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ON THE EXISTENCE OF A SOLUTION OF F(x) =0
IN SOME COMPACT SETS

PAVOL MERAVY
0. Introduction

In this paper we consider the problem of the existence of a solution of a
system of n equations in n real variables

F(x)=0 (1)

(F: cl K — #" continuous) in the closure cl K of an open, bounded subset K of
the real n-dimensional space %"

We use the homotopy approach to prove a theorem asserting the existence
of a solution X of (1) such that xecl K. The proof is constructive for twice
continuously differentiable maps on U = #" (cl K = U, U open) and it is based
on a special form of the set K (described in Section 1). Further, we give an
example where the assumptions of our existence theorem (Theorem 2) are
weaker in comparison with the following commonly used .

Theorem 1[5, Theorem 6.3.4]. Let K be an open bounded set in #" and assume
that F: c1 K — R" is continuous and satisfies {F(x), x — x°) > 0 for some x’c K
and all xe 0K (where 0K = cl K\K denotes the boundary of K and {x, y) =

= Y x,y; the scalar product in ®"). Then F(x) = 0 has a solution in cl K.

i=1

1. Regular sets

We introduce here a class # of sets — we call them regular — which are
given by finitely many inequalities and satisfy a regularity condition.

By %* we denote the class of k-times continuously differentiable maps.

Definition 1. An open, nonempty set of the form

K={xeZ"|g(x)>0((=1, ..., m)} 2)
(where g;: R" — R are €° for i = 1, ..., m) will be called regular iff
cl K is compact 3
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and, moreover, the following regularity condition holds: for each point x € 0K there
exists a direction z€ R" such that

(Vgi(x),z> >0 foriel(x) (4)

(where Vg,(x) is the column vector of partial derivatives of g; at x and J(x) =
= {i| g,(x) = 0}; thus if xe 0K, then J(x) # 0).

It is clear that )" contains some convex sets (e.g. the interior of a unit ball
K={xe#"|1 — |x|* > 0}) and also some nonconvex sets (e.g. K = {xe4?|
|4 — x7 — (x, — x{)? > 0}). The regularity condition (4) is in fact the Man-
gasarian — Fromovitz constraint qualification used in mathematical pro-
gramming.

2. Barrier homotopy

Theorem 1 is usually proved using the degree theory (especially the homo-
topy invariance theorem for the Brouwer degree and the Brouwer fixed-point
theorem [5]). We shall, however, pursue another approach based on the parame-
trized Sard’s Theorem and the differential topology [2]. In our approach we use
a special homotopy map (called barrier homotopy), which was originally used
in [1] to construct numerically implementable homotopy methods for finding the
Kuhn — Tucker points of mathematical programming problems with inequality
constraints.

Definition 2. Let Ke A and F: U = #" — X" be 6°, U open, cl K < U and let
P = A" be open and nonempty. By the barrier homotopy we understand a map
H: Kx[0, 1]x P> Z", where

HOx 1 @) = (1= 000 @) + -F() + 11 = )+ 3. F(g () Ve, (5)

B: R —>RisC (R ={reR|r>0}),p isits first derivative, which we suppose
10 satisfy

lir? B(s)= —x% (6)

B'(s) <0 foralls>0 (7)

and Q: A" x P — R" is 6° satisfying for each ae P the following three conditions :
there exists exactly one x,€ K such that Q(x,, a) =0, (8)

the matrix D Q(x,, a) is regular, (9)

for each xe K the matrix D,Q(x, a) is regular, (10)
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(D, 0, D,Q denote the Jacobi matrices of the partial differentials of Q with respect
to x, a, respectively).

The variables ¢, a are called the homotopy variable and the homotopy
parameter, respectively.

Remark 1. Functions f satisfying (6), (7) are for example: f(s)= —Ins,
B(s) = — /s, B(s) = s~ ". Each of these functions can be used in Definition 1. The
map Q can be chosen for any Ke £, e.g. as follows

O(x,a)=x—a, P=K (1)

There may be, however, other and more suitable choices of Q for some sets K.

The following lemma gives the crucial technical result for our approach. It
characterizes the limit points of the zero set H, '(0) of the barrier homotopy H,
(the value of the homotopy parameter is fixed). By a limit point of a set .S a point
from ¢l S\S is understood.

