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ABSTRACT. The tensor product in the class of all groupoids is studied, and the 
greatest semigroup image of this tensor product is described. 

In this paper, we deal with the tensor product in the class of all groupoids 
and its connection with the tensor product in the class of all semigroups. We 
show that the tensor product in the class of all semigroups can be obtained by 
the tensor product in the class of all groupoids and the greatest semigroup image 
of a groupoid, respectively. The tensor product in the class of all (commutative) 
semigroups was defined in [2], [4], [5], [6]. The tensor product on a variety of 
universal algebras was introduced in [1], and its properties are studied in [li\. 
Therefore, in this paper, we only recall the definition of the tensor product in 
the class of all groupoids and the existence theorem without proof. First we deal 
with the construction of the greatest semigroup image of a groupoid. Here, a 
groupoid is a nonempty set with one binary operation. 

DEFINITION 1. Let G be an arbitrary groupoid. The greatest semigroup image 
of the groupoid, G is the semigroup S(G) with the following property: There ex­
ists a surjective homornorphism i): G -^ S(G) such that for any homomorphisrn 
r : Cf --> S onto an arbitrary semigroup S there exists a unique homomorphisrn 
^ : S(G) -> S such that 6 = ip o tf . (Fig. 1) 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 20L99. 
K e y w o r d s : Groupoid, Tensor product, Greatest semigroup image of groupoid. 
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G -5 (G) 

s 
Figure 1. 

It is well known t h a t the greatest semigroup image S(G) exists for any 

groupoid G. T h e greatest semigroup image of a groupoid is given by t he least 
semigroup congruence on the groupoid. One of the possible const ruct ions of 
classes of the least semigroup congruence on a groupoid G is described in [7]. 
For convenience of the reader, we give this construct ion. We s tar t with some 
nota t ions . 

Let G be an a rb i t ra ry groupoid, and A, B C G. The set 

AB = {ab G G | aeA, b e B} 

is t he set product of A and B. For any ^ 1 , O 2 , - . - , g n £ G, wre define the 
following sets: 

[gi] = {91} , 

[gl,g2] = {glg2}, 

[gl,g2,g3] = {gl(g2g3), (glg2)g3} , 

[gl,g2,g3,g4] = {gl(g2(g3g4)), gl((g2g3)g4), (glg2) (g3g4), 

{(9192)93)94, (9l(9293))9l} • 

Obviously , 

[9U92] = [gl][g2], 

[gl,g2,g3] = [gl][g2,g3] U [gl,g2][g3] , 

[gl ,g2,g3,g4] = [gl][g2,g3,g4] U [gl,g2][g3,g4] U [gi, g2, g3] [g4] • 

If we suppose t h a t the sets [gn ,gz2 , • • • ,g?;fe] are defined for any k such tha t 
1 < k < n — 1, we can inductively define 

[ g l , g 2 , - - - , g n ] = [ g l ] [ g 2 , - - - , g n ] U [g l , g2] [g3, • • • , gn] U ••• U [gl , • • • , g n - l ] [ g n ^ 

n - 1 

= | J [g l , --- ,g i ][g i + l , - - - , g n ] -
i=l 
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For any k > 3 we define a rela t ion Sk on the groupoid G in the follow­
ing way: For any a, b _ G , a<§kb if and only if ei ther a = b or there exist 
gi < .(I2, • • •, 9k £ G such that {a, 6} C [ g l 5 . . . , gk] . If &k is the transitive closure 
of the rela t ion <Sk , then a ^k b if and only if there exist XQ, „ I , . . . , Tn G G such 
t liat .To = a , Tn = b and x^_i _& a^ for any i = 1, 2 , . . . , n . 

If G is a groupoid such that G = G2 , then i ^ C - ^ C ^ C . . . . However, 

these inclusions are no t valid in general. Therefore, for an a rb i t ra ry groupoid 

and k _ {3, 4 , 5 , . . . } , we define the following equivalence rela t ions: 

<#_ = ^ 3 , 

_#2 = -#3 V # 4 = ^ 3 V ^ 4 , 

_#£ = 4 V ^ 5 = ^ V ^ 4 V «^5 , 

M = M-i v j?fe = J^I v _?2 v • • • v ^ , 

We recall that the join J^k of equivalences _^l7 _ "̂2, • • •, îfc can t>e defined 
in the following way: a' JT^ a if and only if there exist 

