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LEXICOGRAPHIC PRODUCT DECOMPOSITIONS
OF PARTIALLY ORDERED QUASIGROUPS

MiLaN DEMKO

(Commaunicated by Tibor Katriridk )

ABSTRACT. In this paper there are investigated some properties of partially or-
dered quasigroups (briefly: p.o. quasigroups) and lexicographic product decompo-
sitions of p.o. quasigroups are studied. It will be shown that for a p.o. quasigroup
Q with an idempotent element A the assertion analogous with Theorem 15 in
[JAKUBfK, J.: Lezicographic products of partially ordered groupoids, Czechoslo-
vak Math. J. 14(89) (1964), 281-305 (Russian)] is valid, i.e. arbitrary two lexico-
graphic product decompositions of a p.o. quasigroup @ with a finite number of
directed lexicographic factors have isomorphic refinements.

1. Introduction

Lexicographic product decompositions of a certain type of partially ordered
groupoids, so-called u-groupoids, were discussed by J. Jakubik in [6]. He
proved that any two lexicographic product decompositions of an u-groupoid
G with a finite number ([6; Theorem 15]) but also with an infinite number
([6; Theorem 35]) of lexicographic factors have isomorphic refinements. In this
paper we will study lexicographic product decompositions of a partially ordered
quasigroup @ with an idempotent element h. Here we will prove the following
assertion analogous with [6; Theorem 15]: Arbitrary two lexicographic product
decompositions of the partially ordered quasigroup @ with a finite number of
directed lexicographic factors have isomorphic refinements. Let us remark that
a partially ordered quasigroup @ with idempotent element h need not be an
u-groupoid; conversely, an u-groupoid, in general, need not be a partially ordered
quasigroup.

2000 Mathematics Subject Classification: Primary 06F15, 20N05.
Kev words: partially ordered quasigroup. directed quasigroup, lexicographic product
decomposition.
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Fundamental results on lexicographic product of linearly ordered groups have
been proved by Mal’cev [9]. Further, lexicographic product decompositions of
some types ordered algebraic structures were dealt with in the papers [5], [7]. [8].

2. Preliminaries

We recall that a quasigroup (@, -) is defined (cf., e.g. [3]) as an algebra having
a binary operation a - b which satisfies the condition that for any a, b the
equations a-x = b and y - a = b have unique solutions z and y. A quasigroup
having an identity element 1 (i.e., such that 1-z =z-1=1z foreach z € Q )
is called a loop. If (Q,-) is a quasigroup, then we define a/b = ¢ if and only if
a = c¢- b; in this case we also put c\a =b. For any a,z € Q weset L,z =a-,
R,z =x-a. Then L, and R, are called left translations or right translations,
respectively. We have L;'z = a\z, R;'z = x/a. The group generated by all
left and right translations of (Q,-) is called the multiplication group of (Q,-)
and is denoted by G(Q, ).

We will say that two quasigroups (Q,o), (Q,-) are isotopic (cf., e.g. [3])
if there exist permutations a, 3,7 of Q such that y(z oy) = az - By for all
z,y € Q. In such case we will write (o) = (-)(®%7) and say that (Q,0) is an
isotope of (Q,-). It is well known (see, e.g. [3]) that if (Q,-) is a quasigroup and
(o) = () BaHLeND) | where a,b € Q, I is the identity permutation of Q, then
(Q,0) is a loop with the identity element ba.

The direct product Q; x @, of quasigroups Q,, @, is defined in a natural
way, i.e. @, x @, is the set of all ordered pairs (¢,,q,), q; € Q, g, € Q,, with
the operation defined componentwise. The concepts of a normal subquasigroup,
normal congruence on a quasigroup are used by definitions of [3]. Let (Q,,-) and
(Q,,0) be quasigroups. Notation @, = ), means that there exists isomorphism
of (Q,,-) into (Q,,0). :

For the sake of convenience, we summarize here some results which will be
frequently used and quoted. These results had been proved by Belyavskaya
in [1] and later quoted in [2]. We will formulate them according to [2].

Let (Q,-) be a quasigroup with an idempotent element h. Then
Al) (Cf. [1; Theorem 4, Lemma 4]) Q@ = @, x Q, if and only if there exist

normal subquasigroups A, B of Q such that A-B=Q, ANB = {h}.
Then Q/A=Q,= B, Q/B=Q, = A.

