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ON LATTICES OF GENERALIZED TOPOLOGIES
JOSEF SLAPAL

Generalized topologies obtained by replacing the Kuratowski axioms by
some weaker ones occur in various branches of mathematics (for example in the
theory of games as shown in [7]). In the present note we investigate some systems
of these generalized topologies from the point of view of the theory of lattices.

Under a topology u on a non-empty set P we understand a mapping u:
exp P — exp P. These topologies (often called topologies without axioms or
Koutsky topologies) are studied in [9], [11] and [13]. We shall consider the
following axioms for topologies on a given set P # 0:

1. up =0 O-axiom ([5)),

2. X P=XcuX I-axiom ([5)),

3. XY P=>uX<cuY M-axiom ([5]),

4 X, Y P=u(XuY)cuXuuY A-axiom ([3)),

50#Xc P=>uXc | u{x} S-axiom ([10]),
xeX

6. XS P=>uuX<cuX U-axiom ([8)]).

If fis one of the listed axioms, i.e. fe{O, I, M, A, S, U}, then a topology
u on P is called an f-topology whenever it fulfils the f-axiom. If also
ge{O,I, M, A, S, U} and u is both an f-topology and g-topology, then it is
called an fg-topology, etc. Let us note that every MS-topology is an MA-topol-
ogy, and provided that P is finite these two topologies even coincide. Many
authors deal with topologies fulfilling some of the axioms above considered.
Thus, OM-topologies occur in [7], IM-topologies are studied in [6], OI-topolo-
gies in [5], OIM-topologies in [3], [5], [8] and [11], OIMA-topologies in [4],
OIMU-topologies in [12], OIMAU-topologies in [2], [4] and [9], and OISU-
topologies in [4] and [10].

The system of all topologies on P is denoted by 2. By Z, we denote the system
of all f~topologies on P, by Z, the system of all fg-topologies on P, etc. The

system 2 as well as every its subsystem will be considered as ordered by the
relation < defined as usual: ¥ < v<>uX < vX for any subset X = P. If u < v,

51



then we say that u is weaker than v or that v is stronger than u. It is well known
(see [9]) that 2 is a complete lattice and that for any non-empty system J < 2

its join and meet in 2 are defined by (\/7)X = () uX and (AT)X = () uX
uedJ ued
for any subset X < P. (Moreover, £ is a completely distributive complete

Boolean algebra — see [11]). The least and the greatest elements in 2 will be
denoted as u* and v*. Clearly, u*X = 0 and v*X = P for every subset X < P.

Let N denotes the set of all positive integers.
The reader can easily prove the following assertion:

Theorem 1. (1) Z,, P, Py are complete sublattices of 2.
2) P, P are complete join-subsemilattices of P.
(3) Puy is a complete meet-subsemilattice of 2.

Remark 1. a) In the example 3.4a of [11] it is shown that for any set P
with card P = 3 the system Zyay is not a meet-subsemilattice of 2. From this
it follows that %,usy IS not a meet-subsemilattice of £ whenever
3 <card P < N,. But from the same example it can also be easily seen that
Pomau 18 not a join-subsemilattice of 2 for any set P with card P = 3. Thus, in
consequence of Theorem 1, neither #, nor % are meet-subsemilattice of 2, and
Py 1s not a join-subsemilattice of £, generally.

b) The system £, is neither a join-semilattice nor a meet-semilattice in
general — see the following example. Let P = {x, y, z, t} and let u,, u,, u;, u, be
topologies on P defined as follows: u {x} = {x}, w,{x} = {)}, us{x} = {x,y,z},
udx} ={x,y,t}, u{x,y} ={z} fori=1,2,3,4, and X < P, {x} # X # {x,y} =
=uX = Xfori=1,2,3,4. Evidently, u,, u,, uy, u,e 2,,. The topologies u, and
u, are minimal upper bounds of {u,, u,} in 2, and thus there exists no join of
{u), uy} in 2. Similarly, u, and u, are maximal lower bounds of {u,, u,} in 2, and
thus there exists no meet of {u;, u,} in 2,

As the proofs of the following three Theorems are somewhat alike we present
only the last.