£12 = a',xi3,...,xik , 

# l k = . ^22 ,^23 , • • • ,%2k , 

2_fc = - C 3 2 , Z 3 3 , - - - , Z 3 k i 

•E(n — l)k — ^ n 2 , ^ n 3 , • • • i^nk ^ 

such that 

^ 1 2 ^ 3 ^ 1 3 , - C l 3 ^ 4 - C l 4 , ^ 1 4 ^ 5 ^ 1 5 , • • • , -Cl(fc-l) &k *\k , 

-C22 ^ 3 2_3 , -*_3 ^ 4 2_4, -*_4 ^ 5 ^ 2 5 , • • • , ^2(A:-1) ^ fc ^2/c , 

«^n2 ^ 3 «£n3i ^ n 3 ^ 4 «^n4, « '̂n4 ^ 5 ^ n 5 , • • • , ^n(k— 1) ^ fc «^nk • 

Obviously, J_^ C ^ C j f g C . . . . Moreover, in the case G = G2 , _#£ = e^A: 

for any k G {3, 4, . . . } . 
OC CO 

L e t ^ o c = \J M = i ^ 3 V J ^ 4 V- • • V _ ^ V- • • = V & • I n [8]> ^ i s P r o v e d that 
k=3 k=3 

../f^ is the least semigroup congruence on the groupoid G and S(G) = G/H^ . 
To simplify our notation, we further denote J r ^ = a. 
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Now we describe the tensor p roduc t in the class of all groupoids. Let .4 x B 

be the Car tes ian produc t of groupoids A, B. Let G be an a rb i t ra ry groupoid. 
The mapping a: A x B —» G is called a bilinear mapp ing if a (O iO 2 .b ) = 
a (O i , b)cr(O2, b) and cr(O,bib2) = cY(O, bi)a(O, b2) for any Oi,O2,O E A and 
bi,b2,bE B. 

D E F I N I T I O N 2. Let A, B be arbitrary groupoids. The tensor product of 

groupoids A and B is a couple {UJ,A®B), where A®B is a groupoid. and 

LJ: AX B —* A®B is a bilinear mapping satisfying the following universal prop­

erty: For any groupoid G and any bilinear mapping a: A x B —> G their exists 

a unique homomorphism ip: A 0 B —* G such that a = <p o LC . (Fig. 2) 

A x B - - » A 0 B 

Figure 2. 

The groupoid A® B is also called the tensor p roduc t of groupoids A and 
B. The tensor p roduc t in the class of all semigroups is defined similarly. Only 
the word "groupoid" is replaced by the word "semigroup". T h e no ta t ion .1 :.s B 
is used for the tensor p roduc t in the class of all semigroups. 

The exis tence theorem for the tensor p roduc t on an arb i t ra ry variety of uni­
versal algebras was proved in [1]. Following the same a rgumen ts one can prove 
a similar theorem for the tensor p roduc t in the class of all groupoids. The proof 
is omi t ted . 

Let A, B be groupoids, and i^AxB be the free groupoid on the Cartes ian 
produc t A x B. It is knowm that there exists an inclusion t: Ax B -^ C$AXB • 
Elemen ts t(O, b) are deno ted by [O, b] . 

THEOREM 1. Let A7 B be groupoids, and &AXB be the free groupoid on tin 

Cartesian product A x B. Let Y be a relation on the groupoid C$AXB such 

that [Oi O2, b] y [Oi, b] [O2, b] and [O, bib2] Y [O, bi] [O, b2] for any Oi. O2. a E .1 . 

bi,b2,b E I3 . Let /7 be the least congruence on C$AXB such that Y C .7 . Then 

A 0 B = C$AXBI!?, and 'JO: A x B --+ A 0 B is a bilinear mapping such that 

a;(a, b) — 3[a&\ for any (a, b) E A x B . 

•^[a,b] 1S the class of the congruence rela t ion Y con taining an element |O. b; . 

In the sequel we deno te this class by O 0 b. 

Let A, B be semigroups. The tensor p roduc t A 0 B in the class of all 
groupoids need no t be a semigroup. The nex t theorem shows a connection be­
tween a groupoid A eg) B and the semigroup A 0s B. 
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T H E O R E M 2. Let A, B be semigroups. The greatest semigroup image 

S(A eg) B) is isomorphic to the tensor product A (g)tS B of semigroups A, B 

in the class of all semigroups. Thus S(A& B) = A®s B . 

