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ON THE SOLUTIONS OF N-TH ORDER NONLINEAR
DIFFERENTIAL EQUATION IN L*(0, «)

JOZEF ELIAS

In 1950 A. Wintner in his paper [1] stated the conditions that no solution of the
differential equation y”+ f(f)y =0 belongs to L*(0, «).

In 1974 J. Detki in his paper [2] generalized A. Wintner’s result for the
nonlinear differential equation y”+ f(#)g(y)=0 and he considered a similar
problem interchanging L*(0, «) with L*(0, ), (p>1).

In the present paper J. Detki’s result will be generalized for the nonlinear
differential equation y™ + f(¢)g(y)=0 and a corollary will be deduced for the
linear differential equation y™ + f(¢)y =0.

We consider the differential equation

Y+ f()g(y)=0, (1)

where f(r) e C10, »), g(u) € C'(—==, ®), g(0)=0 and |g(y)| =8|y, for |y|<c,
c and >0 are constants.

Theorem 1. If
J 27 1P(1) de <o, )
0
then

[ o ar<e )

cannot hold for any solution of the differential equation (1).

Proof. Assume that there exists a solution y(¢) of (1) such that ngz( y() de<
0

<, We shall prove that this assumption leads to a contradiction. Let #,, £>0;
integrating (1) from #, to £, we get

Yo (L) -y (n) + I "f(t)g(y(t)) dr=0.
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Using the Schwarz Inequality, we obtain

4
ly” () -y "(r.)|§f ()] 1g(y(D] de=
L o 12

=(['ro af g o)
Since according to (2) fe L?(1, ) and (3) holds, it is clear from this inequality that
for every £>0 there is T>0 such that for all 4, >6>T
Y )~y )| <e.
But this is the Bolzano—Cauchy condition for the existence of the proper limit
lim y"~"(¢). We shall prove that lim ¥y Y(f)=. We assume that lim y (D =

= a, where a>0. Then for every £>0 there is T> 0 such that every te[T, ) is
|y ~P(f) — a] < €. Let us choose £>0such that a — £>0. Then for all t €[ T, )

O<a-e<y" "()<a+e.

Integrating the last inequality (n —1)-times, we shall get the inequality

a—¢&€ n-1 ,V D(T)

— (r— < _ J
CEV A y(’)+2 G =T,
ie.

Y022 e-n- 5 2D -1y,

( 1) Y
Since a—¢>0, it follows that !LT y(£)=c0. If a<0, we shall likewise get that
lim y(f)=x. In both cases from the properties of the function g we obtain
I g*(y(t)) dr =, which contradicts (2). Thus lim y*"~(¢) =0. Therefore,
(¢} t—e0
¥ 0= [ sa(y(s) ds @

holds.

We shall prove that J’ |y "(s)| ds<. Let A>0 be an arbitrary number.
0
Then

[y o ass [ { [ 1atvn auf ass ®)

< [s[ o)l ] + [ sirats)] ds =
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= A, g0 qus [ o5 as.

As for every 4, >0
b o5 L 2 12
J: s|f()1g(y(s))I dsé( I s*f(s) ds j g°(y(s)) ds)
holds and the improper integrals L s*£(s) ds, L 9°(y(s)) ds exist, we get that

lim L As| )| 1gr(s) ds=L.s|f(5)| lg(¥(s))| ds,

exists, too.
For A =u there holds

Af 1) la @] du [ ulf@ ) au,

where the integral J u|f(u)|g(y(u))| du—0 if A—x, Then, from the last
A

inequality it follows that

tim A[ 1) 190w du=0. ©

From inequality (5) it follows that I |y(s)| ds <. As for every t, x>0
0

[y"2(x) — y"2(0)| = ley<n—1)(u) du f—.[xly("—l)(u)' du

and the improper integral J |y"""(u)| du exists, it follows that the proper limit
0

lim y*~"(¢) exists. Likewise, as above for y"~(¢), it can be proved that

s

lim y*~2(£) =0.
nm

Integrating (4) from ¢, to #, we get

Yo 2e) -y A0) = J': {J:af(s)g(y(s)) ds} dr=
= [ Horovisn as). + [ g0y ar=

= [ )5 ds -1 [[A90» as+ [*rate
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Using (6) we obtain 'lzl_l"ll tzj-f(s)g(y(s)) ds=0. Hence
=y ()= [ (= Df(s)g(y(s)) ds. ™)

Likewise, as before, it can be proved that J |y"~?(s)| ds <e. From this it follows
0

that lim y"~(r) exists and lim y" (£ =0.

Integrating (7) from # to # and from the foregoing we get
. “(s—1)?
y 2= 52 fs)a(r(s) ds.

Successively it can be proved that

(s=0)"2

1y 0= [ T et o, (®)

J |y'(s)| ds<e and lim y(¢)=0.
o t—son

Integrating (8) from # to £, we get

0y -y = [ ([ EL fdatw) au) as.

