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Math. SSovaca 30,1980, No. 4, 393—399 

ON THE SUM OF OBSERVABLES IN A LOGIC 

ANATOLIJ DVURECENSKIJ 
SYLVIA PULMANNOVA 

In this paper the sum of observables, including also the case of unbounded 
observables, is studied and some results regarding the full and quite full systems of 
states are proved. 

1. introduction 

Let L be a poset with the first and the last element 0 and 1, resceptively, with the 
orthocomplementation JL: L —>L, for which we have (i) (flx)"L = a for all a e L ; (ii) 
if a <b, then b±<a±; (iii) ava± = 1 for all a eL. If a<b, then a, b are said to be 

orthogonal and we write a±b. Further we assume that if at±ah i^j, then Va* 

exists in L ; and if a <b, then there is c±a such that b = a vc. A poset L satisfying 
the above axioms is called a logic [9]. 

An observable is a map x: B(R{)—>L such that (i) x(R^) =1 ; (ii) if EnF = 0, 

then x(E)±x(F); (iii) *(lJ-E«) = \fx(Ei) if EI-n.E/ = 0, i±j. If / is a Borel 

function and x an observable, then fox: E\-+x(f~l(E)), E eB(R}) is an observab­
le. We denote by o(x) the smallest closed set C c R , such that x(C) = 1, and x is 
called bounded if o(x) is a compact set. 

A state is a map m: L—»(0, 1) such that (i) m(l) = 1; (ii) mys/a-] = 3 2 m ( f l ' ) ^ 

fl.-J.fl/, i^=j. An element aeL is a carrier of a state m if m(b) = 0 iff b±a. If 
a carrier of m exists, then it is unique. A system M of states of L is called (i) quite 
full if the statement m(b) = 1, whenever m(a)=l, meM implies a<b ; (ii) full if 
a <b iff m(a)^m(b) for all m eM. Gudder [6] showed that ifM is quite full, then 
(i) M is full; (ii) if a^O, then there is m eM such that m(a)= 1. 

Let m be a state and x an observable; then m(x) = \t dmx(t), where 
mx: E*-±m(x(E)), EeB(Rx) is called the mean of x in the state m, provided that 
the integral exists. Analogically there is defined m(x2) = $t2dmx(t). 

A state m is pure if the statement m = cmx + (l -c)m2, 0 < c < l implies 
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m = mx = m2. For a system M of states we denote by Co (M) = ^ ] C A , C, > 0 , 

2 c i = l- m{eM, ie/cz{1, 2, ...}|, that is, Co (M) is the set of all s-convex 

combinations of the states of At. 

Lemma 1.1. (i) A system M of states is quite full (full) iff Co(M) is quite full 
(full). 

(ii) IfMa ,aeA are quite full (full) systems, then = [J Ma is quite full (full). 
a e A 

(iii) If M is quite full (full) and Mo is a system of states, then MuM() is quite full 
(full). 

The proof of this lemma is obvious and is omitted. 

2. Systems of states 

One of the most important examples of logics is a logic L(H) of a Hilbert space 
over D (D is a real or complex field), that is, L(H) is a complete lattice of all closed 
subspaces of H. 

Since there is a one-to-one correspondence between the closed subspaces M of 
H and their projectors PM, we shall write M for a subspace as well as for its 
projector. If ueH is a unit vector, then the system M„ of all vector states 
mu: Mi->(Mw, u), MeL(H) is a quite full system of states of a logic L(H), and, 
moreover, mu=mv iff there is aeD, | « | = 1, such that u = av. The excellent 
G l e a s o n theorem [10] says that if H is a separable Hilbert space of dimension at 
least three, then Co(Mv) is the set of all states of L(H), or, equivalently, for any 
state m on L(H) there is a unique von Neumann operator T such that m(M) 
= tr(TM), MeL(H\ 

Due to the spectral theorem there is a one-to-one correspondence JC<->AX 

between the set of observables on L(H) and the set of all self-adjoint operators 
on H. An observable x is bounded iff Ax is a bounded operator. 

