Mathematica Slovaca

Jan Sipo$
Integral with respect to a pre-measure

Mathematica Slovaca, Vol. 29 (1979), No. 2, 141--155

Persistent URL: http://dml.cz/dmlcz/128728

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/128728
http://project.dml.cz

Math. Slovaca 29, 1979, No. 2, 141—155

INTEGRAL WITH RESPECT TO A PRE-MEASURE

JAN SIPOS

Introductibn

In the classical definition of the Riemann integral the value of the integral is
defined as the limit of the Riemann integral sums. The concept of a Riemann
integral sum is based on a partition of the domain into sets of a comparatively
simple shape.

Lebesgue introduced the concept of a measure and thus was able to suggest
a new definition of the integral. The concept of the Lebesgue integral sum is based
on a possibility of immensly “rich’ partitions of the domain.

In cases of non additive set functions, however, Riemann’s and Lebesgue’s
methods are of not much help, because they are essentially based on the possibility
of forming partitions of the domain, and on the additivity of some set functions.

In this paper we propose to define a process of integration with respect to
a pre-measure. The pre-measure is a natural generalization of a nonnegative
additive measure. In fact it is a monotone set function vanishing on the empty set
and defined on a family of subsets of some space which contains the empty set.

An important type of pre-measures, the so called subadditive measures, were
studied in [1], [2], [3], [4] and [7]. The most important examples of pre-measures
are, however, the nonnegative capacities vanishing in the empty set [6].

§ 1 is introductory. In § 2 we introduce a measurability of real functions defined
on a pre-measurable space (X, &) and investigate their properties. In § 3 we
introduce the notion of the integral $, with respect to a pre-measure u and show
that $, is monotone, homogeneous and additive in a horizontal sense, i.e.

S f=%.(fra)+F.(f—fra) if a=0.

It is shown further that if & is a o-ring and u is a o-additive measure on &, then
our integral coincides with the Lebesgue integral. § 4 contains the limit theorems,
namely the Beppo-Levi and the Lebesgue theorems and Fatou’s lemma for
a continuous pre-measure.
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§ 1. Basic notation

We explain certain notions used throughout the present paper; specific terms
will be explained when they appear for the first time. The terminology is essentially

standard. .
Definitions will be written as direct statements with the defined concept in italics.

We denote by R the set of all real numbers, R is the compactified real line, i.e.
R=Ru{», —»}. If BcR, we put B'=BnR* and B"=BnR~, (where
R*=(0,) and R~ =(—o, 0)). Furthermore, B+a={x+a; xeB} and a.
B={a-x:x€B}.

F denotes the family of all finite subsets of R which contain zero. Further

F*={(F";Fe¥} and F ={F ;Fe%}.

Recall that the families #, #* and %~ ordered by the inclusion form directed sets.
For Fe & we write

|IFl|=min {|la—b|; a,beF,a#b}.
A real net is a triple (S, =, D), where (D, =) is a directed set and S is a real

function with the domain D. Throughout this paper we consider X to be a fixed set

with respect to which we make definitions.
Further fixed symbols: For A =X the symbol x. denotes the characteristic

function of the set A.
We denote by v and A the lattice operations on real functions, i.e.

(fvg)(x)=max {f(x), g(x)},
(fAg)(x)=min {f(x), g(x)}.

and we put f*=fv0 and f~= —(fA0).
For an extended real valued function f on X we put

_ S;={xeX; f(x)#0}.
If f:X—>R and Fe %, we put

fe= Z(ai = @i-1)Xa, T E(bi —b,_1)xs,
i= i=1

where F={b,,, ..., by, 0, a,, ..., a,} with
b,<..<b, <b,=0=a,<a,<...<a,,
Ai={x;f(x)=a} and B;={x;f(x)=b;}.

We put inf §=o and 0. (£»)=0.

A pre-measurable space is a pair (X, &), where 9 is a family of subsets of X and
PePD. The members of & are called measurable sets. A pre-measure u is
a monotone extended real valued set function defined on & with u(0)=0.
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§ 2. Measurability

In this paragraph we shall deal with the pre-measurable space (X, &9). We say
that an extended real valued function f: X — R is &-measurable or only measur-
able iff the sets {x; f(x)=a} and {x;f(x)= —a} are in @ for every positive
element a in R*.