Theorem 2. 2, is a complete lattice. If T < P, is a non-empty system, then its
meet N\T in P, is defined by (NT)X=()\Y<sPY=) <ﬂ uX,->,

i=1 \ued

C) X=X, meN}for any subset X < P.

i=1
Theorem 3. % is a complete lattice. If T <= Py is a non-empty system, then its

meet N\T in Ps is defined by (\T)0 = (ud and (N\T)X =

ue
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= U (ﬂ u{x})]ﬂuQquor(D#Xg P.

eX \ued
Theorem 4. 2\, is a complete lattice. If T < Py is a non-empty system, then
its join \/ T in Py is defined by (\/T)X =) {YE Pl uXxouy) < Y}for
ued
any subset X < P.

Proof. As v*e%Pyy, from Theorem 1 it follows that #,,, is a complete
lattice. Let J < 2y, be a non-empty system. For any subset X = P put

vX=|J uX and wX = ){Y< PpXuvY < Y}. By Theorem 1, v is an
ued

M-topology on P. Let X < Y < P be subsets and xe wX a point. Then x e Z for

any subset Z < P fulfilling vXuvZ < Z. Let T< P be a subset such that

vYuovT = T. AsvX = vY, there holds vX U vT = T, and hence x e T. Therefore

xewY and the inclusion wX < vYis proved. Thus wis an M-topology on P. Let
X < P be a subset, xe wwX a point. Then xe Y holds for every subset Y < P
fulfilling vwXuvY < Y. There holds vwX = v[(){Y < PlhXuvYc Y}

csN{vY<s PpXuvYc Y} (\{Y < PhXuvY < Y} =wX. Now, putting
Y=wX we get Y < P, wXuvY < Y. Consequently, xe Y = wX and the in-
clusion wwX < wX is proved. Hence we 2, thus we 2. It is easy to see that
v < w. Let w € Z, be a topology on P such that v < w,. Let X < P be a subset
and xe wX a point. Then xe Y for every subset Y = P withvX uvY < Y. From
v < wq, the implication vXuw, Y € Y=0vXuUvY < Y follows. Therefore xe Y
for every subset Y= P with vXuw,Y< Y. Put Y=wX. Then Y<S P,

vXuw,Y< Y. Thus xe Y =w,X, and consequently wX < w,X. This yields
w < w,. We have proved that w is the weakest of all MU-topologies on P which
are stronger than v. Consequently, since v <\/J, we have w <\/J. As
u < v < wforevery ueJ, there holds \/.7 <w. Thus\/.?' = w and the proof
is complete.

Let us introduce the following denotation. By the symbol « (<V—, «A—) we
denote the relation “complete sublattice of’ (“‘complete join-subsemilattice of”’,
‘“‘complete meet-subsemilattice of”’). Then we have:

Theorem 5. There holds Diagram 1

Proof. Throughout the proof, 4 will be a non-empty system of topolo-
gies on P, and by v,, v,, w,, w,, w; we shall denote the topologies on P defined

as follows: XS P=pX=()uX, v,X=JuX, wX={Y<sPY =
ued ued

=UvnX, )X = X,meN}, wX = ﬂ{Yg Pv,Xuv,Y < Y}, wX =0, X for
i=1

i=1
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X=0and w,X = (U v,{x}) N, X for X # 0.

xeX
Pua — Py Let T = Pya. There holds v, € A, by Theorem 1. Let XY =€ Y < P
be subsets, xew, X a point. Let {¥|i =1, ..., m} be a system of sets such that

m

U =Y. Put X,= Y,n X for each ie{l, ..., m}. Then () X, = X, and hence

i=1

X€ U v, X, S Uv, Consequently, xew,Y. Thus w,X S w,Y, i.e. w, is an

i=1
M- topology on P. Therefore w,€ Py,. Let /\ and \/ denote the meet and join
in Z,. By Theorem 2, w, = A\ 7, hence AT € 4. From Theorem 1 it follows
that \/J € Pya. The relation Py, — Q’A is proved.

/\

. Msu <-— MAU

A A

IMS <V ““MaA

]

£ A Diagram 1|

Purv « Pun: Let T S Pyuy. Let XS P be a subset. Then v, X =

= ﬂ(uﬂuX)E ﬂ(ﬂ qu)E () uuX = () uX = v, X. Hence v, is a U-

ve7 ue.s ve7 \ue.J ue.7 ue 7

topology on P. Let X = P be a subset and xe w,w, X a point. Then xe U vy

1=1

for any system of sets {¥J1 = 1, ..., n} fulfilling () ¥, = w,X. Let{X i = 1, ..., m}

i=1
be a system of sets such that U X,=X.PutY,=w.JX, foreachie{l, ..., m}. Let
the meet in 2, be denoted by /\ Since w, = /\J is an MA- topology on P,
we have U Uw, .= wlUX, = w,X. Therefore erv T o=

i=1 i=1 i—1
m

U oW X, S U v, X, S U v, X, because w, = /\7 < v, and v,€ Z,. Conse-

quetltly, XeEwJX, Wthh lmphes ww, X € w X. Thus w, is a U-topology on P.

