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ON COMPLETION OF MEASURES ON A ¢-c-RING

JOZEF DRAVECKY, VLADIMIR PALKO, VIERA PALKOVA

In the classical measure theory the system of all measurable sets is assumed
to be a o-ring. Because of this strong postulate the classical theory cannot
describe some situations in nature (for examples see [1], [2]). That is why modern
theory studies more general families of sets.

A nonempty system 2 of subsets of a set X is called a ¢g-o-ring if it satisfies
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the following conditions: (i) 4,€ 2, 4, A; = () for i # jimplies (_) 4,€ 2, (ii) E,
i=1
Fe 2, F c E implies E\Fe 2. If Xe 2, then a g-o-ring 2 is called a o-class. A
measure on 2 is a nonnegative o-additive function, which can attain also the
value +o0o. A measure u defined on the g-o-ring 2 is said to be complete if
F c E, u(E) = 0 implies Fe 2. A measure i, defined on a g-o-ring 2, is called
a completion of the measure y, defined on the g-o-ring 2, if ji is an extension
of u and g is complete. It is a well-known fact (cf. [3], Theorem 13 B) that a
measure u defined on the o-ring & has always a completion £, which is defined
on the o-ring & of all sets of the form E U F, where E€ %, F = N, u(N) = 0 and
[ is of the form j(E u F) = u(E). In this paper we show that the completion of
a measure on a g-o-ring, if it exists, may be obtained in a similar way. We present
a method of the construction of a completion. In the case when the domain of
the measure is a o-ring this construction turns to the usual construction des-
cribed in [3]. Thus, the classical result is the special case of a more general result,
which holds in the extended measure theory. In the paper there is given a
necessary and sufficient condition for the existence of a completion. Further, we
deal with the notion of a minimal completion and prove some existence and
uniqueness theorems.

1. Existence of a completion

Througout this paper, .47, will denote the family of all null sets of the
measure 4. The following theorem gives a necessary condition for the existence
of a completion.
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Theorem 1.1. Let u be a measure on a q-o-ring 2, assume that p has a
completion. Then A < Bu U » where A, Be2, Nie A, for all i, implies
u(A) = u(B).

i—1

Proof: Let j defined on 2 be a completion of u. Denote M, = N,\ U
i=1,2, .M, are mutually disjoint sets of 2, hence the O’-addltIVIty of a
implies UM UNGJV Hence A\UN A\(AGUN>€-@ Finally,

i=]1 i=] i=1

u(A) = ,u<A\U Ni> < j(B) = u(B). The theorem is proved.

i=1

The above theorem enables us sometimes to prove that a measure has no
completion. As we shall see in the following example, such a measure can be
found even on a three-element set.

Example 1.1. Let X, 2 and u be defined as follows: X = {1,2, 3}, 2 = {0,
{1,25,{1, 34, {2, 3}, u({1, 2) = 2, p({1, 3}) = 1, u(®) = p({2, 3}) = 0. Then p has
no completion, because the necessary condition from Theorem 1.1. is not satis-
fied.

The following, somewhat more complicated example will show that the
condition from Theorem 1.1. is not sufficient.

Example 1.2. Let X={1,2,3,4,5,6,7}, 2={9, X, {1, 2, 3,4}, {1, 2, 3,
54 {2,6, 74, 1{1,2,7}, {5, 6,7}, {4, 6, 7}, {1, 3, 4, 5}, {3, 4, S, 6}}, u(X) = u({1, 3,
4,5) =4, u({3,4,5,6}) =3,u({1,2,3,4) = u({1, 2, 3, 5) = u({5, 6, 7}) = pu({4,
6, 7)) =2, u({1, 2, 7)) = 1, u({2, 6, 7)) = u(®) = 0. We leave the verification of
the validity of the condition from Theorem 1.1. to the reader. If 1 were a
completion of g, then a({1}) = a({l, 2, T}\{2, 7}) = 1, a({4}) = ({4, 6, T}\{6,
7}) = 2, and hence ({1, 2, 3, 4}) = 2 < ({1, 4}) = 3, a contradiction.

If & is a family of subsets o X, then the smallest g-o-ring over 2 will be
denoted by 0,(Z). If A" is a subsystem of Z, then .4/" is called an ideal in 2 if
for every A€ Z, Be /" we have A n Be &". If o/, o/, are systems of subsets of
X, then the system of all set-theoretical differences 4,\ A4,, where 4,e %,
A,e of,, will be denoted by &/, — ;.

Lemma 1.1. If 4 is an ideal in a g-o-ring 2, then A" is a o-ring.

The proof is obvious.

The following theorem gives a necessary and sufficient condition for the
existence of a completion of a measure defined on a g-o-ring.

Theorem 1.2. Let u be a measure on a q-o-ring 2. Then the following assertions
are equivalent:

(i) There exists a completion of p.
(ii) For every ordinal I there exists a transfinite sequence of measures {Il}a<r
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with domains 2, such that a < p < I implies that yg is an extension of W,

W =pand 2,= O'q<U (.@ﬂ— JVﬂﬂ>>for all a < T.
p<a _
(iii) There exists a measure [i defined on a q-o-ring 2 which is an extension of p

and N ; is an ideal in 3.