If 9 is a o-ring, then this notion of measurability coincides with the ordinary one
defined, e.g. in [5].

By Z£(2) we denote the family of all &-measurable extended real valued
functions on X.

Proposition 1. If f € £(D), then faa, f—fAa, fv(—a), f—fv(—a), f", f and

c-f are from ¥(9D) for every positive a from R and for every real c.
Proof. Let b >0, then

if a=b
if a<b

. =
{x; f(x)raZb) ={({J"’f(x)—b}
and
{x;fx)na=-b}={x;f(x)=-b}.
Hence fAa is measurable. The proofs of the other assertions are analogous.
Proposition 2. Let f € £(9) and Fe?; then f¢ is in L(D).
Proof. Let a>0. If {x; fr(x)=a}+#@, put b=min {ceF; cZa}. Then {x;
fe(x)Za} = {x; f(x)=b}.

A simple function is a 9-measurable function with a finite range.

Proposition 3. If f € (D), then there exists a sequence of simple functions {f,}
in £(D) such that f, converges pointwise to f on X.
Proof. Let f be a @-measurable function. Put

F,={i/2";i=0, 1, +2, ..., +n-2"}
and f, =f. I |[f(x)|<n then [f(x)—f.(x)|=1/2". If [f(x)| =, then |f.(x)|=n
for every n and hence
f(x)=1lim,f,(x).

For our considerations we shall need some properties of measurable functions in
the case when & = € is a lattice or o-lattice of the subsets of X. In this case £(€)
has some further interesting properties.

Proposition 4. £(%6) is a lattice. If € is a o-1attice, then f, g € £(€) and f, g =0
implies f+ g € £(€). Moreover £(%) is a o-lattice.
Proof. Since {x; (fAg)x)=—a}={x; f(x)= —a}u{x; g(x)= —a} and

{x; frg)x)Za}={x; f(x)Za}n{x; g(x)Za},
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the first assertion is trivial. Let now f, g be non-negative €-measurable functions,
€ be a o-lattice and let a >0. Then
{x;f(x)+g(x)=a}= Oﬂ {x;f(x)+g(x)>t},

<t<a
t-rational

but

{x ; f(x) +g(x) >t} =O<r Oyr+s>r[{x : f(x);r}n

{x;9(x)=s}]u L>J Hx:f(x)=riofx; g(x)=r}]

r-rational

and so f+g is €-measurable.
Let {f.} be a sequence of €-measurable functions. Denote f = v.f, ; then for
a>0 we have

{x;f(x)=a}= oﬂa Undx; fu(x)=r}e€

and similarly {x; f(x)= —a}e¥.
The proof of the measurability of fvg and A,f, is similar.

§ 3. The integral

In this paragraph y will be a pre—rﬁeasure. Let Fe % and F={b,,, ..., b, 0, a,,
... @}, Where

b.<..<b,<by=0=a,<a,<...<a,.

The integral sum S(f, F) of the measurable function f with respect to the set F is
defined as follows

S(. F)= 3@ - a-du((x: f)Za)) +

+ 2,5~ b-Du((x: f(0) Sb))

whenever the right-hand side contains no expression of the type o — o,
A 9-measurable function f is integrable whenever the net (S(f, F), o, %) is
convergent.
The integral of a measurable (not necessarily integrable) function f, in symbol
If, $.f or [fdu is defined by
If = ;l?; S(f, F)
if the limit exists.
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Theorem 5. Let f be a @-measurable function on X.
(i) If f=0, then $f exists and $f=0. Moreover in this case we have
Sf =sup S(f, F).
Fe#

(ii) # is a monotone functional.
(iii) If $f exists, then for every real ¢

Flc-f=c-If
(iv) If aZ0, then

If=F(fra)+F(f—fna)
if one of the right-hand side expression is finite.
(v) If $f* or Jf is finite, then Jf exists and $f = Ff* — If".
Moreover if f is integrable, then the last equality holds too, and f*, f~ are integrable
too.
For proving Theorem 5 we need some properties of the integral sum S(f, F).

