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ABSTRACT. The tensor product in the class of all groupoids is studied, and the
greatest semigroup image of this tensor product is described.

In this paper, we deal with the tensor product in the class of all groupoids
and its connection with the tensor product in the class of all semigroups. We
show that the tensor product in the class of all semigroups can be obtained by
the tensor product in the class of all groupoids and the greatest semigroup image
ol a groupoid, respectively. The tensor product in the class of all (commutative)
semigroups was defined in [2], [4], [5], [6]. The tensor product on a variety of
universal algebras was introduced in [1], and its properties are studied in [3].
Therefore, in this paper, we only recall the definition of the tensor product in
the class of all groupoids and the existence theorem without proof. First we deal
with the construction of the greatest semigroup image of a groupoid. Here, a
groupoid is a nonempty set with one binary operation.

DEFINITION 1. Let G be an arbitrary groupoid. The greatest semigroup image
of the groupoid G is the semigroup S(G) with the following property: There cu-
isls a surjective homomorphism ¥: G — S(G) such that for any homomorphism
&0 G — S onto an arbitrary semaigroup S there exists a unique homomorphism
21 S(GY — S such that § = pod. (Fig. 1)

ANS Subject Classification (1991): Primary 20L99.
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Figure 1.

It is well known that the greatest semigroup image S(G) exists for any
groupoid G . The greatest semigroup image of a groupoid is given by the least
semigroup congruence on the groupoid. One of the possible constructions of
classes of the least semigroup congruence on a groupoid G is described in [7].
For convenience of the reader, we give this construction. We start with some
notations.

Let G be an arbitrary groupoid, and A, B C G. The set
AB={abe G| ac A, be B}

is the set product of A and B. For any g¢1,¢2,...,9,» € G, we define the
following sets:

Il

= {a},
] { 1‘12}
(91,92, 93] = {‘J 9293), 9192)93},
] = {91(92(9394)): 91((9293)94) (9192)(9391),
((9192)93) 94, (91(9295)) 94} -

[(11
[Ql 92

[Jl 92,93, 94

Obviously,

[91, 92] = [91][92]
(915 925 93] = [91]]92, 93] U [91, 92](93] ,
[917 g2, 93, 94} = [91][92,937 .(}4] U [9179‘2“937 94] U [917,(12, .(13] [9,»1] .

If we suppose that the sets [gi,, giy, - - -, 9i,) arc defined for any k& such that
1 <k <n-—1, we can inductively define

91,92, -, 0] = [91]l92, - - -, gn) U g1, 92][93, - - s gn] U -~ U g1, gn—1llgn

n—1

= U [gla o 7gi][gi+17~ . ag‘n,] .

i=1
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THE TENSOR PRODUCT OF GROUPOIDS

For any k& > 3 we define a relation &% on the groupoid G in the follow-
if and only if either @ = b or there exist

ing way: For any a,b € G, aéb
g1-92.- .-, gk € G such that {a,b} C lg1,...,gk]. If F is the transitive closure

of the relation &}, then a.%; b if and only if there exist zg,z1,...,x, € G such
that vy =a, z, =b and z;_1 8, x; forany i =1,2,...,n.

If G is a groupoid such that G = G?, then %3 C %, C F5C ....
these inclusions are not valid in general. Therefore, for an arbitrary groupoid
and k€ {3,4,5,...}, we define the following equivalence relations:

However,

‘%:ty%’

Sy = HON Fy = Fy N Py,
f%fg’)z&ﬂ\/fg,:%jvﬂzl\/(@g,,

\/f%\k,

M = . N Fp=F 1V FyV---

We recall that the join 5%}, of equivalences %, .%,,...,.%; can be defined

in the following way: a’ 7, a if and only if there exist

!/
a,T13,..--,T1k,

Ty =
L1k = T22,T23,--.,L2k,
Lok = T32,T33,..-,L3k,

Tn—1)k = Tn2,Tn3,- -,

such that

o~
T13 F4 T4, T14-F:

(&

T2 935513

ar a7
Top F3 o3, Toz Fylos, Tog Fsxo

Tt o T . T
Tp2 F3 T3, Tp3 F4Tnd, Tnd F5Tnsy -«

Obviously, 6 C 2, C 5 C
for any ke {3,4,...}.

Let ) = U H, = FsN FyN - N Fp N - -

k=3

A is the least semigroup congruence on the groupoid G and S(G) =

Z15,

Ink — a

S Ti(k—1) Pk T1k

<y L2(k—1) cgzk L2k s

Tp(k—1) Fk Tnk -

. Moreover, in the case G = G?, J&. = .7,

=\ % .In[8], it is proved that
k=3
G/H~

To simplify our notation, we further denote 55, = o.
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Now we describe the tensor product in the class of all groupoids. Let 4 x B
be the Cartesian product of groupoids A, B. Let G be an arbitrary groupoid.
The mapping a: A x B — G is called a bilinear mapping if a(aja>.b) =
alay, b)a(asz,b) and «a(a,bib:) = afa,by)ala,be) for any aj,as,a € A and
b1,ba, b€ B.