Proof: (i)= (i) Let /i defined on 2 be a completion of y, let I" be an
arbitrary ordinal. We construct, by transfinite induction, the sequence {{,},<r
with the demanded properties. We put 2, = 2 and y, = u. Let y < I'and let, for
every a <y, M, be a measure defined on 2,, where 2, cd, p,= Al

2,= o;,(U (.@,, - JV,,E)>. Define 2,= o, (U (.@ - )) Obviously,

~ \f<a
2,< 9. Now put p, = ;Il_a2 In such a way the wrlole sequence {i,},r can be

constructed.
(ii) = (iii) Let I"be the ordinal number of the set 22" with some well ordering.
By the assumption there exists a transfinite sequence {i,},. with the claimed

properties. Let us assume that 2, # | ) 2, for every a < I'. Hence there exists

p<a

a system {4}, rof mutually different subsets of X such that 4,.2,, 4A,¢ U 2.
p<a
Hence card {4,},., = card 2*" > card 2*, which is a contradition. Thus there

exists an ordinal @ < I"such that ( ) 2,=2,= o‘(U (2,— N ﬁ)) This im-

f<a
plies that 47, is an ideal in 2,. )

(iii) = (i) Let / defined on 2 be an extension of 4, let 4", be an ideal in 2.
Defined = {EUF; Ec3,Fc N, Ne N ;. Letus prove thatﬂlsaq o-ring. Let
{4,)® , be the sequence of mutually disjoint sets of 2. Hence 4, = E v F;, where
E€ld, FFc N, NeAN;, i=1,2, ... We can write U A = U E v U F,

i=1 i=1 i=1

whereUEe,@ UFcUN By Lemma 1.1., UNGA/ henceCOjAe,@~

i=1 i=1 i=1

LetEeQ F,cN,NeXN; for i = 1, 2. Further we shall assume that E;n N, = .
This is always possnble because E;U F,= E,uU((N,\E) N F;), where E;eZ,
(N\E)NnF,c N\E; and N\E;= N\(N,nE)e AN Suppose E,UF, > E,u
UF,. Then (E,u F)\(E, VU F)) = [El\((EZ\N_l) V(E; N Nz))] U[E N (N\F)] v
U[F\(E;UF)). EN(EAN)V(E,NNy))eZ2 and [E, N (N\F)] U[F\(E,u
U F))l € N, UN,, hence (E, v F)\(E,UF,) e Thus, 9 is ¢q-o-ring. Let E,e
€3,F,c N,,n,e ¥, i=1,2 Weprove that E, U F, = E, U F, implies ji(E,) =
= ji(E,). We suppose again E,n N, =@, i = 1, 2. Obviously, E, U F, = E, UF,
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implies E,\ N, =E,\N,. Then we can write fi(E,) = fi((E,\V,) U (E, " N,)) =
= {(E\\N,) = a(E,\N)) = ﬂ((Ez\Nl) U (E, le)) = fi(E,). Now we can define
uniquely on 2 the function fias follows:if Ae 4, 4 = E U F, where E€ 3, F < N,
Ne A, then i(A) = a(E). Obviously, f is a measure. The completeness of /I
follows immediately. The theorem is proved.

Theorem 1.2. gives us not only a necessary and sufficient condition for the
existence of a completion of u, but gives, in a sense, also a method how to find
that completion. It is necessary to extend g in the above way to a suitable
ordinal, yielding a measure, whose null sets form an ideal. Then it will suffice to
perform the same process as when completing a measure on a o-ring. However,
this process of extension to g-o-rings 2,, a < I', need not be unique. It may
happen that there exists a completion of y, but after an inapropriate extension
we obtain a measure which has no completion. This is proved by the following
example.

Example 1.3. Let X=1{1,2,3,4,5,6,7}, 2=1{0, {1, 2, 3, 4}, {1, 2, 3, 5},
{1,2,4,5},{2,6,7},{1,2,7}}, u(® = ({2, 6, 7}) = 0 and u(A) = oo for each other
Ae2. Let 2, = 0,(2 — A ); then 2, consists of all disjoint unions of sets {1},
{2}, {3, 4}, {3, 5}, {4, 5}, {6}, {7}. Define on 2, the measure u, as follows:
m{1}) = ({3, 4) =00 and u({2}) = ({3, 5P = w({4, 5}) = w({6}) =
= 1,({7}) = 0. p, is defined uniquely in this way. {3, 4} < {3, 5} U {4, 5}, but 1,({3,
4}) > u,({3, 5}). The necessary condition from Theorem 1.1. is not satisfied,
hence u, has no completion. However, there exists a completion of u, for
example the measure z defined on 2* as follows: ji(4) = o if 1€ 4, ji(A4) = 0 if
1¢A4, Ae2”.

Lemma 1.2. Let u be a finite measure on a o-class 2, let I" be an arbitrary
ordinal. Then there exists at most one transfinite sequence {l,}, r of extensions of

L, which are defined on 2,, where 2, =2, 2,= O'q(U (25— /Vyﬂ)> and
B<a

P < a < I' implies that u, is an extension of .