A2) (Cf. [1; Theorem 3]) Let A, B be normal subquasigroups of Q, h €
ANB.Then A-B =@ and AN B = {h} if and only if each element
q € @ can be uniquely written in the form ¢ =a-b, a € A, b € B.
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A3) (Cf. [2; Lemma 1]) Let A, B be normal subquasigroups of @ and let
A-B=Q, AnB={h}.If a;,a, € A, b,,b, € B, then

(a1b;)(azby) = Ry (ah - agh) - Ly (hby - hby) . (2.1)

A4) (Cf. [2; Chapt. 1, Corollaries 1, 2]) Let A, B be normal subquasigroups
of Q suchthat A-B=Q, ANB={h}.Let a€ A, b,b; € B. Then

L,(ab) = R;'L,Rya-L,b, R,(ab) = Rya-L;'R,L,b, (22)
L;'(ab) = Ry'Ly'Rya- L',  R;'(ab) = Ry'a- L;'R;'Lyb, (2.3)

ab-b, =ah-L;'(hb-b,),

. . (2.4)
b-ab, = R; 'L, Rya-L;*(b-hb,).

3. Some properties of partially ordered quasigroups

DEFINITION 3.1. (Cf,, e.g. [4; p. 297].) A nonempty set ) with an operation -
and arelation < is called a partially ordered quasigroup (briefly: p.o. quasigroup )
if
(1) (Q,-) is a quasigroup.
(ii) (@, <) is a partially ordered set.
(iii) For all z,y,a € Q, = < y if and only if az < ay if and only if za < ya.

A partially ordered quasigroup will be denoted by (Q,-,<) (or, if no mis-
understanding can occur, by Q). If (@,-) is a loop, then the p.o. quasigroup
(Q,-,<) is called a partially ordered loop (p.o. loop). Let h be an arbitrary
element of Q. The set U, = {x € Q : = > h} is said to be h-cone of p.o. quasi-
group @ (cf. [10; Definition 2]). The set {z € @ : = < h} will be denoted by
Up. If (Q,-,<) is a p.o. loop and h is an identity element of (), then U will be
used instead of U, and U* instead of Uy, respectively.

Let (Q,,-,<) and (Q,,0,<’) be p.o. quasigroups. Notation Q; =, @Q,
means that there exists isomorphism of (Q,,-) onto (Q,,o) which is also iso-
morphism of the partially ordered set (Q,, <) onto (Q,, <’). In such case it will
be said that p.o. quasigroups are o-isomorphic.

LEMMA 3.1. Let (Q,-,<) be a p.o. quasigroup and let =, y be arbitrary el-
ements in Q. Then z <y if and only if z/a < y/a, a\z < a\y, a/y < a/z,
y\a < z\a, where a is an arbitrary element in Q.

Proof. Since z = a- (a\z) = (z/a) -a and y = a- (a\y) = (y/a) - a, by
Definition 3.1 we have z < y if and only if z/a < y/a, a\z < a\y. Further,
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z <y if and only if (a/z) = < (a/z)-y if and only if a < (a/z) -y if and only
if (a/y)-y < (a/z)-y if and only if a/y < a/z. Analogously, z < y if and only
if y\a < z\a. O

LEMMA 3.2. Let (Q,-,<) be a p.o. quasigroup. Let (o) = (-)(®B7)  where
a, 3,7 € G(Q,-). Then (Q,0,<) is a p.o. quasigroup.

Proof. This is an immediate consequence of Lemma 3.1. O

A p.o. quasigroup (Q,-,<) is said to be directed, if (@, <) is directed set
(i.e. for arbitrary elements a,b € Q there exist ¢,d € @ such that a,b < ¢ and
d < a,b). By the same method as in the case of p.o. groups (cf., e.g., [4; p. 290,
Lemma 1]) we obtain:

LEMMA 3.3. A p.o. loop (Q,-, <) is directed if and only if each element q € Q
can be written in the form q=u-u*, where u e U, u* € U*.

A generalization of Lemma 3.3 (and also of [4; p. 290. Lemma 1]) is the
following lemma:

LEMMA 3.4. Let (Q,-,<) be a p.o. quasigroup and let h be its arbitrary el-
ement. Then the p.o. quasigroup (Q,-,<) is directed if and only if each element
g € Q can be written in the form g =u-u*, where u € U, u* € U} .