Lemma 6. Let f be an integrable function and let F € &, then we have
(i) S(f, F))=S(f, F)+S(f, F).
(ii) IfF,,F,e FwithF,cF,, then S(f, F) = S(f, F5) and S(f, Fy) Z S(f, F5).
Proof. The first part is a trivial consequence of the definition of the integral
sum.
Let F={0, a,, as, ..., a,} and let F*=Fu{a}, where

0=ao<a<..<g_1<a<ag<..<a,.

We prove first that

S({f, F)=S(f, F*).
Denote

y =@ —a-)u(x; f)Za));

i*j

S, F)=y+(a—a-Ju({x; f(x)Za})=
Sy+(a—a)u({x; f(x)=a})+
+(@a—ai)u({x; f(x)Za})=S(f, F*).

In the foregoing reasoning we have used the monotonicity of u and the fact that {x ;
f(x)Za;} = {x; f(x)Za}.Ilf now F,cF,, then F{ cF;. Let c,, ¢, ..., ¢, be such
real numbers that F; = Fyu{c,, ¢3, ..., ¢, }. Then from the first part of this proof we
have

then

S(f, F))=S(f, Fiu{a,)=...=S(f, F3).
The proof of S(f, F1)=S(f, F>) is similar.
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Lemma 7.

(i) S(c-f, F)=c-S(f,(1/c)-F) for c#0.

(i) S(f, F)=S(f",F)—S(f, —F).

(i) S(f, F)=S(fra, F) + S(f—fAa, F—a) 1faeFanda>0
Proof. (i) follows from the equalities

{x;c-f(x)Za}={x;f(x)Zalc}

and
' {x;c f(x)=b}={x;f(x)=b/c}
for ¢ >0 and from the similar equalities for ¢ <O.
(ii) If f=0 (f=0), then S(f, F")=0 (S(f, F*)=0) for every F € %. From this,
from the definition of f* and f~ and from the first part of this lemma it follows that
S(f, H)=S(f",F")-S(f~, —F").
(iii) by Lemma 6 (i)
S(f, F)=S(f, F)+S(f, F).

Thus it is enough to prove the asserion if Fe #*. Let F={0=g,<a,< ... <a,}.
Then

S¢. P)=S(a—a-u((x: [ Za)=3 + 3

=a a,>a

However,

éf‘éﬂ(“" —a-Ju({x; f(x)Za})+
+ E(ai —a_Ju{x; fra)x)=a})=

a;>a

= (@ - a)u((x; (ra)x)Za}) =S¢ Aa, F).

On the other hand
3 =S @-a=(a—apu{x: ((~fra)x)
Za,—a})=S(f—fAa, F).
And so we get
S(f, F)=2, +E S(fra, f)+S(f—(fra), F).

a;j=a a;>

Proof of Theorem 5. (i) is a simple conclusion of Lemma 6 (ii) and the fact
that monotone real valued nets have always limits (finite or infinite). (ii) follows
from the relations
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u({x; f(x)=a})=p({x; g(x)=a})
and
—u({x; fx)= —a}=-p({x; 9g(x)=—a})

if f=g and a>0. _ '
If ¢=0, then (iii) is trivial. If c¢#0, then the assertion follows from (i) of

Lemma 7.
(iv) Let #(f Aa) be finite. Choose F, € ¥ with a € F; and such that for Fo F, we

have
|S(faa, F)—%(fra)|<e

f—fAa is a non-negative measurable function, hence by (i) of this theorem
F(f —fAa) exists. Choose F,e F* such that for any F> F, we have

S(f—faa,F)Zn inthecase S$(f—fra)=c
and
|F(f—fra)—S(f—fra, F)|<e if F(f—fra)<ow.

Let Fo=F,U(F,+a) and let F>F,. Then

S(f,F)=S(fra,F)+S(f—fra,F—a)=
Zn+9(fra)—e

if $(f —fAa)= and in the other case

IS, F)—$(f —fra)—F(fra)|=
=S|S(f—fra, F—a)—3(f—fra)| +
+|S(faa, F)—$%(fra)|=2e,

since F—a > F,. And so Jf exists and
If=I(frna)+I(f—fnra).

