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ON THE SUM OF OBSERVABLES IN A LOGIC

ANATOLI DVURECENSKIJ
SYLVIA PULMANNOVA

In this paper the sum of observables, including also the case of unbounded
observables, is studied and some results regarding the full and quite full systems of
states are proved.

1. Introduction

Let L be a poset with the first and the last element 0 and 1, resceptively, with the
orthocomplementation L : L — L, for which we have (i) (a*)*=a forall a e L ; (ii)
ifa<b,thenb*<a*;(iii)ava*=1forallaeL.If a<b, thena, b are said to be

orthogonal and we write a Lb. Further we assume that if g, La;, i#], then /a,

exists in L ; and if a <b, then there is ¢ La such that b =a v c. A poset L satisfying
the above axioms is called a logic [9].
An observable is a map x: B(R,)— L such that (i) x(R,)=1; (ii) if EnF =40,

then x(E)Lx(F); (iii) x(UE,) = \/x(E,-) if ENnE; =@, i+j. If f is a Borel

function and x an observable, then fox: E—x(f '(E)), E € B(R,) is an observab-
le. We denote by o(x) the smallest closed set C =R, such that x(C)=1, and x is
called bounded if o(x) is a compact set.

A state is a map m: L — (0, 1) such that (i) m(1)=1; (ii) m(\_/a,.) =S m(a;) if

a;la;, i#j. An element a €L is a carrier of a state m if m(b)=0 iff b La. If
a carrier of m exists, then it is unique. A system J{ of states of L is called (i) quite
full if the statement m(b) =1, whenever m(a) =1, m e M implies a <b ; (ii) full if
a <b iff m(a)<m(b) for all m € M. Gudder [6] showed that if / is quite full, then
(i) A is full; (ii) if a# 0, then there is m € A such that m(a)=1.

Let m be a state and x an cbservable: then m(x) = [t dm.(¢), where
m,: E—»m(x(E)), E € B(R,) is called the mean of x in the state m, provided that
the integral exists. Analogically there is defined m(x®) = [¢* dm.(¢).

A state m is pure if the statement m=cm,+ (1 —c)m., 0<c<1 implies
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m=m,=m,. For a system J#{ of states we denote by Co (M) = {Ec,-mi, ¢ >0,

Zc,:l, me, iel={l, 2, }} that is, Co () is the set of all s-convex
combinations of the states of /(.

Lem:na 1.1. (i) A system J of states is quite full (full) iff Co(M) is quite full
(full).

(ii) If M., o € A are quite full (full) systems, then = | M, is quite full (full).

aeA
(iii) If M is quite full (full) and M, is a system of states, then M UM, is quite full
(full).
The proof of this lemma is obvious and is omitted.

2. Systems of states

One of the most important examples of logics is a logic L (H) of a Hilbert space
over D (D is a real or complex field), that is, L (H) is a complete lattice of all closed
subspaces of H.

Since there is a one-to-one correspondence between the closed subspaces M of
H and their projectors P", we shall write M for a subspace as well as for its
projector. If u e H is a unit vector, then the system ., of all vector states
m,: M—(Mu, u), M eL(H) is a quite full system of states of a logic L (H), and,
moreover, m, =m, iff there'is a €D, |a|=1, such that u =av. The excellent
Gleason theorem [10] says that if H is a separable Hilbert space of dimension at
least three, then Co(/,) is the set of all states of L (H), or, equivalently, for any
state m on L(H) there is a unique von Neumann operator T such that m(M)
= r(TM), M e L(H).

Due to the spectral theorem there is a one-to-one correspondence x <A,
between the set of observables on L(H) and the set of all self-adjoint operators
on H. An observable x is bounded iff A, is a bounded operator.

Lemma 2.1. Let m, be a vector state ; then m,(x*) < iff ue D(A)ND(A,) is
the domain of the linear operator A,); in this case

m,(x)= (A, u), m,(x*)=||Aul

Proof. Since u e @(A) iff [A*d(P*<(1)u, u), where P*:(E)=x(E), E € B(R))
is a spectral measure of A, . we have m,(x°) = [t*dm, (t) = [A*d(P*(X)u, u)
= ||A.u||*>. Analogically we obtain m,(x) = (A.u, u). Q.E.D.

Theorem 2.2. A system /M <M, of a logic L(H) (H is of an arbitrary dimension)
is quite full iff M =M, .
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Proof. If #l # A, , then there is a unit vector v € H such that m, ¢ 4. But for the
subspace P, generated by v there is no m, € 4 such that m,(P,)=1. Actually, if
there would be m, e M, m,(P,)=1, then ||P,u||*=1. Hence there is a € D such
that u = av and therefore lal =1, which implies m, =m, e #. Q.E.D.

Corollary 2.3. If A is a self-adjoint operator, then the system (A ) of all vector
states generated by unit vectors from 9(A) is quite full iff A is a bounded operator.