Lemma 1. Let F be a 6> map, Ke A" and let H be the barrier homotopy. Then
there is a dense subset P of P such that P\P is of Lebesgue measure zero in R"
and for all ae P there holds
(@) The set H7'(0)|x,; = {(x, )e KxI|H(x, t, a) = 0} is a differentiable sub-

manifold of K x I of dimension 1 (where I denotes the open interval (0, 1)),
(b) any limit point (%, 1) of the set H'(0)| ., satisfies one of the following two

sets of properties:

(by) t = 0 and there exists an ue ®™ such that

>0 (12.2)
g®=>0% i=1,...m . (12.b)
u;-gi(x) =0 (12.¢)
Q(%, a) — Y. u-Vg(x) =0, (13)
i=1
(b)) ¢ = 1 and there exists an ue R" such that (12) and
F(%) — ) u;Vgi(¥) = 0. (14)

i=1

In the proof of this lemma we shall need

The Parametrized Sard’s Theorem. Let M « #", P < R#", N < R" be open and
fi: PxM — N be €', where r > max (0, m — n). If ye N is a regular value of f
(i.e. Df(a, X) is surjective at any (a, x)ef~'(y)) then there is a residual subset
P < P such that P\P is of Lebesgue measure zero and for each ae P the value y
is regular for f,: M — N.

In most books on differential topology only a nonparametrized version is
given:

Sard’s Theorem [2, Theorem 3.1.3]. Let M be a manifold of dimension
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m, N c A" openand f: M — N be a €" map, where r > max (0, m — n). Then the
set of critical values v e N of f (i.e. those v for which Df(x) is not surjective for at
least one x€f ' (v)) has the Lebesgue measure zero and the set of regular values
ve N is residual and hence dense in N.

We note that a residual set is a countable intersection of open dense sets and
that a residual subset of a complete metric space is also dense.

The Parametrized Sard’s Theorem can be obtained simply from the proof of
the more general parametric transversality theorem (e.g. [2, Theorem 3.2.7]).
This theorem, however, is usually formulated in such a way that it asserts only
that P is residual. Because of the probability aspect of the constructive
procedure based on this idea (where a random choice of a point from P is made),
the conclusion on the zero measure of P\P may be interesting. So we give here
the proof of the Parametrized Sard’s Theorem using the above (nonparametric)
Sard’s Theorem.

Proof. Let n: f~'(y) @ Px M — P be the natural projection map, i.e.
n(a. x) = a for all (a. x)ef '(y). As v is a_regular value of f'the set f~'(v) is a
differentiable submanifold of P x M and rank Df = n for all (a. x)ef ™ '(v). At
each (a. x)ef'(y) the manifold f~'(y) can be locally parametrized by («', x')e
e #" " " provided the square submatrix (D ,.f D . f) of (D,.f D,:f D, f D.:f)
is regular at (a. x) = (a', @, x', x?). In this case we can write

Unf'(yv)=(da". p,(a', x"), x', o.(a', x")),
where (¢,. ¢): U' - #"is 6" and U, U' are neighbourhoods of (a, x), (a', x'),

respectively. Consequently
N a' )
for (a, x)e U, (a', x")e U".

Now we prove that the set of regular values of 7 is exactly the set P of those
ae P for which y is a regular value of f,: M — N. Then the Sard’s Theorem
applied to m implies the assertion of the Parametrized Sard’s Theorem.

Let y be a regular value of f;, i.e. D f has full rank »n at any (a, x)ef '(y).
This implies that we can choose at such points (@, x) the local parametrization
with «' = a. Then we have n(a, x) = ¢ and hence a is a regular value of .

Let y be a critical value of £, i.e. for at least one (a, X)ef '(y) any regular
submatrix of Df(a, ¥) has to contain at least one column of D, f(d, ¥). Let
(D,-f D) be such submatrix. Moreover, let all columns of D,/ be linear
combinations of columns of D . /. By the formula for computation of differen-
tials we obtain for a component x, of x':

D, f(a, %)+ D..f(a, x)D ¢(a', x') + D, f(a, 5D, ¢,a', x') = 0.
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As (D,.f D,>f) is regular and D, f'is in the range of D,»f we have: D, ¢,
(a', &' is zero (for each component x, of x'). Thus D1 ¢,(a'. £') is a zero

matrix, so
E 0
Dr=
<Dlll (ptl DYI ¢a>

has not full rank at (a. x), i.e. a is a critical value of 7. #&

Proof of Lemma 1. From (10) it follows that 0e #" is a regular value of
the barrier homotopy H. As H is %* we can apply the Parametrized Sard’s
Theorem to H and in this way we obtain that there is a dense subset P < P with
P\P of measure zero such that 0 is a regular value of H,: K x [ - #" for each
ae P. By [2, Theorems 1.3.2, 1.3.3] the part (a) of this lemma is valid.