Lemma 2.1. Let mu be a vector state; then mu(x
2)<°° iff u e3)(Ax)(Q)(Ax) is 

the domain of the linear operator Ax)\ in this case 

mu(x) = (Axu, u), mu(x
2)=\\Axu\\2. 

Proof. Since u e31(A) iff |A2 d(PA*(X)u, u), where PA*(E) = x(E), E eB(R]) 
is a spectral measure of Ax, we have mu(x

2) = $t2 dmux(t) = JA2 d(PA*(k)u, u) 
= ||Axu||2. Analogically we obtain mu(x) = (Axu, u). Q.E.D. 

Theorem 2.2. A system MczM^ofa logic L (H) (H is of an arbitrary dimension) 
is quite full iff M=MV. 
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Proof. If Mi^Mv, then there is a unit vector v eH such that mv £M. But for the 
subspace Pv generated by v there is no mu eM such that mu(Pv)= 1. Actually, if 
there would be mueM, mu(Pv)=\, then | |P„M||2 = 1. Hence there is « e D such 
that u = av and therefore \a\ = 1, which implies mv =mu eM. Q.E.D. 

Corollary 2.3. If A is a self-adjoint operator, then the system M(A) of all vector 
states generated by unit vectors from 3)(A) is quite full iff A is a bounded operator. 

Proof. An operator A is bounded iff 3)(A) = H. If M(A) is quite full and 
Q)(A)^H, then there is a vector ui=0, u£Q)(A). A unit vector W0 = M/||M|| 

determines a vector state m^ which does not belong to M(A). Hence, by 
Theorem 2.2, M(A) is not quite full. Q.E.D. 

Theorem 2.4. A system of states M czCo (jbL) is quite full iff MvczM. 
Proof. Let Pf be a one-dimensional subspace generated by / , ||/|| = 1. Since M 

is quite full, there is m = ^ cimVi eM such that m(Pf) = 1. Hence mVi(Pf) = 1 for any 

i and ViePf. This implies mf = mVi for any i and m = mfeM, that is, MvczM. 
Q.E.D. 

Theorem 2.5. Let H0 be a linear manifold dense in H. Then M(H0) 
= {mu, \\u\\ = \,u eH0} is a full system of states. 

Conversely, if M(K) = {mu, ueK, ||u|| = 1} is a full system of states, then the 
linear manifold H(K) generated by K is dense in H. 

Proof. If mu(M)^mu(N) for any unit vector u eH0, then due to the density of 
Ho we have mu (M) ^ mu (N) for any ueH, that is, MczN; consequently M (H0) is 
full. 

Conversely, let M(K) be a full system of states. Then HK=H(K)eL(H). For 
any mu eM(K) we have mu(HK) = 1, which implies mu(HK) = mu(H) for any mu 

and therefore HK =H. The density of H(K) is proved. Q.E.D. 
Now let W=W(H) be a von Neumann algebra of bounded operators of 

a Hilbert space H (real or complex) and let L(W, H) be a sublogic of L(H) 
constituted by projectors belonging to W. We denote by W the commutant of W, 
is the set of all bounded operators B in H such that AB = BA for all AeW. Then 
we may formulate the next assertion. 

Theorem 2.6. Let W(H) be a von Neumann algebra and K^Hbe a set of unit 
vectors. If M(K) = {mu, ueK} is full, then WK is dense in H. 