Proof. Assume that a p.o. quasigroup (Q,-,<) is directed and ¢ is an
arbitrary element in . Then there is ¢ € Q@ such that ¢ < ¢, hh < c. There
exists ¢ € () such that ¢ = zh. From g < zh and from hh < zh we get z\q < h
and h < z. Since ¢ = z - (£\q), we can conclude that ¢ has the indicated
form. Conversely, assume that each element ¢ € () can be written in the form
g=u-u*, ueU,, u" €U;. Let (o) = ()LD Then (Q,o0) is a loop with
identity element 1 = hh (see Section 2). By Lemma 3.2 (Q, 0, <) is a p.o. loop.
Since each element g € () can be represented in the form ¢ = R,uoL,u*, where
1< R,u and L,u* <1, by Lemma 3.3 the p.o. loop (Q, 0, <) is directed. The
p-o. quasigroup (Q, -, <) is obviously directed as well. a

Let (Q,-, <) be a p.o. quasigroup. Suppose that (A,-) is a subquasigroup of
(®@,-). Then the p.o. quasigroup (4, -, <) will be called a p.o. subquasigroup of
the p.o. quasigroup (Q,-,<). We write A instead of (4,-, <) if no misunder-
standing can occur. Let (4, -, <) be a p.o. subquasigroup of @ and let h be any
element in A. Thesets {r € A: h <z} and {x € A: z < h} will be denoted
by AZ and A, , respectively.

LEMMA 3.5. Let A, B be p.o. subquasigroups of a p.o. quasigroup Q. Let h €
AN B. Then

(i) Af C By if and only if A; C B;,,

(ii) If A is directed, then A} C B implies A C B.
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Proof.

(i) Let a€ Ay ,ie. a€ A, a <h. Then h/h < h/a, hence (h/a)-h € A} .
From A} C B;f we have (h/a) - h € B, hence a € B. Since a < h, we get
a € B, . Analogously we can prove that A, C B, implies AZ C B,*L'.

(ii) Since A is directed, by Lemma 3.4 we have that each element a € A can
be written in the form a = u - u*, where u € A], u* € A; . From Af C B}
and from (i) it follows that u € B,f, u* € B, , hence a = u - u* belongs to B.

a

4. Lexicographic product decomposition
of p.o. quasigroups

In this section we will study lexicographic product decompositions (with a
finite number lexicographic factors) of a p.o. quasigroup @ with an idempotent
element h.

Let A;, i =1,2,...,n, be p.o. quasigroups. Let C' be the set of all ordered
n-tuples (a,,...,a,), a; € A,. The binary operation (denoted by -) defined
componentwise. For distinct elements (a,,...,a,) and (b;,...,b,) in C we put
(ay,...,a,) < (b,...,b,) whenever a;, < b, for the first element i =1,2,...,n
such that a, # b,. It is a routine to verify that (C, -, <) is a p.o. quasigroup. The
p.o. quasigroup C that arises in this way will be called lexicographic product

n

of the p.o. quasigroups A; and it will be denoted by {‘1 A,. By [Ao B] we will

denote the lexicographic product of two p.o. quasigroups A, B.

Let @ be a p.o. quasigroup with an idempotent element h. Let there ex-
ist p.o. subquasigroups A, B of @ which contain the element h and let the
following conditions be fulfilled:

C1) For each ¢ € @ there exists exactly one pair (a,b) such that a € A4,
beB and g=a-b.

C2) If ¢,,9, € Q, q; = a;b;, g, = ayb,, a;,a, € A, b, b, € B, then
a0 0 = By (Ryay - Ryay) - Ly (Lyby - Lyby).
C3) Under the notation as in C2), the relation ¢; < g, is valid if and only if
either a; < a, or a; =a, and b, <b,.
In such case we will write

Q= (AoB),. (4.1)