Let ae P, (x*, tk)—kj? (%, 1), where H, (x*, t*) = 0 for each k. As the set

H,;'(0) is closed in Kx [ each its limit point (¥, t) belongs to the boundary
O(K x I). First we prove that (¥, r)¢ 0K x I, which implies ¥ecl K and either
t =0ort = Il. Then the properties (12), (13) or (12), (14) will be proved to hold
at x.
The first step ((X, 1) ¢ 0K x I) will be proved by contradiction. Let (x*, t*) —
— (%, 1) and x€0K, rel. Then J(%) # 0 and for ie J(¥) we have lim f'(g,(x*)) =
k—x

= —o0. Letv* = (vf, ..., v¥), where v} = B'(g;(x*)) < 0. Dividing H,(x*, t*) = 0
by ||v*|| and passing to the limit for a subsequence of k — oo we obtain that there

exist finite nonpositive numbers o, (|7]] = 1, i.e. 7; are not all zero) such that
Y 5,Vg(x) = 0.
ieJ(X)

Taking the scalar product of the above equation with a vector z from the
regularity property (4) we obtain

Z 0;{Vgi(x), z) =0,
ieJ(X)
which contradicts (4).

It remains to prove that if (X, f) is a limit point of H, '(0)|.,. then there
exists ue #™ such that either t = 0, (12), (13) or t = 1, (12), (14) are satisfied.
Both cases can be treated in the same way, hence we do this only for the case
r=0.

For each k there holds H,(x*, t*) = 0. Passing to the limit for kK — oo (for a
subsequence if necessary) we obtain

05 ) + ¥ VgD lim (¢4(1 — 19 g, (x")) = 0, (15)

i=1

where the limits exist (nonpositive or — c0) and for i¢ J(X) there holds
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Jlim (t'(1 = 1) B(g(x*)) = 0. (16)

We prove now by contradiction that these limits are finite for /e J(X) as well.
Let u} = —*(1 — *)-B'(g(x*)) and |lu*| - oo. Dividing H,(x*, 1*) =0 by
fu*| and passing to the limit for A - co we obtain that nonnegative u, =
= Alirn, ul [t ]|~ " exist (Jlu] = 1) such that

m

Y —u;Vgi(x) = 0.
i=1
Analogously to the proof of part (a), this leads to a contradiction with the
regularity property of K.
Now we can assume that a subsequence {j} of {k} was chosen such that
lim u/ = u, = O exists foreach i = 1, ..., m. Clearly (12.a) is valid and also (12.b)

becéuse xecl Kimplies g;(x) = Oforalli = 1, ..., m. For the subsequence {j} we
obtain from (15) the relation (13) and from (16)

g(xX)>0 = u,=0.

The last implication is equivalent to (12.c). &

3. Main Result

In this section the results of previous sections are used to prove the existence
theorem: .

Theorem 2. Let Ke A and F: cl K < R" — R" be u continuous map on cl K. Let
us suppose:

(a) there is a €* map Q satisfying the conditions (8—10) of Definition 2,

(b) for each ae P and the map Q from (a) the conditions (12), (13) are satisfied
only for the point (X, u) = (x,, 0),

(c) if (12), (14) are satisfied for (%, u), then u = 0.

Then F(x) = 0 has at least one solution in cl K.