P r o o f . Let (CJ, A eg B) be the tensor p roduc t of semigroups A, B in the 
class of all groupoids. Le t d: A® B —> S(A ® B) be a na tura l homomorphism. 
Let C be an arbi t rary semigroup. (In this case we consider the semigroup C as 
a. groupoid.) Then for an a rb i t ra ry bilinear mapp ing a: Ax B —>• C there exists 
a unique homomorphism ip: A® B —> C such that a = cp o uo. Then Imp) is a 
subsemigroup of the semigroup C , and (p is a homomorph i sm of the groupoid 
A >C B on to the semigroup Im (f . Therefore there exists a unique homomorphism 
p*: S(A 0 B) -+ Im p• C C such that ^ = <p* o tf . (Fig. 3) 

A x B •A®B- •S(A®B) 

Figure 3. 

Hence, to any bilinear mapp ing a: A x B —> C there exists a unique ho­

momorphism p* : S(A eg 19) —> C such that OJ = (,O* o ($ o cO). Thus the couple 

(t) o LU, S(A ® B)) is the tensor p roduc t of semigroups A , B in the class of all 

semigroups. This tensor p roduc t is de termined up to an isomorphism. 

R e m a r k 1. In the res t of the p>aper, we deno te by a = J^ the smalles t 

semigroup congruence on an arb i t rary groupoid . I t is easy to prove that the 

isomorphism S(A eg B) = A ® s B in the preceding theorem is the mapp ing 

A: S(A (g) B) —> A egtS B such that \(o-a®b) — a®sb for any a (E A and b £ B. 

Let (iO, -AegF?) be the tensor p roduc t of groupoids A and B , and £ : A —> yV 
and (: B -^ B' be groupoid homomorphisms . Le t 6: AL x 19 —> A' eg) -8 ' be a 
mapping given by 6(a, b) = £(a) Cg) C(b) • Eviden t ly , <5 is a bilinear mapping . 
Therefore there exists a unique homomorph ism (p: A(& B -^ A' §§ B' such that 
(S — p o cj . 

D E F I N I T I O N 3 . T h e above men t ioned homomorph i sm ip is called the tensor 

p-roduct of homomorphisms £ and C and is deno ted by £ (g £ • 

241 



LADISLAV SATKO 

LEMMA 1. Let _4; B be groupoids, (uj,_4g)I3) their tensor product, and S 
an arbitrary semigroup. Let 7 : A eg B —• S be a homomorphisrn. Then the 
mapping a: S(A) x S(B) —> 5 such that a(aa, ab) = l(a®b) for any (aa. ah) G 
S(A) x S(B), is a bilinear mapping. 

P r o o f . First we prove that a is well-defined, e.g. a(aa, ah) is independent 
of a and b in classes aa and ah . 

Let a' G aa . Therefore there exists k G {1, 2, 3 , . . . } such that a' ,Jf% a . As 
Mk = ^ 3 V _?4 V • • • V e f̂c , there exist 

a! = #12, #13 , #14, • • • 5 # i k ^ 

#1AT = #22, #23 , • • • , #2A: , 

#2A: = # 3 2 , # 3 3 , - - • , %3k , 

x(n — l)k — # n 2 , # n 3 , • • , xnk 

such that 

#12 ^ 3 #13 , #13 ^ 4 #14, #14 ^ 5 #15 , • • • > #1(A:-1) ^A: #1A- , 

#22 ^ 3 #23 , #23 <^_ #24, #24 ^ 5 #25 , • • • . #2(A:-1) ^A- #2A: , 

#n2 ^ 3 #n,3, # n 3 ^ 4 # n 4 , #n4 ^ 5 # n 5 , • • • , #n(A:-l) &k Xnk • 

Hence xm(i_i) ^ #m?; for m = 1, 2 , . . . , n and i = 3, 4 , . . . , k . Let m and / be 
fixed. Then xm(?;_l) e ^ xm?: if and only if there exist Ho, Hi,.. . . Hr such that //() = 
#m(i-i) , Vr = #mi and yj-i&ijjj for j = 1,2, . . . , r . Therefore {H^i./j,} C 
|O!, O2, • • • , gi] for some gug2,. .. ,g{ e A and 7 (%- i ® &) = 7 ^ 0 b)i(g2 g b) 
. .. j(gt eg) 6) = 7(2/7 g) 6) for any j = 1, 2,. . . r , as 7CO1 (g) 6)7(02 0 6) . . . -> (</,- \ O) 
is an element of the semigroup 5 \ Therefore 7(£m(«-i) (g b) = 7(1/0 \ b) •-
7(2/r g) b) = l(xrni 0 b) • We proved this equality for fixed but arbitrary /// and 
.;, and thus 7(xm(?;_1) eg) b) = i(xrni eg 6) for m = 1, 2, .. ., rc and i = 3. 4 k . 