The proof for the infinite $(f Aa) is similar.
(v) Put a=0in (iv); then

If=FfA0)+IF(f—fAO)=F(—f )+ If =Ff - If".
For the second part of (v) it is sufficient to prove that Jf* and $f~ are finite. Let
F,e & be such that
|S(f, F)—9f|<e for FoF,.

Choose F with F-=F,.
Then by (ii) of Lemma 7 we have S(f, F) = S(f*, F) — S(f~, —F) = S(f*, F)
— S(f, —F,) and so
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S(f+, F*)=S(f*, F)=S(f~, —Fo)+ If +¢

for every Fe %, FoFo, F"=F;. Since $f*=sup S(f*, F"), we get Jf* <.

Fe%#

Since $(—f)= —Jf and f~=(—f)", we get that Ff~ is finite too.
Proposition 8. Let. f be an integrable function. Then
u({x; fx)=o})=p({x; f(x)=—0})=0.

Proof. We prove only u({x; f(x)=c})=0. If f is integrable, then by (v) of
Theorem 5 f* is integrable. Let F, = {0, n}. Then, since
{x;fr(x)=n}={x; f(x)==},
we get
n-u({x; f(x)Z0)) SS(F, F)SIf* <o,
hence

u({x; f(x)=o})=0.
For our latter considerations we shall need the following notion. An essential
supremum of f is
esssup f=inf {a=0; u({x; f(x)Za})=0}.
Proposition 9. Let f be a measurable function. If $f exists and a = ess sup f, then
If=F(fna).
Proof. If a =, then the proof is trivial. Let a be non-negative. The proof
follows by
{x;f(x)Zb}={x;(fra)(x)=b} if a=b

and
u{x; f(x)=b})=0 if b>a.

Proposition 10. Let f be a measurable function with S; € D, |f| = c and u(Sy) < .

Then f is integrable and |#f|=c -u(Sy).
Proof. Let |f|=c. Then f*, f"=c-xs,. By the monotomc1ty of ¥ and by (i) of

Theorem 5 f*, f~ are integrable and Jf*, Jf”=c-u(S;). The integrability of f
follows now by (iv) of Theorem 5. The last assertion of the proposition is
a conclusion of the mononicity of $ and the following inequality

—CcXs, =f=cxs,.
Proposition 11. Let f and |f| be measurable functions and let Jf exist. Then
|7fI=2f.
It |f| is integrable, then f is integrable too.
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Proof. Let Jf exists. Since —f, f=|f|, by the monotonicity of $ we get
+9f=J9f].

The following example is an illustration of the fact that the integrability of f does
not involve the integrability of |f| even if u is bounded.

Example 12. Let X =(—1, 0)u(0, 1), 2 =2%; let further u(A)=1if An(—1,
0) and AN(0, 1) are nonempty and u(A)=0 otherwise. Then u is a pre-measure
on 9.

Take f on X defined by f(x)=1/x. Then £,f=0 and $,|f| = .

Proposition 13. Let f and |f| be measurable functions. Let |f| =g, where g is an
integrable function. Then f is integrable.

Proof. The proof is a conclusion of Proposition 11 and the fact that [f| is
integrable. :

We give other properties of the integral in connection with the simple functions.

Proposition 14. If f is a simple function with the range F and Jf exists, then
JIf=S(f, F).

If D is a o-ring and u is a o-additive measure on 9 and f is a simple function, then

f.f=ffdu,

where | f du is the Lebesgue integral of the function f.

Proof. Suppose first that f=0. Let F,e€ % with F;oF.

Since {x; f(x)=c} = {x; f(x)=a}ifa=min {x e F; x=c}, in the case {x e F;
x=c}+#@and a =max F in the case {x € F; x =c} =0, we have S(f, F,) = S(f, F)
for F;oF and so

If=S(f, F).

The proof for a not necessarily positive function f follows by applying the result just
proved separately to f* and f~ and (v) of Theorem 5. The proof of the second part
is trivial.

Corollary 15. Let A, o A,>...o A, be measurable sets. Let c; be positive real
numbers and let f,=c; xa, (i=1, 2, ..., n). Then we have

Proposition 16. Let $f* or $f~ be finite. Then f is a limit of a sequence {f,}r-, of
simple functions and

If =lim,.5F,.