The mapping
¢:Q—[Ao B],  ¢(ab) = (Rya, Lyb), (4.2)
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where a € A, b € B is an o-isomorphism. In fact. from C1) it follows that
¢ is a bijection. Further, ¢(a,b,) - ¢(ayb,) = (Rya,.L,b,) - (R,ay. Lyb,) =
(Rya, Rya,, Lyby-Lyby) = o(Ry N (Rya,-Rya,)-Ly ' (Lyb, 'Lp,by)) = p(a; by asb,).
Finally, a,b;, < ayb, if and only if (either a; < a, or a; = a, and b, <b, if
and only if (either R, a, < R,a, or Rya; = R,a, and L, b, < L,b, 1f and only
if (R,ay,L,b,) < (R,a, Lyb,). Thus p is n oiomorphiriardvc s v th
4.1) d fines the le 1cographic produc dccompo 1ition fthep qu -1c o

with an idempotent element h.

LEMMA 4.1. Let (Q. <) b apo quasigroup The f lourn o dtior 1.
(2) are equivalent

(1) Q=(AoB),.

(2) A, B are normal subquasigroups of ) such that
(i) AnB={h},
(i) Q=4-B,
ii) a;b; <ayby, a;,a, € A, by,b, € B if and only if either a, < a,
or a; = a, and b; <b,.

(iii

Proof. Let @ = (AoB),. Let O be arelation on @ such that a,b, © a,b,
if and only if b, = b,, where a,,a, € A, b;,b, € B. In view of C1) and C2) it
is easy to verify that © is a normal congruence on Q. If £ © h, then = = ah.
a € A, hence x € A. Conversely, each element z € A can be written in the
form z = (z/h) - h, where (z/h) € A, h € B; thus  © h. This proves that A
is a class of the normal congruence © which contains the idempotent element
h. Therefore A is a normal subquasigroup of Q. Analogously, B is a normal
subquasigroup of (). Now, for completing the proof, it suffices to use assertions
A2), C1) and C3). The converse follows from A2), A3). O

LEMMA 4.2. Let Q, Q,, Q, be p.o. quasigroups and let h be an idempotent
element of Q. Then the following are equivalent:

(1) Q=,[Q,0Q,].
(2) Q= (AoB), suchthat A= Q,, B= Q,.

Proof. Let ¢: [Q, 0 @,] = Q be an o-isomorphism. Let h = ¢(r,s),
T € Q,, s € Q, (it is obvious that r and s are idempotent elements) and let
Q,={(g3): g€ Q,}, Q,={(rq: g€ Q,}. It is easy to verify that Q,
Q:z are,normal subquasigroups of [Q, o @,] such th.at Q} sz = [Ql °Q,] 'and
Qi NQ,={(r,s)}. Put A=p(Q}), B=¢(Q}). Since ¢ is an o-isomorphism,
we can conclude that A, B are the normal subquasigroups of @ such that
A-B =Q and AN B = {h}. Finally, we will show that the condition (iii) in
Lemma 4.1 is valid. From A2) in the Section 2 it follows that each element g € Q
can be uniquely written in the form ¢ = ab, a € A, b € B. Let ¢, = a,b,,
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gy = Gyb,, a;,a, € A, b;,b, € B. Since ¢ is an o-isomorphism, there exist
(uq,u,y), (vy,v,) belonging to [Q, 0Q,] such that ¢, = p(u;,u,), ¢, = ©(vy,V2) -
We can write ¢, = @(u;,u,) = @[(u,/r,8) - (1,8\uy)] = @(u,/7,s) - o(r, $\Us)
and analogously g, = ¢(v,/7,8) - (7, s\v,). From A = (Q}) and B = ¢(Q5)
it follows that o(u, /r,s), (v, /r,s) € A and ¢(r,s\u,), @(r,s\v,) € B. Since
¢, 9, can be uniquely written in the form ¢, = a;b;, ¢, = a,b,, we have
a; = ¢(u,/1,9), ay = p(vy/1,8), by = p(r,8\uy), by = (r, s\v,). Now, using
that ¢ is an o-isomorphism we obtain a, < a, if and only if u; < v, and b; < b,
if and only if u, < v,. Thus ¢; < g, if and only if either a, < a, or a, = a, and
b, < b,. By Lemma 4.1 we conclude that Q = (Ao B),,. Finally, from Q} =, Q,
and Qf =, Q, it follows that A =_ @, and B = Q,.