Proof: Let {4}, and {v},.r be two different sequences having the
above properties. Let y be the smallest ordinal such that u, # v,. Hence p(A) =

=v,(A4) forall A€ (25— JV;,/’) Obviously, the family of all sets 4 € 2, such
B<y

that y(4) = v,(4) is a o-class, thus it is equal to 2,. Then p, = v,, a contradic-
tion. The lemma is proved.

We see now that Theorem 1.2. is significant first of all in the case when y is
finite and 2 is a o-class. Then if the completion exists, the process described in
that theorem will lead us to it.
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From Theorem 1.2. there immediately follow some sufficient conditions for
the existence of a completion. They are contained in the following two theorems,
whose proofs are omitted.

Theorem 1.3. If u is defined on a q-o-ring 2 and A", is an ideal in 2, then there
exists a completion of p.

Theorem 1.4. If yu defined on a q-o-ring 2 extends to some o-ring, then the
completion o u exists.

Remark 1.1. It follows from Theorem 1.2. and from the properties of
ordinals that, for every measure u defined on a g-o-ring 2 which has a com-
pletion, there exists the smallest ordinal @ such that there exists a sequence

{1} p<, of measures with domains 2,5, where u, = 1, 2, = 0'q<kjp 2,— JV,,)))
y<

for every f < a, y < B implies that ygis an extension of u,and .47, is an ideal
in 2,. We shall denote that ordinal by a, . For the measure u from Example 1.3.
a, = 2. In the following example, a, = 3.

Example 1.4. Let X, 2 be the same as in Example 1.3. Define the mea-
sure u as follows: u(A)=1if leAd, u(4) =0 if 1¢ A4, Ae2. We leave the
verification of the equality @, = 3 to the reader.

2. Existence and uniqueness of the minimal completion

The system L of all completions of the measure y may be partially ordered
with relation <, as follows: u, < i, if u, is an extension of y,. Minimal
elements of the partially ordered set (L, <) are called minimal completions of
u. It is a well-known fact that, in the case of u being defined on a o-ring, there
exists a unique minimal completion, which is, moreover, the smallest element of
L. It is the measure g mentioned in the introduction of this paper. Given a
measure on a g-o-ring, we cannot, in general, guarantee the uniqueness of the
minimal completion. However, if 4 has a completion, the existence of a minimal
completion can be guaranteed. This is stated in the following theorem, which is
a simple conclusion of the Zorn lemma.

Theorem 2.1. If u is a measure defined on a q-o-ring 2 which has a completion,
then p has a minimal completion.

The following example shows that the minimal completion need not be
unique.

Example 2.1. Let X ={1, 2, 3, 4}, 2 = {9, {1, 2}, {2, 3}, {1, 3, 4}}, u{],
2}) = u({1, 3, 4}) = oo, u(P) = u({2, 3}) = 0. Then each measure /I defined on 2¥
bi_’ A({1}) = oo, a({2}) = A({3}) = 0, a({4}) = a, a = 0, is a minimal completion
of u.
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Now we give a sufficient condition for the uniqueness of a minimal com-
pletion.

Theorem 2.2.If p is a finite measure on a q-o-ring 2 and there exists a finite
completion of p, then there exists a unique minimal completion of p.

Proof: Let {2}, be the system of domains of all measures of L. Denote

9= q 2;, 4 = {Ee,@; A, (E) = @L,(E) for every fi,, I, e L}. The existence of a
pe

finite completion implies that &/ is a g-o-ring. Define on &/ a measure v as
follows: V(F) = ﬂSE), Hel. Let Ee o/, v(E) =0, F c E. Then Fe 2, for every
fie L. Hence Fe 2. Since fi(F) = 0 for every fie L, we have Fe .</. Obviously
o/ = 9 and thus v is the unique minimal completion of .
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OB INOIMOJIHEHHNH MEP HA ¢—oc—KOJIBLE
Jozef Dravecky, Vladimir Palko, Viera Palkova
Pe3ome

CeMeHCTBO 2 NOAMHOXECTB MHOXECTBA X HA3bIBACTCA ¢-O-KOJbLOM, ecu M3 E, Fe2, Fc E
cnenyer E\Fe2 u 2 3aMKHYTO OTHOCHUTEJIbHO CYETHBIX OOBEIMHEHHH HemnepeceKarolMxcs
MHOXecTB. B pabore u3yyaeTcs MOMOJIHEHHE MeEpBI, ONpelNejeHHOH Ha g-o-kouble. [TokazaHo
HEo6XxoaMMOe U JOCTaTOYHOE YCJIOBHE JUIS CYIUECTBOBAHHS nonoiaHeHus. Onpenensercs NOHATHE
MHHHUMAJILHOT'O MOMOJIHEHUS U JOKa3bIBAETCS, YTO U3 CYLIECTBOBAHUSA KaKOTrO-HUOYAb KOHEYHOr O
MOMOJIHEHUS CJIEAYeT €AMHTBEHHOCTh MUHUMAJIBHOTO HOTIOJIHEHHS.
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