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COMPLEMENTARILY DOMATIC NUMBER
OF A GRAPH

BOHDAN ZELINKA

The domatic number of a graph was introduced by E. J. Cockayne and S. T.
Hedetniemi [1]. Further a lot of variants of this concept were introduced and
studied, e. g. the total domatic number [2], the connected domatic number [3]
etc. Here we shall introduce a new variant of the domatic number, namely the
complementarily domatic number. First we recall the definition of the domatic
number.

Let G be an undirected graph, let D be a subset of the vertex set V(G) of G.
The set D is called dominating in G if to each vertex xe€ V(G) — D there exists
a vertex ye D adjacent to x. A domatic partition of G is a partition of V(G), all
of whose classes are dominating sets in G. The maximum number of classes of
a domatic partition of G is called the domatic number of G and denoted by d(G).

Now we turn to the definition of the complementarily domatic number. Let
again D be a subset of V(G). The set D is called complementarily dominating if
to each vertex xe V(G) — D there exist vertices ye D, ze D such that y is
adjacent and z is non-adjacent to x in G. A complementarily domatic partition
of G is a partition of V(G), all of whose classes are complementarily dominating
sets in G. The maximum number of classes of a complementarily domatic
partition of G is called a complementarily domatic number of G and denoted by
d (G).

pNote that a complementarily dominating set of G is simultaneously a domi-
nating set of G and a dominating set of its complement G.

The following propositions are clear from the definition.

Proposition 1. Let G be a graph, let G be its complement. Then d,(G) = dq,(G).

Proposition 2. Let G be a graph with n vertices. Then d,(G) < n/2.

Proposition 3. Let G be a graph, let G be its complement. Then
d.(G) < min (d(G), d(G)).

In [1] it was proved that d(G) < 8(G) + 1 for any graph G, where §(G) is the
minimum degree of a vertex in G. The following proposition follows directly
from this fact.

Proposition 4. Let G be a graph with n vertices, let §(G) be the minimum degree
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of a vertex in G, let A(G) be the maximum degree of a vertex in G. Then
d,(G) < min (6(G) + 1, n — A(G)).

Now we shall proved some theorems.

Theorem 1. Let G be a disconnected graph. Then d ,(G) = d(G).

Proof. Let 2 be a domatic partition of G with d(G) classes. Each class of
2 has non-empty intersections with vertex sets of all connected components of
G. Let De2, xe V(G) — D. Let C be the connected component of G which
contains x, let C’ be another connected component of G. As D is a dominating
set of G, there exists ye D adjacent to x; evidently y is in C. Now in C’ there
exists a vertex z e D; it is evidently non-adjacent to x. Hence 2 is a complemen-
tarily domatic partition of G with d(G) vertices. As d,,(G) < d(G), we have
d.,(G) = d(G). ~

Corollary 1. Let G be a graph whose complement G is disconnected. Then
d,(G) = d(G).

According to [1], every graph has the domatic number at least 1; if it has no
isolated vertex, it has the domatic number at least 2. Obviously also every graph
has the complementarily domatic number at least 1. But the assertion about the
complementarily domatic number at least 2 is not so simple.

A vertex of G is called saturated if it is adjacent to all other vertices of G.

Theorem 2. Let G be a graph containing either an isolated vertex, or a saturated
one. Then d ,(G) = 1.

Proof. If G contains an isolated vertex, then d(G) = 1 and, according to
Proposition 3, also d,,(G) = 1. If G contains a saturated vertex, then its comple-
ment G contains an isolated vertex and the assertion follows from Proposition 1.

Theorem 3. Let G be a disconnected graph without isolated vertices. Then
dcp(G) g 2.

Proof. The assertion follows from the quoted assertion from [l] and
from Theorem 1.

Corollary 2. Let G be a graph without saturated vertices whose complement is
disconnected. Then d(G) = 1.

Theorem 4. Let G be a connected graph of the diameter at least 4. Then
d,(G) = 2.