Conversely, if @ = (AoB),, then @ = [AoB].From A =  Q, and B =, Q,
we get [Ao B] = [Q, 0 Q,] and hence Q =, [@Q; 0 Q,]. a

COROLLARY 4.3. Let Q = (Ao B), andlet g # h be an idempotent element
in Q. Then there ezist p.o. quasigroups C, D such that Q@ = (C o D)g and
C= A, D= B.

Proof. From (4.2) it follows that ¢: (a,b) — R;'a- L;'b is an o-iso-
morphism of [A o B] onto Q = (Ao B),, . For completing the proof it suffices to
use Lemma, 4.2. O

Let Q = ((4; 0 Ay), 0 43), - From (4.2) and C2) it follows that
¢1: (a,a5)a; = (Ry(a,a,),Lya,) = (Ryay - Ly Ry, Lyay, Lyas),

where a;, € A, for i =1,2,3, is an o-isomorphism Q onto [(4; 04,), 0 A3] .
Since p,: a,a, = (R,a,, L,a,) is an o-isomorphism (A; o A,), onto [A4; 0 4,],
we get

¥3: (a105)a3 = (pp(Ryay - Ly Ry Lyay), Lyag) = ((Rjay, Ry Lyay), Lyay)
is an o-isomorphism @ onto [[4, o A,] o 4;]. Hence
¢: (a185)a; — (Riay, R, Lyay, Lyas) (4.3)
is an o-isomorphism @ onto i‘l A,. Analogously,
¢: ay(aya5) = (Ryay, LyRyay, Liag) (4.3")
is an o-isomorphism of Q = (A4, o (4, 0 4;),), onto i§1 A;.

LEMMA 4.4. Let Q = ((A; 0 A,), 0 A3), . Then
(i) A;NnA,=A,NA; =A, NA; ={h},
(i) A;, A,, A; are normal subquasigroups of Q,
(iii) (A, -Ay) A3 =A4,-(4,-4;).
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3

Proof. Let Q = ((4, 0 4,), 0 4;), and let p: Q — -ElAi be the iso-
morphism defined by (4.3). Then @(A;) = {(a;,h,h) : a; € A;}. ¢(4,) =
{(h,ay,h) : ay € Ay}, ¢(A;) = {(h,hya;): a; € A,}. Since p(A;) Np(A,)
= p(A;) Np(4;) = ¢(4)) Np(4y) = {(h,h,h)} = {p(h)}, we have A, N A, =
A,NA; = A, N A; = {h}. Thus (i) holds. It is a routine to verify that the
relation © defined by the rule (a,,a,,a;) © (a3,a},a;) if and only if a, = a)

3
and ay = a3 is a normal congruence on ifl A, and the subquasigroup ¢(4,) isa

class of the normal congruence ©. Therefore ¢(A,) is a normal subquasigroup of

3 3
.El A, . Analogously ¢(A,), ¢(A;) are normal subquasigroups of 'E1 A, . Hence
A, A,, A, are normal subquasigroups of @, i.e. (ii) is valid. Finally, from
3
(p(4)) - @A) - 9(Ag) = o(A4,) - (9(4;) - 9(Ag)) = T A, we have (ii). O
LEMMA 4.5. Q = ((4; 0 4,), 0 4;), if and only if Q = (A} o (A;04,),),.
Proof. Let @ = ((4, 0 4,), 0 A,), . Let us denote E = A, - A; and let
3
w: Q — _E‘l A, be an o-isomorphism defined by (4.3). Then ¢(E) = ¢(A,-4;) =
©(Ay) - p(A3) = { (h,ay,a5) : a, € Ay, a; € Ay}. Since (E) is a normal
subquasigroup of F A; and ©(4,), p(A,) are normal subquasigroups of ¢(E).
FE is anormal subquasxgroup of @ and A,, A; are normal subquaslgroups of E.
From Lemma 4.4(i) it follows that A, N A; = {h}. Further, let a,ya,,aba; € E
(a;,a; € A,). Since a,,al, € (4, o A2)h and ay,a; € A;, from the assumption
we get aya, < agay if and only if either a, < a5 or a, = a; and ay < aj. Thus
by Lemma 4.1 we conclude that E = (A4, 0 4;),.

