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ON THE SOLUTIONS OF N-TH ORDER NONLINEAR 
DIFFERENTIAL EQUATION IN L2(0, °o) 

JOZEF ELIAS 

In 1950 A. W i n t n e r in his paper [1] stated the conditions that no solution of the 
differential equation y"+f(t)y = 0 belongs to L2(0, oo). 

In 1974 J. D e t k i in his paper [2] generalized A. W i n t n e r ' s result for the 
nonlinear differential equation y" + f(t)g(y) = 0 and he considered a similar 
problem interchanging L2(0, oo) with Lp(0, oo), (p>l). 

In the present paper J. Detki's result will be generalized for the nonlinear 
differential equation y(n) + f(t)g(y) = 0 and a corollary will be deduced for the 
linear differential equation yw + f(t)y = 0. 

We consider the differential equation 

yM+f(t)g(y)=o, ( l ) 

where f(t)e C[0, °°), g(u)eCl(-<*>,*=), g(0) = 0 and \g(y)\^p\y\, for \y\<c, 
c and p>0 are constants. 

Theorem 1 . If 

J > 'AOdr^oo, (2) 

then 

\og
2(y(t))dt«*> (3) 

cannot hold for any solution of the differential equation (1). 

Proof. Assume that there exists a solution y(t) of (1) such that g2(y(t)) dt< 
Jo 

<oo. We shall prove that this assumption leads to a contradiction. Let h, t2>0; 
integrating (1) from /. to t2, we get 

/ — > ( f e ) - / " - " ( ' . ) + \Hf(t)g(y(t)) dt = 0. 
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Using the Schwarz Inequality, we obtain 

\yi- " ( , 2 ) - / « »(r,)|-i \h\f(t)\ \g(y(t))\dt^ 
J'i 

^(^f(t)dtjj\y(t))d^2. 

Since according to (2) fe L2( l , oo) and (3) holds, it is clear from this inequality that 
for every e>0 there is T > 0 such that for all t\>t2>T 

| / " li(t2)~yt-1\h)\<e. 

But this is the Bolzano—Cauchy condition for the existence of the proper limit 

lim y(n~n(t). We shall prove that lim y(" 1)(/) = oo. We assume that lim y("~t)(t) = 
f-~»0O /—»oo f—»co 

= a, where a > 0 . Then for every e > 0 there is T > 0 such that every te[T, oo) is 
| y ( "~ 1 ) ( f ) - a |<£ . Let us choose O O s u c h that a - e > 0 . Then for all te[T, oo) 

0 < a - e<y("~i)(t)< a + E. 

Integrating the last inequality (n — l)-times, we shall get the inequality 

"-Z ,,ov 
a — є 

n~2 v (/)i"r^ 

( n - l ) ! v ' - , w f=i /! 
i.e. 

Since a — e>0, it follows that lim y(t) = °°. If a < 0 , we shall likewise get that 

lim> ,(r) = oo. in both cases from the properties of the function g we obtain 

I 92(y(t)) df = oo, which contradicts (2). Thus lim v("_1)(.-) = 0. Therefore, 
J0 '—» 

/ " 1V) = ^f(s)g(y(s))ds (4) 

We shall prove that |v(" "(s)\ d j<oo. Let A>0 be an arbitrary number. 

holds. 

Then 

£\y<" ')(,)| dsé J^ [\~\f(u)g(y(u))\ dM} ds% (5) 

ž[s£\f(u)9(y(u))\ du\j\j\\f(s)g(y(s))\ ds = 
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= AL ^ " ^ M " ^ d " + f%|/(s)^(3'(s))l ds. 

