. Then the adjoint equation
of (a) is disconjugate in [y, ©) for some y>0, and by Corollary 3 in [3] the
equation (a) is disconjugate in [y, ). The sufficient conditions are obvious.
Theorems 6 and 7, Corollaries 1 and 2 in [1] yield the following theorem.

Theorem 2. Consider the differential equations
(1) y'"'b(x)y' +c(x)y=0, i=1,2,3,
'(x), ¢,(x) are continuous functions in (0, ©). Let the coefficients of (1,) satisfy

by(x)<b\(x),
2¢/(x) - bi(x) =<0,
) 2¢,(x) = bi(x)<2c,(x) — bi(x)<2c5(x) — bi(x) .
ba(x)=bi(x),
2¢5( )= bi(x)=0

L t the coefficients of (1,) satisfy the inequality 2c,(x)—bi(x)=0, or
2¢ (x)— bi(x)<0 in (0, ), or the equation
(1,) is of class V,, or class V,. :
Then the equation (1,) is nonoscillatory if the equation
(1,) and the equation (1,) are nonoscillatory.

Proof. Let, for instance, 2¢,(x) — b3(x)=0. Suppose to the contrary that (1.) is
o cillatory, i e. there exists a solution of (1,) which has zeros for arbitrarily large x.
From the conditions (2) it follows

bi(x)=b,(x), 2¢5(x) — bi(x)=2c,(x) — bi(x)=0 .
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Then, by Theorem 6 in [1], the equation (1,) is oscillatory, which is a contradiction.
In the same way we can prove all cases included in this theorem. (The definitions
of the class V; and V, see in [1] or [4].)
The main aim of this note is to show that Theorem 2 will be valid also, if we omit
the assumptions 2c¢,(x) — b5(x) =0 (2¢,(x) — bi(x) <0), (1,) is of class V, or class
V, in it. To prove it, we shall use the following theorem (see [2]).

Theorem 3. S&ppose the functions f(x), g.(x), i=1, 2,3 are continuous in an
interval 1. Let for any x € I be

3 9i(x) s gx(x)<g5(x) .
If the differential equation
4) y'"'+fx)y'+g.(x)y=0

is disconugate for i =1, 3, then it is disconjugate for i =2 in I

Theorem 4. Suppose the coefficients of (1,) satisfy (2). If the equations (1,) and
(1,) are nonoscillatory, then the equation (1,) is nonoscillatory in (0, ).
Proof. Consider the differential equations

(5) y'""+ba(x)y' +c(x)y=0,
(6) y'"+by(x)y' +E(x)y=0,
where the functions ¢(x), é(x) are defined as follows

c,(x) for all x € (0, ») such that 2¢,(x) — bi(x)=0,
3 bi(x) for all x € (0, ») such that 2¢,(x) — b3(x) <0,

5(x)={ c,(x) for all x e (0, ) such that 2¢,(x) — bi(x) <O,
\% bé(X) for all x E(O, 00) such that zcz(x)— bé(x)>0

é(x)={

The functions ¢(x) and é(x) defined in this way are continuous in (0, «). The
coefficients of (5) satisfy the conditions

0<2¢é(x)— bi(x)=max [0, 2¢,(x) — b3(x)] <2cs5(x) — bi(x) ,
b,(x)< bs(x) .
Since the equation (1,) is nonoscillatory, then the equation (5) is nonoscillatory

by Theorem 2.
Likewise, the coefficients of (6) satisfy the conditions

0=2¢é(x) — bi(x)=min [0, 2¢,(x) — bi(x)]=2c,(x) = bi(x) ,
: by(x)<bi(x).

Then, by Theorem 2, the equation (6) is nonoscillatory since the equation (1,) is
nonoscillatory. S

A
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From the definition of ¢(x) and é(x) it fillows

2¢(x) = bi(x)<2c,(x)— bi(x)<2¢(x) — bi(x),
i.e.
cx)<c(x)sé(x).

From the Corollary 1 it follows that the equations (5) and (6) are disconjugate in
[v, ) for a number y>0. Then the equation (1,) is disconjugate in [y, ) by
Theorem 3, and so (1,) is nonoscillatory in (0, «).

Remark. From the conditions (2) it follows that if b,(x)= b,(x) = b;(x), i.e. if
the equation (1;) has the same form as (4), then the conditions (2) imply the
conditions (3) and hence Theorem 4 generalizes Theorem 3.

Corollary 2. Let the coefficients of (a) satisfy assumptions

b(x)<p and |2¢(x)-b'(x)|<gq,
where p<0 and q<4/3 V3(—p)*?, p, q are constants, or the assumptions

b(x)sé and |2c(x)-— b’(x)lsﬁ ,

where p<1 and e<4/3 \/5(1 —p)*?, p, € are constants. Then the equation (a) is
nonoscillatory.

Corollary 3. Let in the equation (a) be b(x)=0. Then the equation (a) is
nonoscillatory if

1

x3

< 2.
IC(.X,‘)I\3 \/5

Proof. These corollaries are consequences of Theorem 11 in [1].
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3AMEYAHHUE O TEOPEMAX CPABHEHMS IJIA TUPPEPEHILIMAJIBHOI'O
YPABHEHMUWSA TPETBETO ITOPAIOKA

Hoced PoBuep
Pesome

Peluenne ypaBHeHus (@) Mbl 6yneM Ha3bIBaTh HEKONIEGATENbHBIM, ECITH CYIIECTBYET YHCIIO @ TAaKOE,
YTO €TO peLEHHE HEUMEET HyJIe# B MHTepBae (a, ®). YpaBHeHue (@) Mbl GyneM Ha3biBaTh Hekoneba-
TENbHBIM, €CJIH BCE €r0 PElIEHUs HEKONeGaTeNbHbI, U Mbl GylIeM Ha3bIBaTh €ro 6€3 CONMPSIKEHbIX TOYEK
Ha I, ecniu Kaxpoe ero peuieHue uMmeeT Ha I He Gonee ABYX HyJEH.

B pa6oTe pokasano uto ecnu 2¢(x)—b'(x)=0 (=0) B unrepsaiue (0, ©), noToM ypaBHeHue (a)
s6nsercss HekonebaTensHbIM Ha (0, ) TOrma M TONLKO TOTAA, KOTa CYWECTBYET YnCIO ¥ >0 TaKoe,
4YTO ypaBHeHHe (a) siBnsieTcs 6e3 CONpsKEHbIX TOYEK Ha MHTepBaje [y, ®).

I'naBHBIM pe3ylbTaTOM 3TOH pabOThl SABISETCA

Teopema 4. Ilycts koedduuneHTs! ypaBHeHust (1,) yNOBIETBOPAIOT CBOMCTBaMH (2) M MYyCThb
ypasaenus (1,) u (1,) sa6astoTcs HekonebarenbHbiMi Ha MHTepBaie (0, ©). Torna ypasuenue (1,)
SIBNISIETCS HeKosie6aTeNbHbIM Ha uHTepBane (0, ).
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