From Lemma 4.4(iii) it follows that Q = A, - E. Since ¢(4;) N p(E) =
{(h,h,h)}, A, N E = {h}. For arbitrary elements a, € 4,, a, € A,, a; € A,
we can write a,(aya;) = [(a,/h) - h] - (aya3). Since a,/h.a, € (A, 0 A,),
and h,a, € A;, then from the assumption of the lemma and by C2) we have
al(a2a3) R, '(a, - Rya,) - Ly'(h - L,a,). Consequently in view of (2.3) we
obtain

a,(aya;) = (R;'a, - L;'R; 'L, Rya,) - Lya,. (4.4)

for all a; € 4, X a, € A,. a; € A;. From (4. 4) it follows (we take R,a, instead
of a;, R} 1L R,L,a, m%tead ()f a, and Lh a, instead of a;) -

Ra, - (Rh Ly, 'R, Lya,- Ly ay) = (ajay)a, (4.4")

According to (4.4) and from the assumption we obtain a,(a,a;) < af(ahay) if
and only if (R;*a,-L;*R; 'L, R, a,)-Lyay < (R 'a} Ly 'Ry 'L, R, al)- Lyal
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if and only if either a; < a} or a; = a] and aya; < alaj. Thus, by Lemma 4.1

we conclude that @ = (4, 0 E), = (4;0 (4,0 Aa)h)h- Analogously, using
an o-isomorphism defined by (4.3') and by (4.4'), we can prove that Q =
(A, 0 (Ay0A4,),), implies Q@ = ((4; 0 4,), 0 43), . O

In view of Lemma 4.5 we can write Q = (A4; o A, 0 A,), instead of Q =
((A} 0 Ay), 0 A;), - Analogously, by induction we can write

(A 0A,0A50:-04, 104,), = (((--- (4, °A2)h°A3)h°"'°An—1)h OAEI4)%)'

A p.o. quasigroup A is said to be the lexicographic factor of 7 with an
idempotent element h, if there are p.o. subquasigroups H, D of @ such that
@ = (H o Ao D), (for an analogous notation in the theory of partially ordered
u-groupoids cf. [6; Sect. 6]). Let us remark that @ and {h} are lexicographic
factors, because Q = ({h} o Qo {h}), and also Q = (Q o {h} o {h}),.

Let @ =(A;0A,0A4;0---0A _,0A),. Then, using (4.5) and (4.2), we
get by induction that .

P! ( o ((a1a2)a3) te an—l)an
— (R 'ay, R 2Lyay, Ry Lya,,...,RyLya, 1, Lya,)

is an o-isomorphism (A4, 0 A,0 A;0---0A _, 0A ), onto ifl A;. In such
case we say that Q = (4, 0 A, 0---0A ), defines the lexicographic product
decomposition of ) with the finite number of lexicographic factors.

From Lemma 3.5 it follows that if each lexicogréphic factor of a p.o. loop
Q is directed, then @ is an u-groupoid. Therefore all results which hold for
u-groupoids (see [6]) also hold for these p.o. loops. Now, we will show that
some assertions analogous to those in [6] valid for u-groupoids can be proved for
p-0. quasigroups.

LEMMA 4.6. If Q = (Ao B),, then B is a convez p.o. subquasigroup of Q.
Proof. This proof is analogous to the proof in [6; Sect. 7]. O

LEMMA 4.7. Let Q = (AoB),, Q = (CoD), be two lezicographic product de-
compositions of a p.o. quasigroup Q .'Let A, B,C, D are directed subquasigroups
of Q. Then
(i) BCD or DCB.
(ii) If D C B, then B = ((BnC)oD)h.
(iii) If A=C, then B=D.

Proof.
(i) Let D ¢ B. Then, by Lemma 3.5, D} ¢ B} and D; ¢ B; . Now, in
the same way as when proving 9) in [6] we get B C D.
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(ii) Let D C B. First, we will prove that B = (BNC)-D. Each element b € B
can be uniquely represented in the form b = c¢d, c€ C, d € D. Since D C B,
we have d € B and hence ¢ € B. Thus c € BNC, therefore b € (BNC)-D. We
have B C (BN C)-D. The converse inclusion is trivial. From the assumption of
the lemma it follows that BN C and D are normal subquasigroups of @; thus
they are normal subquasigroups of B. It is clearly that (BNC)ND = {h}. For
completing the proof we need show that the condition (iii) from Lemma 4.1 is
valid. Let b, = ¢,d,, b, = c,d,, ¢;,c, € BNC, d;,d, € D. Since Q = (CoD),.
b, <b, if and only if either ¢, < ¢, or ¢; = ¢, and d; < d,; thus (iii) is valid.
Therefore by Lemma 4.1 we can conclude that B = ((BNC) o D) h