Proof. An operator A is bounded iff X(A) = H. If #(A) is quite full and
P(A)# H, then there is a vector u#0, uéP(A). A unit vector uo=u/||ull
determines a vector state m,, which does not belong to #{(A). Hence, by
Theorem 2.2, #(A) is not quite full. Q.E.D.

Theorem 2.4. A system of states M = Co (M, ) is quite full iff #, = M.
Proof. Let P; be a one-dimensional subspace generated by f, ||f|| = 1. Since

is quite full, there is m = > cim,, € M such that m(P;) = 1. Hence m,,(P;) =1 for any

i and v; € P;. This implies m; =m,, for any i and m=m, e M, that is, M, =M.
Q.E.D. ‘

Theorem 2.5. Let H, be a linear manifold dense in H. Then M(H,)
= {m,, ||lull=1, ue H,} is a full system of states.

Conversely, if #(K) = {m,, ueK, ||u||=1} is a full system of states, then the
linear manifold H(K) generated by K is dense in H.

Proof. If m,(M)<m,(N) for any unit vector u € H,, then due to the density of
H, we have m,(M)<m,(N) for any u € H, that is, M = N ; consequently ./ (H,) is
full. :

Conversely, let #(K) be a full system of states. Then Hx =H(K) e L(H). For
any m, € #(K) we have m,(Hg) =1, which implies m,(Hx) = m.(H) for any m,
and therefore Hx = H. The density of H(K) is proved. Q.E.D.

Now let W= W(H) be a von Neumann algebra of bounded operators of
a Hilbert space H (real or complex) and let L(W, H) be a sublogic of L(H)
constituted by projectors belonging to W. We denote by W’ the commutant of W,
is the set of all bounded operators B in H such that AB = BA for all A € W. Then
we may formulate the next assertion.

Thecrem 2.6. Let W(H) be a von Neumann algebra and K < H be a set of unit
vectors. If M(K) = {m,, ue K} is full, then W'K is dense in H.

Proof. Let #(K) be full. It will be shown that K is a separator of W, that is, if
for Ae W we have Au=0 for all ueK, then A =0.Indeed, if Au=0, then
A*Au=0. An operator B=A*A is Hermitian and for the corresponding
observable xg we have

m,(xs)= [t dm, .,(t)=(Bu, u)=0.
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Since m, (xs({0}))=1=m,(H), we have x5({0})=H and thus B=0, A=0.
Due to [3, p. 6] K is a separator of W iff W’'K is dense in H. Q.E.D.
According to Bugajska, Bugajski [1] we introduce the next axioms:
Axiom 1. L is a separable logic, that is, cvery subset of mutually orthogonal

elements from L is at most countable.

Axiom 2. The system M, of all pure states of L is quite full.
Axiom 3. IfformeM, m(a)=1,teTthen )\ a exists inLandm(/\a,) =1.

teT teT

In [1] it is shown that the above axioms imply that (i) any state m € # = Co (M)
has a carrier; (ii) forany a € L, a + 0, there is m € 4 such that a is its carrier ; (iii) L
is a lattice. Zierler [11] showed, moreover, that L is a complete lattice.

Let m € M, and let I, be its carrier. According to Deliyannis [2] the following
axioms are supposed, in addition:

Axiom 4. For any n, me M, n(I,,)=m(L,).

Axiom 5. If n(I,)=1, then n=m.

The corollaries of the axioms 1—>5 are (i) for any m € 4, I, is an atom of L ; (ii)
for any atom a € L there is a unique pure state m € /{, such that I, =a: (iii) any
ael, a#0,is a join of mutually orthogonal atoms.

Theorem 2.7. M < Co (M,) is quite full iff M > M,.
Proof. If # o A,, then 4 is quite full (Lemma 1.1). Conversely, let # be quite
full. If 2 is an atom, then there is me#l, m(a)=1. Hence m is of the form

m=2c,-m.~, >0, zc,:l, m; e M, and m;(a)=1 for all i. This implies L, <a.

Therefore I, =a and the puré state corresponding to a is equal to m € .#, that is,
M, =M. Q.E.D.

Theorem 2.8. Let a system of pure states M ={m,,,a€A} (a., A €A, is an
atom) be full; then

Voa,=1.

aeA

Proof. Let a= \/ a,; then for any m,,, a € A we have m, (a)=1. Due to the
aeA

fullnees of #{ we have a=1. Q.E.D.

3. Sum of observables

The sum of bounded observables has been studied by Gudder [6, 7],
Dvurecenskij [4]. In [7, p. 331] there is given the definition of the sum of
unbounded observables: We say that the sum of x, y exists if there is a quite full
system M of states and an observable z such that m(x), m(y) exist and are finite,
and m(z) = m(x) + m(y) for all me M.
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But this definition does not include the important case of a logic L(H),
3<dim H<R,.