Hence w, = AT € Pyav, i-6. Prav — Prua-
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'?MAU ‘V— '?MA‘
Puau e Puu: Let T = Pyay- Let X, Y P be subsets. Then
nXuY)=JuXuYc U(uquY) JuXxu ([ uY =v,Xun,Y.

ueF ued ued

This implies that v, is an A- topology on P. Let xew, (XU Y) be a point. Then
x € Z for every subset Z < P fulfilling v,(X v Y) uv,Z < Z. Thus, xe Z for each
subset Z < P with v,Xuv,Yuv,Z< Z. Let T, U< P be subsets fulfilling
nXuv, T T, vYunUcU  Then ovXun,Yun,(TulU)c TulU.
Therefore xe Tu U, i.e. xe T or xe U. Consequently, xe w,X or xe w,Y. From
here we get xe w,X U w,Y, and the inclusion wy(X' U Y) € w,X U w,Y is proved.
Hence w,e#,. Now, denoting the join in £y by \/, according to Theorem 4

we have w, = \/7. This implies \/2 € Pyyaus 50 Puav — Puu-
Pus — Ps: Let T < Pys. By Theorem 1, v, is an M-topology on P. Let
X € Y < P be subsets. For X = @ = Y there holds w;,X =, X € v,Y = w,yY. If

X=0and Y#0, then mX =0, X=0v0CS (U v,{x}) Nv,Y = w,;Y. Finally,

xeY

supposing X # 0 # Y we have w,X = ( Jv{x}no X< (Ju{x}nnY =w,Y.
xeX xeY

Hence w; is an M-topology on P. Denote the meet and join in 4 by A and \/.
According to Theorem 3, w; = AJ. Thus NI € Pys. From Theorem 1 it
follows that \/ 7 € %s. The relation $s « Ps is proved.

Pusu e Pus: Let T S Prysy. As Pysy S Puavs from the proof of the relation

Puau — Pya it follows that v, is a U-topology on P. By Theorem 1, v, is an
M-topology on P. Thus v, € Zy. Denote the meet in Zys by A. Thenw; = A T
" because $ys—%. Let X = P be a subset. Suppose X = 0. Then w;w3 X = wyp, X.
If v, X =0, then w, X = v;9,X S v,X = w3X. Otherwise, let v,X # 9. Then

w, X = | v{x}now,X S v,X =w,X. Thus, for the empty set X we have

xen X
ww; X < wiX. Now, suppose X #0. If w,X=0, then there is
wiw; X = w30 © wi X because w;ye Py. Otherwise, let wy X # 0. As v,e A, the
inclusion () v,{x} < v,Y holds whenever § # Y < P. This implies w;Y = UwnY

xeY xeY

for every non-empty subset ¥ < P. Hence wyw,X = | ) vi{x} = b) v {x} =
xewsX xe\Jv,{y}
yex

= U U ux= U wobls U wolte U UI{V}=}J’UI{V} =

yeX xev{y} yeX yeX yeXx
vy} # 0 vy} # 0 n{y} #0 0, {y}#0

= w,;X. Consequently, the inclusion w,w; X < w,X is valid for any subset X = P.
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Therefore w; is a U-topology on P. Thus w, = NI € P, which yields
Pusu — Pus:

Pusu — Puu: Let T = Pygy. Let O # X < P be a subset, yew,X a point.
Suppose y ¢ U wy{x}. Then we have y ¢ w,{x} for every xe X. Consequently, for
every xe X txlié(re exists a subset Y, = P such that v,{x}Uv,Y, < Y, and y¢ Y.