DEFINITION 2. Let A, B be arbitrary groupoids. The tensor product of
groupoids A and B is a couple (w, A ® B), where A ® B is a groupoid. and
w: Ax B — A® B is a bilinear mapping satisfying the following universal prop-
erty: For any groupoid G and any bilinear mapping «: A X B — G there erists
a unique homomorphism p: A® B — G such that o = pow . (Fig. 2)

AxB——> A®B
AN
N %
A
G
Figure 2.

The groupoid A ® B is also called the tensor product of groupoids 4 and
B . The tensor product in the class of all semigroups is defined similarly. Only
the word “groupoid” is replaced by the word “semigroup”. The notation A, I3
is used for the tensor product in the class of all semigroups.

The existence theorem for the tensor product on an arbitrary variety of uni-
versal algebras was proved in [1]. Following the same arguments one can prove
a similar theorem for the tensor product in the class of all groupoids. The proof
is omitted.

Let A, B be groupoids, and ¥4xp be the free groupoid on the Cartesian
product A x B. It is known that there exists an inclusion 1: A X B — 4\, p5.
Flements «(a,b) are denoted by [a,b].

THEOREM 1. Let A, B be groupoids, and 9xxp be the free groupoid on the
Cartesian product A x B. Let . be a relation on the groupoid 9G..p such
that [ajas,b] . [ag,b][az,b] and |a,bibs] . [a,billa.ba] for any aj.ar.a € .
bi,ba,b € B. Let .7 be the least congruence on Yaxp such that . C .7 . Then
A B =%/ 7, and w: A X B — A® B is a bilinear mapping such that
wla.b) = Fup) for any (a,b) € Ax DB.

Tas) 1s the class of the congruence relation 7 containing an element ‘a. b .
In the sequel we denote this class by a @ b.

Let A, B be semigroups. The tensor product A ¢ B in the class of all
groupoids need not be a semigroup. The next theorem shows a connection be-
tween a groupoid A ® B and the semigroup A ®s B.
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THE TENSOR PRODUCT OF GROUPOIDS

THEOREM 2. Let A, B be semigroups. The greatest semigroup image
S(A ® B) 1is isomorphic to the tensor product A ®s B of semigroups A, B
in the class of all semigroups. Thus S(A® B) 2 A®;s B.

Proof. Let (w, A® B) be the tensor product of semigroups A, B in the
class of all groupoids. Let ¥: A® B -— S(A® B) be a natural homomorphism.
Let (' be an arbitrary semigroup. (In this case we consider the semigroup C' as
a groupoid.) Then for an arbitrary bilinear mapping a: A x B — C there exists
a unique homomorphism ¢: A ® B — C such that @ = pow. Then Imy is a
subsemigroup of the semigroup C, and ¢ is a homomorphism of the groupoid
Ao B onto the semigroup Im ¢ . Therefore there exists a unique homomorphism
¢*S(A® B) — Img C C such that p = p* 0. (Fig. 3)

Ax B—4> A% B—2>S(A® B)
|

|
Lo
I

[
Y+

C
Figure 3.

Hence, to any bilinear mapping a: A x B — C there exists a unique ho-
momorphism ¢*: S(A® B) — C such that a = ¢* o (J ow). Thus the couple
(V ow, S(A® B)) is the tensor product of semigroups A, B in the class of all
semigroups. This tensor product is determined up to an isomorphism.

Remark 1. In the rest of the paper, we denote by o = ., the smallest
semigroup congruence on an arbitrary groupoid. It is easy to prove that the

isomorphism S(A ® B) 2 A ®, B in the preceding theorem is the mapping
A: S(A® B) — A®s B such that M oggp) =a®4b for any a € A and be B.

Let (w, A® B) be the tensor product of groupoids A and B,and £: A — A’
and (: B — B’ be groupoid homomorphisms. Let §: A x B — A’ ® B’ be a
mapping given by é(a,b) = &(a) ® ((b). Evidently, ¢ is a bilinear mapping.
Therefore there exists a unique homomorphism ¢: A® B — A’ ® B’ such that
b=pouw.

DEFINITION 3. The above mentioned homomorphism ¢ is called the tensor
product of homomorphisms € and ¢ and is denoted by £ ® (.
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LEMMA 1. Let A, B be groupoids, (w,A® B) their tensor product. and S
an arbitrary semigroup. Let v: A® B — S be a homomorphism. Then the
mapping a: S(A)x S(B) — S such that a(o,,0p) = Y(a®b) for any (o,.0) €
S(A) x S(B), is a bilinear mapping.