As for every /,, t2>0 

[s\f(s)\ \g(y(s))\ d5~i(JVf (s) dsj\\y(s)) ds)' * 

holds and the improper integrals s2f(s) ds, \ 92(y(s)) ds exist, we get that 
Jo Jo 

lirn f*s\f(s)\ \g(y(s))\ d s = \"s\f(s)\ \g(y(s))\ ds, 
~* J0 Jo 

exists, too. 
For A = u there holds 

Aj j / (u) | \g(y(u))\ du = \\\f(u)\ \g(y(u))\ du, 

where the integral u\f(u)\\g(y(u))\du-*0 if A-»oo. Then, from the last 

inequality it follows that 

limAf |/(u)||,-(>,(u))|du = 0. (6) 
<*—> JA 

From inequality (5) it follows that |"'("~,)(~)| ds<<». As for every t, x>0 

|/"-->(x)-/--a)(0l = IJV""^") d"|=\'\yim~lKu)\ d« 

and the improper integral |.V(~_1)(M)| d" exists, it follows that the proper limit 

lim -''""'V) exists. Likewise, as above for y(""I)(i'). it can be proved that 
<->•» 

lim/"-2,(0 = 0. 
r-.— 

Integrating (4) from f, to h we get 

y"-2)(fe)--'("--)(/i)-- J*2 {J /(')s(y(s)) d"} d' = 

= [j'f(s)g(y(s)) d-] * + \y(t)g(y(t)) At= 

= '- f "*f(s)g(y(s)) ds-ti\ f(s)9(y(s)) ds + f ̂  tf(t)g(y(t)) dt. 
J<1 J<1 J ' l 
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Using (6) we obtain lim t2\ f(s)g(y(s))ds = 0. Hence 
" > — " J<2 

- / - » ( , ) = J"(s - t)f(s)g(y(s)) ds. (7) 

Likewise, as before, it can be proved that |/"_2>(s)| ds < oo. From this it follows 

that lim yin~3)(t) exists and lim y(n~3)(t) = 0. 

Integrating (7) from t\ to t2 and from the foregoing we get 

y°"3)(0 = [~--^--f(s)g(y(s))ds. 

Successively it can be proved that 

( - l ) -y (0 = J" ^ g ^ f(s)g(y(s)) ds, (8) 

\y'(s)\ ds<oo and limv(j') = 0. 
Jo '— -

Integrating (8) from ft to t2 we get 

(-iy-2[y^)-y(t>)]=[ ( J " { "~-^y f(»)9(y(u))du)ds. 

Interchanging the order of integration we obtain 

(-l)"-2y(fe)-(-ir-3'('.) = JJ ([{J^=2^f(~My(u))ds) du + 

+f ( f ifr-or f{u)9^u)) ds)du=r^wi {f -<« - <•)"-' -

- (« - fc)"_,l/(«)5(y(i.)) du+J% - ft)-V^teCKto) d«} = 

=(^iy. I ("-'•rVWsM")) d"-(-r--T)! [ («-'-)"~*/(«M.y(«)) d«-
Since for every ft, ft>0 there holds 

[s-1\f(s)\\g(y(s))\ds''(j\2--2f-(s)ds \\2(y(s)) ds)"' 

and the improper integrals J s2"~2f(s) ds, J g2(y(s)) ds exist, we get that 
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lim Jo s-l|/(s)| \g(y(5))\ d s = J V | / ( S ) | \g(y(s))\ d s . 

exists, too. 
Further, for fc>0 we have 

\\js-kr1f(s)g(y(s))ds\%jy^\f(s)g(y(s))\is<^ 

therefore J (s-t2)"~lf(s)g(y(s)) ds->0 if /2-»oo. 
From the above and (8) we obtain that 

(-l)-y(O = J" - £ ^ - f(s)g(y(s)) ds. (9) 

From (9) we get for f>0 

M'>l*f ^ r 7 ? I/Ml l«W'))l ds= 

-SjV-0"_,|/(*)llt7W*))|d5sJV|/(.-)||tf(y(,))|d*. 

From this it follows that 

JV(s) ds = J" [J"u"-'|/(«)| f̂ (y(u))| duj ds = 

"I" (r"2""^") duJV(y(u)) du) ds. 

s]V-2A«) d« = J"u2-r(«) du, 
from this and from assumption (2) it follows that 

UmsJ u2"-'Au)du = 0. 

Since for s>0 

Then 
J" \"u2n-2ft") d« ds = [*J V - A " ) du]" + 

+ J V"-'As) d* -Bm sj"u2-2A«) du + 

+ J"(s - t)s2-2fts) ds = J (* ~ t)s2-2fts) ds § J V ' A s ) ds. 
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Hence 

J V ( s ) d5=\"g2(y(u)) duj" J V - ' A I I ) du = 

sJ%a(y(«))duJV-A-)d*. 