Put Y = () Y.. Now, from v,€ % it follows that v,X = ( Jo{x} = | Y, = ¥

xeX xeX xeX

and v,Y =0, ¥,=JunY, = | ¥ =Y. This yields v,X Uv,¥ < Y. Hence,

xeX xeX xeX

as y e w,X, we obtain y e Y, which is a contradiction. Therefore y € ) w,{x} and
xeX

the inclusion w,X < () wy{x} is true. Thus, w,e Z. By Theorem 4, w, = \/J

xeX

where \/ denotes the join in Py. This results in \/ .7 € Pygy, i.e. Pusu Py
Finally, the relation % < Pua follows from Theorem 1, and Pysy e Pruau

is a consequence of Pysy e Puy and Pyau < Puu- The proof is complete.
Corollary 1. Let f€{0, I}. Then there holds

Q}MSUQ——"{/ MAU

/\1 N
&, <—V——.97’ .
/MS // M
1 \
./9;5 '9/2:4
T [
% T

Proof. By the help of Theorems 2, 3 and 4, the reader can easily prove
that for fe {0, I} the following three statements hold:
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(1) If 7 = 2, then the meet AT in 2, fulfils AT €%

(2) If 7 < Py, then the meet \ T in % fulfils \/ T €%

(3) If T < Py, then the join \/ T in Py fulfils \/ T €Z.

Then, using also Theorem 1, we get Corollary 1 as a consequence of Theorem
5.

Remark 2. a) From Corollary 1 it follows that WOIMAU‘A— Zoma- But this
relation is well known — see [4], 31 B.4.

b) From Theorems 1,3 and Corollary 1 it follows that in the lattice %5 for
the meet /\J of an arbitrary non-empty system J < %ys there holds
(AT)0= (" ubd and (AT)X = {J () u{x}) whenever § # X < P.

ued x€X ued

c) As a consequence of Theorems 1,4 and Corollary 1 it can be easily seen that
in the lattice Z,y for the join \/J of an arbitrary non-empty system I S ZPiyy
there holds (\/.9’)X = ﬂ {Y cSPXcY= U uy} for every subset X < P.

ued
d) Corollary 1 implies that for the meet and join in Zyyay the formulae

contained in Theorem 2 and in the section c) of this remark are valid. But these
formulae for the meet and join in Zyay can be obtained as consequences of [8]
(3.2. and 3.7) and [11] (3.6.), too.

According to Remark 1, &, is not a meet-sublattice of 2. In the following
theorem it will be shown that even every element of £ is the meet (in ) of a
certain non-empty subset of #,. Similar assertions will be proved for % and %;.

Theorem 6. Let uc P be a topology and let |\ denote the meet in . Then
u= N\{rev = u}.

Proof. Put = {ve?P,|lv = u}. We have I # 0 since the topology v de-
fined by v) = uP and @ # X = P=vX = Pfulfilsve 7. Put w = A\ 7. Clearly,
u < w. For every subset Y < P let us define a topology vy on P in the following
way: vy X =uX for X=0 or X =7, and v, X = P for @ # X # Y. Evidently,
vy = u holds for every subset Y < P. It can be easily shown that v, € &, for every
subset Y = P. Consequently, vye J for every subset Y < P. Now, let X < P be
an arbitrary subset. Then wX < v, = uX. This yields w < u. Therefore u = w
and the statement is proved.

Theorem 7. Let ue P be a topology and let \/ and |\ denote the join and meet
in ?. Then

(1) u= A\{veZlv 2 u},

2) u=\/{vePv £ u}.

Proof. (1) Put 7 = {ve v = u}. We have I # 0 because the topology v
defined in the proof of Theorem 6 fulfils ve 7. Put w = \ 7. Clearly, u < w.
For any subset Y < P let us define a topology vy, on P as follows:
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uX for X =0,
XcP=v,X {uonr(?);éXC Y,

PforX¢ Y
As u is an M-topology, there holds vy, = u for every subset Y = P. It can be
easily seen that v, € % for every subset Y = P. Therefore v,€ J for every subset
Y < P. Now, let X = P be an arbitrary subset. Then wX < v, X = uX. This
yields w = u. We have u = w, which gives the equality (1).

(2) Put 7 = {ve# v < u}. Then J # 0 because the topology v = u* fulfils
veS . Put w= \/9‘ . Clearly, w < u. For any subset Y = P let us define a
topology vy on P in the following way: v, X =0 for Y ¢ X, and v, X = uY for
Y < X. As u is an M-topology, there holds vy, < u for every subset Y = P. The
reader can easily show that v,e % for every subset Y = P. Consequently,
vyeJ for every subset Y= P. Let X< P be an arbitrary subset. Then
uX = vy X < wX. This yields u < w. Therefore u = w and the proof is complete.

Theorem 8. Let fe{O, I, M, Ol, OM, IM, OIM}. Let ue %, be a topology and
let \/ and )\ denote the join and meet in . Then there holds:

(1) u= \{veZPulv = u} whenever fe{0, 1, OI, OIM},
(2) u= N\{vePsv Z u} whenever fe{M, OM, IM, OIM},
(3) u=\/{veZlv < u} whenever fe (M, OM, OIM}.