Proof. Let us first suppose that F is € on an open set containing cl K.
Then we can define a barrier homotopy H using the map Q satisfying (a), (b).
By Lemma 1(a) for ae P the set H'(0)| 4., is a differentiable submanifold of
K x I with (x,, 0) as one of its limit points. We call the connected component of
this set, which has (x,, 0) as its limit point, the homotopy path. Because of (8),
(9) and the implicit function theorem the homotopy path is in the neighbour-
hood of (x,, 0) a curve parametrizable by ¢. Hence the homotopy path is
homeomorphic to an open interval with at least one limit point in 0(Kx /)
different from (x,, 0). Due to Lemma 1(b) and assumption (b) of this theorem
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we have that all other limit points (¥, 1) # (x,, 0) satisfy 7 = 1 and (12), (14). By
(c) we obtain that F(x) = 0.

Now let us suppose F to be only continuous on ¢l K. The set ¢l K is compact,
so we can approximate F uniformly on cl K with arbitrary small tolerance ¢, > 0
by a €*> map F*: #" — #" [1, Theorem 6.2] such that

max [ F(x) — Fr)ll < &. (17)

Hence there is a sequence {F*}{_, of maps approximating F in the sense (17)
such that g — 0. In an analogous way to the proof of this theorem for a &*
map F we can assert the existence of a limit point (x*, 1) of a homotopy path
of the barrier homotopy for F*. By Lemma 1(b) u*e %" exists such that

uf =0 (12".a)
g(x)=03 i=1,....m (12.b)
uf-g(x*)=0 (12'.¢)
FYx¥) = Y uf-Vg(x*) = 0. (14)

i=1
By compactness of cl K we can choose a subsequence of {k} such that x* — xe
ecl K. By the approximation property (17) and ¢, — 0 we have

klim F¥(x¥) = F(x). (18)

We show by contradiction that {u} is bounded for each i = 1, ..., m. If it is
not so, i.e. if |u,~"'|k——> oo for some i, then |Ju*|| - co. From (14’) divided by

|lu*|| we obtain for k — co that a unit vector & = 0 exists such that
Y ;- Vgi(x) = 0.
i=1

This, however, contradicts the regularity property (4). As {u*} is bounded we can
choose a convergent subsequence such that u"—:—* u, x"—k——> x. By (18) and

the continuity of Vg, (i = 1, ..., m) we obtain from (12°), (14") that (12), (14) is
valid. By (c) this implies u = 0, which implies F(¥) =0. &

4. Discussion

The proof of Theorem 2 is constructive with probability one for two times
continuously differentiable maps F and Ke.#" provided a suitable map Q is
known. Namely, having a suitable map Q satisfying (a), (b) of Theorem 2 we can
define the barrier homotopy H. Let ae P be chosen at random. As P\P has
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measure zero, with probability one we have ¢ € P and hence the homotopy path
in H, '(0) will lead to the solution of F(x) = 0. Using a numerical path-following
method we can compute a sufficiently good approximation of the solution to
F(x)=0.
To illustrate the application of Theorem 2 we give here two corollaries,
Corollary 1. Let Ke X" be a convex subset of R". If the continuous map
F: clK — A" satisfies

(12), (14) = u =0, (19)

then there exists at least one point Xecl K such that F(x) = 0.

Proof. Let Q(x, a) = x —a and P = K. For this choice (8—10) are ob-
viously satisfied. Because of the convexity of K it holds that for each « e K there
is no Kuhn—Tucker point of the mathematical programming problem

Min {% x —al’|xecl K}

on the boundary 0K, i.e. no vectors ue A", ¥e0K satisfying (12), (13) exist.
Hence due to (8) the assumption (b) of Theorem 2 is also satisfied. As (19) is
exactly the assumption (c), it is clear that Corollary 1 is a special case of
Theorem 2. @&

Corollary 2. Let K = {xe #"|1 — | x||* > 0}. If a continuous map F: cl K — 2"
satisfies at any boundary point xe 0K = {xe A2"|||x|| = 1} the property

F(x)=Ax = {(F(x),x) =0 (20)

(where Ae R), then there exists at least one xecl K such that F(x) = 0.
Proof. As K is convex, all we need to prove is that (19) is equivalent to
(20). In our case (K is an interior of a unit ball) the assumption (19) has the form

F(x) 4+ 2ux =0

uz=0
LR = u=0.

u(l —[lx[*) =0

This implication holds trivially at any interior point. At a boundary point (19)
is reduced to

F(x)4+2ux=0
w0 = u=0.