Hence 7(O' <g> b) = j(xi2 0 fe) = 7(#nA: ® &) = l(a ® b). 

Similarly, for bf e ah , j(a' ®b) = i(a' (g bf), and thus i(a Cg b) = -)(a' \ b) = 
7(O/ eg) bf). Hence a is a well-defined mapping. 

For arbitrary a(ll,aa2,aa G S(A), ahl,ah2,ah G S(B) , a(a(lla(l2. ah) = 
a((Taia2:<7b) = 7 ( ^ 1 ^ 2 <8> 6) = 7 ( ^ 1 ® ^ ) ( a 2 Cg 6)) = 7 ( ^ 1 0 6 )7 (O 2 >:; 6) = 

a(a(ll,ah)a(aa21ah), and similarly __(_-,_, ahlah2) = a(aa,ahl)a(a(^ah2) . Hence, 
a : 5(_4) x £(13) —> £ is a bilinear mapping. 

Now, the main theorem of this paper can be formulated. 
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T H E O R E M 3. Let A , B be groupoids and S(A), S(B} their greatest semi­

group linages. Then S(A (g) B) = S(A) 0S S(B) . 

P r o o f . We prove the exis tence of the h o m o m o r p h i s m rj: A eg) B -> 

S(A)(^)fiS(B) such that for any h o m o m o r p h i s m 7 : A®B —> S on to an arb i t rary 

semigroup S there exists a unique h o m o m o r p h i s m (p: S(A) ®.s S(B) —* S such 

that 7 = (p o 7/. (Fig. 4) 

Л ( g ) Б ^ 5 ( A ) 0 , 5 ( 5 ) 

Let 'ø 

Figure 4. 

A o 1/ be the composi t ion of the na tura l homomorph i sm 

//: S(A)®S(B) -> S(S(A)®S(B)) and the isomorphism A: S(S(A)®S(B)) -+ 

S(A) 0S S(B) from R e m a r k 1. Let £: A -> S ( -4 ) , C : -8 - • 5 ( B ) be na tura l ho-

momorphisms. If we consider the mapp ing r? = ^ o (£ eg) <) = A o z/ o (£ 0 < ) , then 

for any a eA, be B, g(a (g) b) = (A o 1/ o (£ <g> <)) (a (g) 6) = (A o v) (£(a) ® <(&)) = 

(A o is)(aa 0 cra) = A(O-,Ta0a-5) = aa (g),s O"0 . T h e last rela t ion is the consequence of 

Remark 1. 

Let S be an a rb i t ra ry semigroup, and 7 : A eg) B —•> 5 be a homomorph ism. 

Let a : 5(yl) x 5 ( 5 ) —• 5 be the mapp ing from L e m m a 1 satisfying the rela t ion 

a (a a, a i,) = 7(aeg)b) for any (O~a, O~o) G 5 ( A ) x 5 ( 5 ) . As LY is a bilinear mapping , 

there exists a unique homomorph i sm cp: S(A)®SS(B) —> 5 such that cY = (pocu . 

(Fig. 5) 

Л ® ß -

5 - * -

• S(A) <g>s 5 ( f í ) 

S(A) x 5 ( ß ) 

Figure 5. 

Then for an a rb i t ra ry a E ^4, 6 E 5 , 7 ( a eg) 6) = a(O-a, O7,) =-

^ o ^(O-aiO-0) = ip(aa 0 , O7,) = (p(r](a 0 b)) = cp o rj(a 0 b). Since these rela-

1 ions hold for all genera t ing elemen ts of the groupoid A eg) B , 7 = ^ 0 7 / . Hence, 

to any homomorphism j : A&B —> S on to an a rb i t ra ry semigroup S there 

exists a unique homomorph i sm tp: S(A) eg)tS S(B) —> S satisfying 7 = ip o r/. 

Thus 5 ( / l ) Cg),s 5 ( 5 ) is the grea tes t semigroup image of the groupoid A (X) B 

which is de termined up to an isomorphism. 
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