If f is non-negative, then f, may be taken non-negative and the sequence {f,} may
be assumed increasing.
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Proof. Suppose first that f=0. It follows from (i) of Theorem 5 that Jf exists.
Let {G.} be a sequence of sets from % with

lim,S(f, G.) = J9f.
We write
F.=UJGu{i/2"; i=1,2,...,n-2")
j=1
and put
fo=fF,-

Clearly f, is a non-negative simple function and the sequence {f.} is increasing. If
f(x)<n, then
0=f(x)—f.(x)=1/2".

If f(x)= oo, then f,(x)=n and so

lim,f,(x)=f(x) forevery xeX.
Moreover

If =lim,S(f, G,)=1im,S(f, F,) = lim,9f, = 4.
lim,9f, = 9f.

Hence

The proof for a not necessarily positive function f follows if we apply the result just
proved separately to f*, and f~ and from (v) of Theorem 5.

Corollary 17. If f is a non negative &-measurable function, then
Sf=sup {Fg ; g=f, g isasimple function}.

The simple conclusion of the second part of Proposition 14 and the last corollary
is the following:

Corollary 18. If @ is a o-ring and u is a o-additive measure on %, then

= f du

for every Lebesgue u—% — integrable function f.

§ 4. Limit theorems

A pre-measure u on & is called continuous iff it has the following two
properties :
(i) A,/ A>B (A,, Be®) implies limu(A,) = u(B).
(ii)) A,\\A cB (A,, Be9®), u(A,)<o implies limu(A,) = u(B).
It is easy to see that if u is a continuous pre-measure on &, then A,, A €%, A,/ A
or A,\A (u(A,) <) implies u(A,)—>u(A).
In this paragraph we shall assume that u is a continuous pre-measure.
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Proposition 19. Let {f.} be the sequence of non negative integrable functions
with 9f, =c and let f, /'f. Then f is integrable $f =c and

If = lim, 5, .

Proof. Let £>0. Let F={0=a0<a,<...<ak}e?j7. Choose 6 with

and éc/(a1—6)<g
0<286<min {a;—a;-1;j=1,2, ..., k}.

Denote by=0, b;=a,—96 (i=1, 2, ..., k). From

Un{x; fi(x)Za -6} 2 {x; f(x)Za}

and from the continuity of u we get -
S(f, F)=;(a.- —a_Ju({x; f(x)=a})=
k
=lim, > (a —a_Ju({x; fu(x)Za, —8}) =
i=1

=lim, [i(b,- =bi_Ju({x; f.(x)=b})+

i=1

+o-u((x; 0 Za-8) | =

<lim,Jf, + a—i_s_—é lim, f, =lim,f, + €.
1

From this we have

Jf = sup S(f, F)=lim,Jf, +¢.

Fe#
Since € was arbitrary, we get
If =lim,9f,.

The opposite inequality follows by the monotonicity of $.
For the proof of the Lebesque-like theorem we shall need some lemmas.

Lemma 20. Let f be a nonnegative integrable function, then

lim $(f —fAA)=0.

Ao

Proof. Let Fe%, £>0 and let $f—-S(f, F)<e. Clearly S(f, F)<o, then
r=fAa=f. By the monotonicity of $ we get

S(f, F)=Ife=I(frA)S I,
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and so
FSf—frAA)=Ff-F(FANA)=If-S(f, F)<e,

which finishes our proof.
Lemma 21. Let f be a nonnegative integrable function; then
lin(l] I(fra)=0.

Proof. It is enough to show that lim, $(fAa,)=0 if a,\0.

Let a,\\0, then the sequence 0=f, =f — f Aa, is increasing, f. /'f and If, = Jf <
oo, by the integrability of f.
From Proposition 19 it follows that lim, $f, = 9f. Since

I(fran)=If = If,,

we get

F(fra,)—0.

Proposition 22. Let {f.} be a sequence of nonnegative integrable functions. Let f
be a measurable function and let f,"\f.

Then f is integrable and
lim, $f, = Jf.