Interchanging the order of integration we obtain
(D) 2y()— (1) 2y(t) = J: ( : (?n;—s%')'; f(u)g(y(u)) ds) du+
* r ( j (fn_—sz;-_; f(w)g(y(u)) ds) du=r—15 1 D1 {I:[(u -y -
— (= e Y ) du+ [ (= u)g((w) ) =

=G|, (w0 a0 su= s [ ety au

Since for every #, t:>0 there holds

[ :’s,-nl )| g(y(s))lds§( f s*2 f(s)ds J’ Iﬁgz(y(s)) ds>l/,

and the improper integrals J 52" f(s) ds, J g°(y(s)) ds exist, we get that
0 0
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tim [ Na6] ds= [ 1oty ] as <o

exists, too.
Further, for >0 we have

[ =y fsa0sy as

= L.s"_' |£()9(¥(s))| ds < o,

therefore L (s = &)"'f(s)g(y(s)) ds—> 0 if f,—» oo,
From the above and (8) we obtain that

(—1)"“y(t)=j,' g(‘n—‘_%,— £(s)g(y(s)) ds. ©)

From (9) we get for £>0
ols [ E=25 116 o)) ass

= [ =0 1Nla o) ds= [ layts)) s

From this it follows that

i y@ass["[[ w1l o)) ] ass

< I - ( I "W 22(u) du ..gz(y(u)) du) ds.

Since for s>0

s[-uz"'zf(u) dus I:uz""’f(u) du,

from this and from assumption (2) it follows that

lim sj W' f(u) du=0.
Then

[[[rwmsn[e-toa]
+ J:-s"'“ f(s) ds =lim sJ:.u’"'zf’(u) du+
+[ - nemrp as=[ -pepi ass [T ompey as

431



Hence

I.-y () ds §J’,-Q”(y(u)) duJ:. L.u’""ﬁ(u) dus

=[ o) duf o) s

Since lim y(#) =0, there is a number T'such that for all 1= T'is |y(D)] = c, where cis

a positive constant. According to the assumption concerning the function g, there
holds for all =T

lg(y(NI=Bly(1)].

From this and from the above it follows that

[[o0tn as=p[ () assp[ gD asf s fy as.

Whith regard to the conditions for s>*~' and since y()#0 implies that
J g°(y(s)) ds#0, we get

1= ﬁzl-sz"" f(s) ds.

But this is a contradiction with B’I s 7' f(s) ds<1 for sufficiently large ¢. The

proof of Theorem 1 is complete.
If we put n=2, then equation (1) has the form

y@+f(8)g(y)=0. (10)

From Theorem 1 we get
Corollary 1. If I ’ffl(,) dt<ow, then for any solution of equation (10)
(1]

I g°(y(#)) dt < cannot hold.
0

Corollary 1 is Theorem 1 in [2]. .
If we put g(u)=u, Then equation (1) has the form

y™+f(£)y =0. (11)

From Theorem 1 we get

COI‘O“’.I’y 2. If L fn—lf(t) dit<<oo, then J; yz(t) dt<o cannot hold for any
solution of equation (11).
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If we put n=2 1n equation (11), then we get the equation

y"+f()y=0. (12)

From Theorem 1 we get

Corollary 3. If I £ (1) de<e, then I y*(t) dt< o cannot hold for any
0 0

solution of equation (12).
Remark 1. The notion (L*)-solution for equation (11) or (12) can be
introduced as follows. Let y(7) be the solution of equation (11) or (12). If

0< J ly(1)? dr <, then y(¥) is called the (L?)-solution of equation (11) or (12).
0
Then Corollary 2 and Corollary 3 can be expressed as follows

Corollary 2'. If I £ 'fA(f)dt<cw, then equation (11) cannot have the
(V]
(L?)-solution.

Corollary 3'. If I £ (t) dt<o, then equation (12) cannot have the
0

(L?)-solution.
Corollary 3’ is the result of A. Wintner’s paper [1].
Remark 2. The condition in Corollary 2’ is the best in the sense that it cannot

be replaced by
j £ (D) dt<oo and j £ ()] dr<eo
0 0

if £>0. In fact, both these integrals converge for every £>0 if

f(’)=t2.. , b is a constant.

It can be proved that in this case equation (11) has the solution y() =t_1" and that
the exponent a = a(b) can be chosen arbitrarily large if b is suitable.

Remark 3. Let p and q be positive numbers such that [l—,+%=1 and let
J £ (D) de< oo
(V]

then J; 9" (y(#)) dt < cannot hold for any solution of equation (1). The proof can
be done as before if instead of the Schwarz Inequality we use Holder’s Inequality.

Remark 4. If the function g(u) has the property that J y*(s) ds <, it implies
0
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J gz(y(s)) ds < ; then according to Theorem 1 it can be asserted that equation
0
(1) has no solution belonging to L(0, =) (we say that the solution y(¢) of equation
(1) belongs to L*(0, ®) if 0< J (y(5)) ds < ).

!
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O PEUIEHUSIX HEJTMHEMHOTO IU®®EPEHLIMANBHOIO YPABHEHMS TIOPSIIKA n
B L0, )

Ho3sed Inuaw
Pe3ome
B paboTe npuBefeHO HOCTATOYHOE YCJOBHE, KOTOPOE OBECMEUMBAET, YTO HW OflHO pellieHue
audrpepenimansioro ypasuenns y + f(1)g(y) =0 we npunapnexut L?(0, ), u npusenens! cnen-

CTBUS, KOTOpble 06061AIOT pe3ynbTaThl aBTOPoB A. BulTHep Ans nunedHoro nuddepeHimansLoro
ypaBhenus y" + f(f)y =0 u U. JeTku anst nenuneinoro ypasrenns y" + f(1)g(y) —0.
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