This is equivalent to the fact that there is no u > 0 such that F(x) = —2,x. The
last statement can be formulated as follows

F(x)=Ax = A>0,
which is clearly equivalent to (20). &
72



Remark 2. The assumption (20) is weaker than the assumption
(F(x), xy >0 for all xedK ' ¥3))

of the lemma [3, p. 53]. Namely, according to (20) {(F(x), x> = 0 need to be
verified only at points for which F(x) = Ax.
The following example demonstrates that (20) is actually weaker than (21),
i.e. there are F and K such that (21) is not satisfied and (20) is satisfied.
Example.

F(x) = <x2x' + xl), K={xe®||x|*< 1.
X, X, — X,

Let us look closer at the above example. As {F(0, — 1), (0, —1)> = — 1 and
(F(0,1),(0,1)> = 1,50 (21) is not satisfied. As no point || x| = 1 exists such that
F(x) = Ax for some 1€ # the implication (20) is satisfied.

We show now that in the above example even the assumptions of Theorem 1
are not satisfied (i.e. there is no x,€ K such that {(F(x), x — x° > 0 for all
xe€0K).

It can be easily verified that (F(x), x> = x, | x|I* holds for each x e cl K. Hence
the choice x” = 0 is not feasible.

Let 0 < ||x°] < 1 be fixed and denote x', x? the two points of intersection of
the line through x° and (0, 0) with the sphere | x|| = 1. There holds x° = a,x’
(i=1,2),where 0 < ¢, <1, —1 < @, < 0. At these points there holds

(F(x'), x' = x% = (1 = @) <F(x'), x'> = (1 — @) x;[|x|I%,

where 1 — ;> 0.
If x) # 0, then x7 and x, have different signs.
If x=(x},0), 0 < ||x° < 1, then for || x| = 1 there holds

(F(x), x — x% = x,(1 — x)(x, + 1)). (22)

For each 1 > |x)| > 0 fixed a positive X, < 1 can be found such that (1 — x-
-(¥, + 1)) > 0. Hence the scalar product (22) has the opposite sign at the points
(%), x,), (¥;, —x,) on the sphere ||x| = 1.

Remark 3. For the example of a nonconvex regular set given in Section 1
an analogous existence theorem to Corollary 1 can be proved. In this case one
can take Q(x, a)= —Vg(x —a), P = {ae#’||a| <0.25}, where g(x)=
=4 — x] + (x, — X)L

Remark 4. In [1] the following statement is formulated in Problem 2.9:
Let K = {xeZ"| | x| < 1}, Fcontinuous on cl K. If F(x) # 0 for all xecl K, then
there exist two points x'ecl K and constants A'e # such that

F(x) = A'x', where A'>0,1’<0. (23)
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Following the hint in [1], the proof of this statement is by contradiction. As the
assumption (23) is in contradiction with (20) the above statement from [1] is
equivalent to Corollary 2. It is interesting that so far we have not seen this
statement in literature in the form of an existence theorem.
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O CYIWECTBOBAHHWH PEIIEHUA F(x) = 0 HA HEKOTOPBIX
KOMITAKTHbBIX MHOXECTBAX

Pavol Meravy
PesomMme

B cTaThe M3yuyaeTcs BONMPOC O CYLIECTBOBAHHH pelleHHs ypaBHeHHS F(x) =0 (F: cl K —» A"
HenpepbIBHOE 0TOOpaXkeHHe) Ha 3aMbIKAHUU peryIsspHoro MHoxectsa K — #". B cratbe BBeJEHbI
NOHSATHS PEryJspHOro MHOXECTBA M CNELIMAIBHOTO TOMOTOMNHYECKOTO 0ToOpaxeHus -— Gapbep-
HOIl TOMOTONMH — MCMOJIL3YEMOIO NPHU J0Ka3aTeJbCTBE TEOPEMBl O CYLUECTBOBAHMM DELICHUS
(Teopema 2). Joka3atenbctBo Teopembl 2 sBASETCS KOHCTPYKTHBHBIM IUIsl Cilydasi JIBa pasa
HenpepbiBHO AnddepeHpyemoro otobpaxenus F. [lpuBoauTcs Takxke NpUMep MOKa3bIBaIOLIKH,
4TO JUIS crienMabHOro MHoXecTBa K ycsioBus Teopemst 2 ciiabee yenosuii Teopemsl 1 noka3aHHoi
paHbllie Ha npumep B [3].
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