Proof. First we prove that o is well-defined, e.g. a(o,,0) is independent
of a and b in classes o, and oy .

Let a' € o, . Therefore there exists k € {1,2,3,...} such that o’ /. a. As
H, = F3N Fy NV -V .F, there exist

! .
a = 12,713, 14, - L1k
L1k = X22,T235--.,L2k,

Lok = T32,T33, -, L3k,

Tn—1)k = Tn2,Tn3,---,Tnk = 4

such that

ar . ar a7 s G .
T12 #3713, T13 F4T14, T1a F5T15, - Li(h—1) Fh Lk
z o T . - Tz
Ty F3 X3, Toz FaToa, Tog F5Tas, -y La(k—1) Fk T2 s
P P ar . G P a
Tn2 <¢3 In3y, Tn3 </4 Tn4, Tna ¢f5 Tpsy -9 Ln(k—1) <%l»: LTnk -

Hence ,(;—1) Fitmi for m=1,2,...,n and i =3,4,..., k. Let m and i be
fixed. Then x,,,(;_1) F; T if and only if there exist yo, y1, . ...y, such that y,

Il

M

T(i—1)> Yr = Tmi and y;_y Sy for j = 1,2,...,r. Therefore {y;_,.y;}
91,92, -, 9] for some g1,92,...,9i € A and y(yj—1 @b) = (g1 2 b)7 (g2 = b
cooy(gi ®@b) = ~(y; @b) forany j=1,2,...r,as y(g1 @b)y(g20b)...7(g; < b
is an element of the semigroup .S. Therefore 7’(3;,,L(j,1) Qb)) = Y(yo b)) =
Y(yr @ b) = y(Tm; @ b). We proved this equality for fixed but arbitrary m and
i, and thus y(zp-1) ©b) = y(2pmi @b) for m=1,2,....n and i =3.1... .. k.
Hence y(a’ ®b) = y(z12 @ b) = y(2p @ b) = v(a @ b) .

Similarly, for b € o, v(a’ ®b) = vy(a' ©b'), and thus y(a 2 b) = ~(a’ = b) =
v(a' = b'). Hence « is a well-defined mapping.

For arbitrary o4,,04,,0, € S(A4), 0b,,08,,00 € S(B), a(0,,04,.00) =
(Cuyar,06) = Y(ajaz ® b) = '\/(((1,1 ® b)(as ® b)) = ylay © b)y(as = b) =
(o4, 0p)a(04,,04), and similarly «(o,. op,00,) = (04,04, ) (0, 0p,) . Hence.
a: S(A) x S(B) — S is a bilinear mapping.

Now, the main theorem of this paper can be formulated.
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THEOREM 3. Let A, B be groupoids and S(A), S(B) their greatest sermni-
group images. Then S(A® B) = S(A)®s S(B).

Proof. We prove the existence of the homomorphism 7n: A © B —»
S(A)4S(B) such that for any homomorphism v: A® B — S onto an arbitrary
semigroup S there exists a unique homomorphism ¢: S(A4) ®, S(B) — S such
that v = pon. (Fig. 4)

A® B——1—> S(A) ®, S(B)
\ ¥
SA
Figure 4.
Let v = X owv be the composition of the natural homomorphism

v: S(A)®S(B) — S(S(A)®S(B)) and the isomorphism A: S(S(A)@S(B)) —
S(A)®, S(B) from Remark 1. Let £: A — S(A), ¢: B — S(B) be natural ho-
momorphisms. If we consider the mapping n =¥ o (§®() = Aovo (£ (), then
forany a€ A, be B, n(a®b) = (Aovo((®())(a®b) = (Aov)(&(a)@( (b)) =
(Aov)(o, Qo) = M0s,00,) = 0a @5 0p . The last relation is the consequence of
Remark 1.

Let S be an arbitrary semigroup, and v: A ® B — S be a homomorphism.
Let a: S(A) x S(B) — S be the mapping from Lemma 1 satisfying the relation
a(o,.04) = v(a®b) for any (o4,04) € S(A)xS(B). As « is a bilinear mapping,
there exists a unique homomorphism ¢: S(A)®sS(B) — S such that a = pow.
(Fig. 5)

A® B—"1+S(A)®,S(B)

|k

S<—2_S(A) x S(B)

Figure 5.

Then for an arbitrary o« € A, b € B, vla ®b) = alo,,0,) =
Fow(o,.0p) = (0, @5 0p) = p(n(a b)) = ¢on(a®b). Since these rela-
tions hold for all generating elements of the groupoid A® B, v = pon. Hence,
to any homomorphism ~: A ® B — S onto an arbitrary semigroup S there
exists a unique homomorphism ¢: S(A) ®, S(B) — S satisfying v = ¢ o 1.
Thus S(A) ©s S(B) is the greatest semigroup image of the groupoid A ¢ 3
which is determined up to an isomorphism.
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