(iii) From (i) and (i) we get either B = ((BN A) o D), = ({h} o D), or
D= ((DNC)oB), = ({h}oB),. Hence B=D. O

Let @ = (Ao B),. From Lemma 4.1 it follows that A, B are normal sub-
quasigroups of @ such that AN B = {h}. Let Q/B be a set of all classes zB,
x € @, with the operation zB - yB = R;I(ha -R,y) - B. Then Q/B is a
quasigroup (see e.g. [3]). Every class B contains exactly one element of A. In
fact, let a,0’ € ANzB and let = a;b,, a; € A, b, € B. Then from (2.4) we
have a = a;b, -b=ayh- L (Lyby -b) and o' = ayb, -V =ah- L (L,b, - V),
where b,b’' € B. Since, at the same time a = (a/h)-h and a’ = (a’/h)-h, we get
a;h = a/h and a;h = a’/h. Hence a = d'. Finally, if z = a,b,, then by (2.4),
z - (L,b\h) = a;h-h, hence = - (L,b\h) € ANzB, therefore ANzB # (.

In view of the assertion above we can write Q/B = {R;l(a) “B: ae€Ad}.
Let < be a relation on the set Q/B which is defined as follows: R;'(a,)- B <
R;l(az) - B if and only if a; < a,. It is a routine to verify that (Q/B,-,<) is
a p.o. quasigroup. The mapping ¢(a) = R; '(a) - B is an o-isomorphism of A
onto Q/B.

LEMMA 4.8. Let Q = (Ao B), and Q = (C o B),. Then there erists an
o-isomorphism ¢ of A onto C such that ¢(h) =h.

Proof. In view of the assumption, each element a € A can be uniquely
written in the form a = R;l(c) -b, where c € C, b € B. Let ¢ be a mapping
of A into C such that ¢(a) = ¢ whenever a = R, '(c) - b. The map ¢ is a
composition of two o-isomorphisms:

¢1: A= Q/B; ¢,(a) = R;'(a) - B,

0y Q/B — C; ¢ (R; (a) - B) = ¢, where c € R;'(a)-B.

Therefore ¢ = @,¢, is an o-isomorphism of the quasigroup A onto quasi-
group C'. Clearly, ¢(h) = h. O

Let
Q_—_(AloA?O--'OAn)h (46)
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and suppose that there are given lexicographic product decompositions
A;=(Aj 0400 A,
for each ¢ = 1,2,...,n. Then according to Lemma 4.5 and by (4.5) we can write
Q= (A 04,0 0A; 004, ), (4.7)

We will say that the lexicographic product decomposition (4.7) is a refinement
of (4.6). Further, let

Qz(BloBzo-uoBm)h. (4.8)
The lexicographic product decompositions (4.6) and (4.8) are said to be isomor-
phic, if m =n and A; and B, are o-isomorphic for all i =1,2,...,n.

THEOREM 4.1. Two lezicographic product decompositions @ = (A; o ---
04 ), and Q = (B;o---0B, ), , where A|,..., A, By,..., B, are directed
subquasigroups of p.o. quasigroup @, have isomorphic refinements.

Proof. We prove the theorem by induction on n +m, n +m > 2 (for
an analogous proof cf. [6; Theorem 15)). It is clear for n + m = 2. Let n+m
> 2. According to Lemma 4.7(i) we can suppose without loss of generality
that A, C B,,. Then, by Lemma 4.7(ii) we have B,, = (E o A,),, where
E =B, ,N(AjoAyo---0A, ,),. Since E is the first lexicographic factor
and B,, = (E o A,), is directed, then E is also directed. From Q = (B; o
B,o---0oB, _0Fo0A ), =(A 0A,0---0A), and by Lemma 4.8 we have
(ByoByo---0B, j0oE), = (Aj0A,0---0A _,),.By assumption of induction
we can conclude that the theorem is proved. O
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