Proof. Since 0=f=f,, we get that f is integrable (see Proposition 13).
Since

|‘¢fn _ffl = |‘¢(fn/\a)+
+ I —fAA)—F(FAA)=IF(f—fAA)|=
SIS AA) - FFAA)+ I [ AA)+HI(f—fAA)=
=|S(f.AA)=I(fra)|+2-F(fi—firA),
from the fact that lim J(fi—fiAnA)=0 it follows that we may assume that the

functions f, and f are bounded with a number A.
Since

|9fo = 1= |I(fa — funa) = I(f — fAa)| +29(fina),
Liir‘} F(fina)=0

and since

u({x; (fi=fina)x)=th=u({x; filx)Za+1}) =

=(a+t)(a+u({x; filx)Za+t})=a"'If
for every >0, we may and do assume that there exists a real K such that
p{x; fix)=t})=K<owo for t>0.
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Denote

g.(t)=u({x; fa(x)=t})
and put

g@)=p({x;f(x)=¢}.

Then g, and g are real non-negative monotone functions defined on (0, ), they
vanish on (A, ) and they are bounded with K. By the continuity of u and by the
fact that f,\.f we get g,\.g. Let £>0. Choose F,={0=a,<a,<...<a,} with
a, =A and such that for F o F, there holds: |#,f —S(f, F)|<&/2. Choose a § >0
such that for every partition A of the interval (0, A) with the norm less then &

A
there holds f g(t)dt — Z(d, A)| <e/2, where 2(g, A) is a Riemann integral
0

sum of g with respect to the partition A. Let Fo F, be such that Fn ({0, A) is
a partition of (0, A) with the norm less then 8. Then

Sf- LAg(t) dt. =

2f=SU.F)+5¢. - [ g & =

= lf,,f—S(f, F)+X(g, Fn {0, A))—jAg(t) dr|<e

because S(f, F)=3(g, Fn(0, A)). Thus we get

f,.f=LAg(t) dr.

Similarly

A
SSn =J g.(t) dt.
0
Since g.\\g, we get

Sufn= J; Ag,.(t) dt\jOAg(t) dr=4,f.
And so
lim, $.f, =%.f.

Theorem 23. Let {f.} be a sequence of integrable functions.

Let f, /'f, where f is a measurable function and Jf,, = c < = for every n. Then f is
integrable and

Ifn /It
Proof. f, /'f implies f; 7f* and f,\,f". Since
Ifn=If + Ifn =SIf + I 1 =c+ Ifi <,
from Proposition 19 $f, 7 $f*. Similarly by the last proposition $f, \\.f , and so
lim, 9, =lim, $f; —lim, 9f; = 9f* — f~=If.
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In the last two theorems of this paragraph we shall assume that & is a g-lattice.

Theorem 24. If {f,} is a sequence of measurable functions whfch converges
pointwise to a measurable function f and if g is an integrable function with [f.|=g
forn=1, 2, ..., then f is integrable and

lim, f, = 9f.

Proof. It follows from Proposition 13 that the functions f, and f are integrable.
We put

h.=/\f and g.=VFf.

From Proposition 4 we get that A, and g,, are measurable. Clearly 4, =f, =g., and

lim, A, =liminf, f,=f
and similarly
limn grl =f'

The functions A, and g, are integrable and A, /'f <g.. By the last theorem

Sh, / If —Fg..
From this and from the relation
Fh, = I, = 9g..
It follows that
lim, Jf, = Jf.

Theorem 25. If {f,} is a sequence of integrable functions with f, = g, where g is
an integrable function, for which

lim inf, $f,=c,

then the function f defined by
f(x)=liminf, f,(x)

is integrable and
Sf =lim inf,, Sf,.

Proof. We let g« =fx Afcsan...; then fy =g, =g and so g, —f and g = Jg, =
Sf, for n=k. Hence g«.”'f and {Fg.} is upper bounded. Thus by Theorem 23

Jf =lim, $g, =liminf, Jf,.
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HUHTETPAJI 1JIs1 TIPEOMEPBI
Au Hunowm
Pes3ome

B pabote onpeneneH MHTerpanb Npu Momolud mpeaMmepbl. [IpuBeneHo 0600LIEHHE HEKOTOPBIX
pe3yNbTaTOB M3BECTHBIX B Clyyae uHTerpana JleGera.
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