Since lim y(f) = 0, there is a number T such that for all f = T is | y(f) I = c, where c is 

a positive constant. According to the assumption concerning the function g, there 
holds for all f=T 

\g(y(t))\^p\y(t)\. 

From this and from the above it follows that 

JV(y(*)) ds^p2j~y2(s) ds^p2\~g2(y(s)) d s J V - ' A s ) ds. 

Whith regard to the conditions for s2"-1 and since y(t)±0 implies that 

J g2(y(s))ds*0, we get 

lS/S'fV-'A^ds. 

But this is a contradiction with P2\ s2n~lf(s) ds<l for sufficiently large t. The 

proof of Theorem 1 is complete. 
If we put n = 2, then equation (1) has the form 

y<2)+/('My)=o. (io) 

From Theorem 1 we get 

Corollary 1. U [VA**) <-/<*» then for any solution of equation (10) 

g2(y(t))dt< <x> cannot hold. 

Corollary 1 is Theorem 1 in [2]. 
If we put g(u) = u, Then equation (1) has the form 

y(,0+/(Oy=o. (11) 

From Theorem 1 we get 

Corollary 2. If \~t2-1f(t)dt<<*>> rten J0 y
2 ( ' ) d ' < 0 ° cannot hold for any 

solution of equation (11). 
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If we put n =2 in equation (11), then we get the equation 

y" + f(t)y=0. (12) 

From Theorem 1 we get 

Corollary 3. If J ff(t) dt<<*>, the*n [ y\t)dt<«> cannot hold for any 

solution of equation (12). 
R e m a r k 1. The notion (L2)-solution for equation (11) or (12) can be 

introduced as follows. Let y(t) be the solution of equation (11) or (12). If 

0 < I \y(t)\2 dt< oo, then y(t) is called the (L2)-solution of equation (11) or (12). 

Then Corollary 2 and Corollary 3 can be expressed as follows 

Corollary 2'. If t2" lf(t)dt<<*>, then equation (11) cannot have the 
Jo 

(L2)-solution. 

Corollary 3'. J/ t3f(t)dt<<*>, then equation (12) cannot have the 

(L2)-solution. 
Corollary 3 ' is the result of A. Wintner's paper [1]. 
R e m a r k 2. The condition in Corollary 2 ' is the best in the sense that it cannot 

be replaced by 

ft2" ' 'l/(')|2d'<°° and [" t2'"l\f(t)\2*'dt<oo 

if e > 0 . In fact, both these integrals converge for every e > 0 if 

f(t)=— , b is a constant. 

It can be proved that in this case equation (11) has the solution y(t)=~z and that 

the exponent a = a(b) can be chosen arbitrarily large if b is suitable. 

R e m a r k 3. Let p and q be positive numbers such that — + — = 1 and let 

f tlq-if(t)dt<<x>; 

then 9P(y(t)) df < oo cannot hold for any solution of equation (1). The proof can 
Jo 

be done as before if instead of the Schwarz Inequality we use Holder's Inequality. 

R e m a r k 4. If the function g(u) has the property that I y2(s) ds < oo, it implies 
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J g2(y(s)) ds < oo ; then according to Theorem 1 it can be asserted that equation 
0 

(1) has no solution belonging to L2(0, °°) (we say that the solution y(t) of equation 

(1) belongs to L2(0, oo) if 0 < | (y(s)) ds<oo). 
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О РЕШЕНИЯХ НЕЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПОРЯДКА п 

в ^ 2(о, =о) 

Йозеф Элиаш 

Резюме 

В работе приведено достаточное условие, которое обеспечивает, что ни одно решение 
дифференциального уравнения У"> + /(/)й(>') = 0 не принадлежит ^2(0, °=), и приведены след­
ствия, которые обобщают результаты авторов А. Винтнер для линейного дифференциального 
уравнения у" + /(1)у = 0 и И. Детки для нелинейного уравнения у" + /(/)д(у) — 0. 
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