In more detail: Let A,, A, be two unbounded positive self-adjoint operators
with D(A.)ND(A,) dense in H. Let x and y be observables corresponding to
A,, A,, respectively. Then m,(x), m,(y) exist and are finite iff u e D = D(AL*) N
PD(A,?) (Lemma 2.1). If the system /4 of vector states generated by unit vectors
from @ were quite full, then, by Theorems 2.2 and 2.5, 9 =H. Hence @ c
DAY, D(A)?) and A}, A} are bounded operators [8]. Consequently A,, A,
are bounded, which contradicts to our assumption.

On the other hand, A, + A, is a self-adjoint operator and it is reasonable to
consider the corresponding observable z for the sum of x and y.

By Theorem 2.5 it is evident that the above # is only full. For this reason we
accept the following definitions.

Let us suppose that on a logic L a quite full system . of states, # = Co (M), is
given. The pair (L, #) is called a quantum logic.

Definition 3.1. We shall say that on a quantum logic (L, M) the observables
X1, ..., X, are summable if

(i) M(x,...,x)={meM:m(x})<oo,i=1, ..., n} is a full system;

(ii) there is an observable z such that M(z)>M(x,, ..., x,) and m(z) = m(x,)
+ ... + m(x,) forall me M(x, ..., x,).

In this case z is called the sum of x,, ..., x, and is written 7 = x; + ... + X,.

Definition 3.2. We shall say that a quantum logic (L, M) is a sum logic if there
holds : for every finite system of observables x,, ..., x, for which M(x,, ..., x.) is full
there is a unique sum z=Xx;+ ...+ x,.

In the following we assume that (L, #) is a sum logic.

Proposition 3.3. On a sum logic the sum of any two bounded observables x and
y exists and is a bounded observable.

Proof. Since #(x, y)=A, x and y are summable. For z =x +y we have that
m(z) is finite for every m € # and, by [5, Theorem 6.3] this is the necessary and
sufficient condition for z to be bounded.

Thus, by this proposition, the case of bounded observables from [5] is included in
Definition 3.2.

Proposition 3.4. Let x4, ..., x, be summable. Then
(i) xi, ..., x;, are summable for any permutation (i, ..., i») Of (1, ...,n) and x,

+ .ot X, =x + 0+ xS

(ii) for any ay, ..., a, €R, a,x,, ..., &.x, are summable, especially, a(x, + ...
+ x,) = ax; + ... + ax, for a eR,.

(iii) any subsystem x,,, ..., x,,, 1 <k =n is summable, especially z, = x; + ...
+ xyand z; = Xg41 + ... + Xx, are summable and z, + 2> = X1 + ... +X,.
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Proof. (i) Since M (x,, ..., x,) = M(x;, ..., x;,)forz = x, + ... + x,, we have
m(z) = m(x) + ... + m(x,) = m(x,) + ... + m(x,), meM(x,, ..., X.).
Analogically we prove (ii).

(iii) There holds

Mi=M(x1, o ) DML, ooy Xn )y Moy = M(Xisr, ooy X ) DMy, ..., X))

Then there are unique observables z,, Z» such that #(z,)>M,, M(z,)> M, and z,
=X + ... + X, 22 = Xks1 + ... + x..Since M(2,, 22) = M(2,) N M(22) D
M(x,, ..., x,), 2, are z, are summable and there is a unique z’ such that #(z') o
Mz, 22), m(z') = m(z)) + m(z.), meM(zy, 2). For any meM(x,, ..., x,) we
have m(z') = m(z,) + m(zz) = m(x)) + ... + m(a) + m(xea1) + ... + m(x,)
= m(z). From the uniqueness of the sum z =x,+ ... +x, we have z =z'. Q.E.D.

Proposition 3.5. If x,, ..., x, are summable and x,=f,ou for some Borel
functions f;, i=1, ..., n and an observable u, then x, + ... + x, = (fi + ...
+ f,,)ou.

Proof. If meM(x,, ..., x.), then f, e L,(R,, B(R:), m,) and there holds
m(z)=m(x,)+...+m(x,)=[fidm, + ...+ [f. dm, =

=[(fi+...+f)dm,=m{(fi+ ...+ f.)ou). (Q.E.D.

Proposition 3.6. If (K, /) is a sum logic, then L is a lattice.
The proof of this proposition is the same as that of Lemma 6.2 [6].
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O CYMME HABJIIOJAEMbIX B JIOTUKE
Anartoanit IBypeuyeHckuidi—CpuiBus IlynMaHHOBa

Pesome

B pa6oTe uccnenyeTcs NOHATHE CYyMMbI HAOIIOAAEMBIX B JIOTHKE, 3aKII0OYaloLIee B ceGe TOXeE Cyvai
HeorpaHuUYeHHbIX HabmonaeMbix. [IoKa3aHbl HEKOTOPBI PE3YNILTaThl O CUCTEMAX cocTposimit. B paGorte
BBEJICHO MOHSTHE CYMMHMpPYEMbIX HaG)l:ofaeMbIX. B 4acTHOCTM MccrmepyeTcst Ciny4yail JIOTMKM BCeEX
npoekTopoB B npoctpaHcTBe ['mnpbepra.
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