Proof. For fe{O, I, OI} the proof of the equality (1) is the same as that
of Theorem 6 because provided that ueg}it can be easily seen that the topolo-
gies v and vy defined there fulfil veJ = {veF,|v 2 u} and v,eZ for every
subset Y = P. Analogously, the proof of (2) and for fe {M,OM} the proof of (3)
are the same as those of (1) and (2) of Theorem 7. For f = OIM the equalities
(1) and (3) follow from [8] (3.1.1. and 3.8.1.).

Now, let us introduce the following denotation. If J < £ is a subsystem,
then by (J ) we denote the complete sublattice of & generated by J (i.e. the
least complete sublattice of 2 containing 7). From Theorems 6 and 8 it
immediately follows:

Corollary 2. There holds

(1) {<Pp> = 2, and (P,)y = P, for each fe{O, 1, OI, OIM},
(2) {(Zs> = Z, for each fe{M, OM, IM, OIM},
(3) {Zy> = B for each fe{M, OM, OIM}.

Remark 3. a) The equalities {(Zyma) = Pom and {(Zomu) = Pom cON-
tained in Corollary 2 follow also from the equality {Zomau) = Zom Proved in
[10].

b) In[4], 31 D.3 itis shown that every topology u € Zoma is the meet in Zoima
of a certain non-empty subsystem of %yys. Consequently, denoting by (J ),
the complete sublattice of 2,,,,, generated by a subsystem I~ = Zyma, we have
{GFoms>1 = Zoma-

58



REFERENCES

[1] BIRKHOFF, G.: Lattice Theory. Third Edition, Providence, Rhode Island, 1967.
[2] BOURBAKI, N.: Topologie générale. p.1., II. ed., Paris, 1951.
(3] CECH, E.: Topological Papers of Eduard Cech, ch. 28, Academia, Prague, 1968.
[4] CECH, E.: Topologickal Spaces. (Revised by Z. Frolik and M. Katétov.) Academia, Prague,
1966.
[5S] CHVALINA, J.: On the number of general topologies on a finite set. Scripta Fac. Sci. Nat.
UJEP Brunensis, Math. 1, 3(1973), 7—22.
[6] HAMMER, P. C.: Extended topology: set-valued set-functions, Nieuv Arch. voor Wisk.
(3)X(1962), 55—77.
[7] HANAK, J.: Game-theoretical approach to some modifications of generahized topologies,
Gen. Topology and Its Relations to Modern Analysis and Algebra, Prague, 1971, 173 —179.
[8] KOUTSKY, K.: O nékterych modifikacich dané topologie, Rozpravy II. tiidy Ceské Akade-
mie, 48 (1938), n. 22, 1—13.
[9] KOUTSKY, K.: Uréenost topologickych prostori pomoci uplnych systémii okoli bodi. Spisy
prir. fak. MU Brno, 374 (1956), 1—11.
[10] LORRAIN, F.: Notes on topological spaces with minimum neighbourhoods, Amer. Math.
Monthly 76 (1969), 616—627.
[11] SEKANINA, M.: Systems of topologies on a given set (Rus.), Czech. Math. Journ. 15(1965),
9—29.
[12] SIERPINSKI, W.: Introduction to General Topology. Toronto, 1934.
[13] SLAPAL, J.: On modifications of topologies without axioms, Arch. Math. (Brno), to appear.

Received June 27, 1986 Katedra matematiky FS VUT

Technickad 2
616 69 Brno, Czechoslovakia

O PEHMIETKAX OBOBIIEHHBIX TOITOJIOIMUA
Josef Slapal

Pe3roMme

O600611eHHON TONMOJOrHEH MBI TOHHMAEM TOIOJIOTHIO, OIPEEIEHHYIO ONEPATOPOM 3aMbIKa-
HHS, BBINIOJHSAIOIIMM KaKHe-HHOY b akCHOMBI, KOTOpble ciabee, yeM akcuomsl Kypatosckoro. B
paboTe H3y4aroTCs HEKOTOPBIE CHUCTEMBI OOOOLICHHBIX TOMOJIOTMH HAa JaHHOM MHOXECTBE,
SIBJIAIOLIHMECS TIOJHBIMH PEIIETKAMH OTHOCHUTEJILHO OGBIYHOrO YHOPSAAOYEHHS ITHX CUCTEM.
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