Proof. Let M(K) be full. It will be shown that K is a separator of W, that is, if 
for A e W we have Au = 0 for all ueK, then A = 0.Indeed, if Au = Q, then 
A*Au = 0. An operator B=A*A is Hermitian and for the corresponding 
observable xB we have 

mu(xB) = ft dmu,XB(t) = (Bu, u) = 0. 
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Since mu(xB({0}))=\ =mu(H), we have xB({0}) = H and thus B = 0, A=0. 
Due to [3, p . 6] K is a separator of W iff W'K is dense in II. Q.E.D, 
According to Bugajska , Bugajsk i [1] we introduce the next axioms: 
Axiom 1. L is a separable logic, that is, every subset of mutually orthogonal 

elements from L is at most countable. 
Axiom 2. The system Mp of all pure states of L is quite full. 

Axiom 3. If form eMpm(at)=\,t e Tthen /\ at exists in L and ml f\at) = \. 

In [1] it is shown that the above axioms imply that (i) any state m eM = Co (Mp) 
has a carrier; (ii) for any aeL,a£0, there is meM such that a is its carrier; (iii) L 
is a lattice. Z i e r l e r [11] showed, moreover, that L is a complete lattice. 

Let meMp and let Im be its carrier. According to De l i yann i s [2] the following 
axioms are supposed, in addition: 

Axiom 4. For any n, meMp n(Im) = m(In). 
Axiom 5. If n(Im) = \, then n=m. 
The corollaries of the axioms 1—5 are (i) for any meMpIm is an atom of L ; (ii) 

for any atom a e L there is a unique pure state meMp such that Im = a\ (iii) any 
a eL, a^O, is a join of mutually orthogonal atoms. 

Theorem 2.7. Ma Co (Mp) is quite full iff MZDMP. 

Proof. If M =>Mp, then M, is quite full (Lemma 1.1). Conversely, let M be quite 
full. If a is an atom, then there is meM, m(a) = \. Hence m is of the form 

m = ^Jcimi, d>0, 2c f- = 1, mi eJlp and mL(a)= 1 for all i. This implies Imi<a. 
i i 

Therefore Imi =a and the pure state corresponding to a is equal to meM, that is, 
MpCiM. Q.E.D. 

Theorem 2.8. Let a system of pure states M = {man, aeA} (an, a e A, is an 
atom) be full; then 

V fla = 1. 
aeA 

Proof. Let a= \f aa; then for any m(la, aeA we have maa(a) = 1. Due to the 
a e A 

fullnees of M we have a = 1. Q.E.D. 

3. Sum of observables 

The sum of bounded observables has been studied by G u d d e r [6,7], 
D v u r e c e n s k i j [4]. In [7, p. 331] there is given the definition of the sum of 
unbounded observables: We say that the sum of x,y exists if there is a quite full 
system M of states and an observable z such that m(x), m(y) exist and are finite, 
and m(z) = m(x) + m(y) for all meM. 
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But this definition does not include the important case of a logic L(H), 
3 ^ d i m H ^ K 0 . 

In more detail: Let Ax, Ay be two unbounded positive self-adjoint operators 
with 3(Ax)n3(Ay) dense in H. Let x and y be observables corresponding to 
Ax, Ay, respectively. Then mu(x), mu(y) exist and are finite iff u e 3 = 3(AX

2) n 
3(A\2) (Lemma 2.1). If the system M of vector states generated by unit vectors 
from 3 were quite full, then, by Theorems 2.2 and 2.5, 3=H. Hence 3 a 
3(Al2), 3(Ay2) and Ax

2, Ay
2 are bounded operators [8]. Consequently Ax, Ay 

are bounded, which contradicts to our assumption. 
On the other hand, Ax + Ay is a self-adjoint operator and it is reasonable to 

consider the corresponding observable z for the sum of x and y. 
By Theorem 2.5 it is evident that the above M is only full. For this reason we 

accept the following definitions. 
Let us suppose that on a logic L a quite full system M of states, M = Co (M), is 

given. The pair (L, M) is called a quantum logic. 
Definition 3.1. We shall say that on a quantum logic (L,M) the observables 

xu ..., xn are summable if 
(i) M(x, ..., xn)= {m eM: m(x2)<°°, i = 1, ..., n) is a full system; 

(ii) there is an observable z such that M(z)=>M(xu ..., xn) and m(z) = m(xx) 
+ ... + m(xn) for all meM(x, ...,xn). 

In this case z is called the sum of xu ..., xn and is written z = xx + ... + xn. 

Definition 3.2. We shall say that a quantum logic (L, M) is a sum logic if there 
holds: for every finite system of observables x i, ..., xn for which M(xu ..., xn) is full 
there is a unique sum z = Xi + ... + xn. 

In the following we assume that (L,M) is a sum logic. 
Proposition 3.3. On a sum logic the sum of any two bounded observables x and 

y exists and is a bounded observable. 
Proof. Since M(x, y) = M, x and y are summable. For z =x + y we have that 

m(z) is finite'for every meM and, by [5, Theorem 6.3] this is the necessary and 
sufficient condition for z to be bounded. 

Thus, by this proposition, the case of bounded observables from [5] is included in 
Definition 3.2. 

Proposition 3.4. Let xu ...,xn be summable. Then 

(i) *,,, ..., xin are summable for any permutation (iu ..., /„) of (1, ..., n) and xx 

+ ... + xn = xix + ... + xin; 
(ii) for any au ..., aneRY axxu ..., a„xn are summable, especially, a(xx + ... 

+ xn) = axi + ... + axn for a eRu 

(iii) any subsystem xh, ...,xik, X^k^kn is summable, especially Z\ = xx + ... 
+ xk and z2 = **+i + ... + xn are summable and Zi + z2 = xx + ... +x„ . 
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Proof, (i) Since M(x{, ...,xn) = M(xix, ..., xin) for z = JC, + ... + x„, we have 
ra(z) = m(jd) + ... + m(xn) = m(*,-.) + ... + w(x . J , meM(xu ...,xn). 
Analogically we prove (ii). 

(iii) There holds 

M\ =M(xu ..., xk)^M(xu ..., xn),M2 = M(xk+X, ...,xn)zDM(xu ..., xn). 

Then there are unique observables Z\, z2 such that M(z\)=>M\, M(z2)=>M2 and Z\ 
= Xi + ... + xk, z2 = xk+\ + ... + xn. Since M(z\,z2) = M(z\) n M(z2) -=> 
M(x\, ..., xn), Z\ are z2 are summable and there is a unique z' such that M(z') => 
M(z\, z2), m(z') = m(z\) + m(z2), m eM(z\, z2). For any m eM(xu ..., xn) we 
havera(z') = m(z\) + m(z2) = m(xx) + ... + m(xk) + m(xk+l) + ... + m(xn) 
= m(z). From the uniqueness of the sumz =xx + ...+xn we have z =z'. Q.E.D. 

Proposition 3.5. If xx, ..., xn are summable and Xi=foU for some Borel 
functions f, i = 1, ..., n and an observable u, then xx + ... + xn = (/. + ... 
+ f„)oW. 

Proof. If meM(xu ...,xn), then f eL2(Rx, B(RX), mu) and there holds 

m(z) = m(xl) + ... + m(xn) = $f\ drau + ... + jfn dmu = 

= S(f\ + ...+fn)dmu=m((fl + ...+fn)ou). (Q.E.D. 

Proposition 3.6. If (K, M) is a sum logic, then L is a lattice. 
The proof of this proposition is the same as that of Lemma 6.2 [6]. 
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О СУММЕ НАБЛЮДАЕМЫХ В ЛОГИКЕ 

Анатолий Д в у р е ч е н с к и й — С ы л в и я П у л м а н н о в а 

Р е з ю м е 

В работе исследуется понятие суммы наблюдаемых в логике, заключающее в себе тоже случай 
неограниченных наблюдаемых. Доказаны некоторы результаты о системах сострояний. В работе 
введено понятие суммируемых наблюдаемых. В частности исследуется случай логики всех 
проекторов в пространстве Гильберта. 
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