Proof. Let u be a vertex of G with the property that there exists at least
one vertex having the distance from u equal to the diameter a of G. For i = 0,
1, ..., alet M, be the set of all vertices of G having the distance i from u. Let M,
be the subset of M, consisting of vertices adjacent to at least one vertex of M,,
let M,”= M, — M;. Now let D, be the union of M, M,’and all M, for odd i = 3,
let D, be the union of M,, M, and all M, foreveni= 4. Let xe V(G) — D, = D,.
If x e M,, then it is adjacent to u € D, and non-adjacent to any vertex of M; & D,.
If xe M, then it is adjacent to a vertex of M; = D, and non-adjacent to ue D,.
If xe M, for even i = 4, then it is adjacent to a vertex of M,_, < D, and
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non-adjacent to u€ D,. Hence D, is a complementarily dominating set in G. Now
let xe ¥(G) — D, = D,. If xe M,, then x = u and is adjacent to any vertex of
M, = D, and non-adjacent to any vertex of M; = D,. If xe M;; then x is adjacent
to a vertex of M, < D, and non-adjacent to any vertex of M, < D,. If xe M,,
then x is adjacent to a vertex of M, < D, and non-adjacent to any vertex of
M, < D,. If xe M,for odd i = 5, then x is adjacent to a vertex of M;_, = D, and
non-adjacent to any vertex of M, < D,.

Corollary 3. Let G be a graph whose complement is connected and has the
diameter at least 4. Then d,(G) = 2.

Theorem 5. There exist connected graphs G,, G, of the diameter 2 such that
their complements G,, G, have also the diameter 2 and d (G)) = 1, d,(G,) = 2.

Proof. The graph G, is the circuit of the length 5. Let its vertices be u,,
Uy, Us, Uy, Us, let its edges be wuy, uyus, usiy, ugus, usu). Suppose that d,,(G,) = 2.
As the union of complementarily dominating sets is again a complementarily
dominating set, we may suppose that there exists a complementarily domatic
partition {D,, D,} of G,. Without loss of generality we may suppose u, € D,. The
vertices adjacent to u, are u, and us; therefore at least one of these vertices must
be in D,. Without loss of generality we may suppose that u,e D,. The vertices
non-adjacent to u, are u; and us; therefore at least one of them must be in D,.
First suppose u;e D,. The vertices adjacent to u; are u, and u, and u,e D,,
therefore u,e D,. The vertex us cannot be in D,, because it is adjacent only to
vertices of D,. It cannot be in D,, because there is no vertex of D, non-adjacent
to it. We have a contradiction. Now suppose u,€ D,. The vertices adjacent to u,
are u, and u, and they are both in D,; therefore u,e D,. The vertex us cannot be
in D,, because then there would be no vertex of D, non-adjacent to u,. It cannot
be in D,, because then there would be no vertex of D, non-adjacent to u,. We
have again a contradiction and thus d,,(G)) = 1.

The graph G, is the Petersen graph in Fig. 1. The vertices of D, are denoted
by 1, the vertices of D, by 2. The partition {D,, D,} is a complementarily domatic
partition of G,.

Theorem 6. There exist connected graphs G,, G, of the diameter 3 such that
their complements G,, G, have also the diameter 3 and d,,(G,) = 1, d,,(G,) = 2.

Proof. The graph G, is in Fig. 2. Suppose that there exists a complemen-
tarily domatic partition {D,, D,} of G,. Without loss of generality we may
suppose that u, € D,. The unique vertex adjacent to u, is u,, therefore u, € D,. The
unique vertex non-adjacent to u, is u,, therefore u,e D,. The unique vertex
adjacent to u, is u, therefore u, € D,. The vertex us cannot be in D,, because there
is no vertex of D, non-adjacent to it. It cannot be in D,, because there is no
vertex of D, adjacent to it. We have a contradiction and thus d_,(G,) = 1.

The graph G, is the path of the length 3. It is in Fig. 3; again the vertices of
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D, are denoted by 1, the vertices of D, by 2 and {D,, D,} is a complementarily
domatic partition of G,.

Theorem 7. Let P, be the path of the length n. Then d(P) = d,(P) =1,
d,(B) =2 forn2=3.

Proof. The paths P, and P, contain saturated vertices, thus the assertions
for them follow from Theorem 2. The assertion for P, was proved in the proof
of Theorem 6. For P, with n = 4 it follows from Theorem 4 and Proposition 3.

u, ulvu.) u'w

Us

Fig. 1 Fig. 2

1 2 2 1

Fig. 3 Fig. 4

Theorem 8. Let C, be the circuit of the length n. Then d_(C;) = 1, d_,(C,) = 2,
d,(Cs) = 1,d,(C,) for n = 6 divisible by 3, d_,(C,) = 2 for n = 7 non-divisible by
3.

Proof. The assertion for C; follows from Theorem 2. For Cs it was
proved in the proof of Theorem 5. As it was proved by E. J. Cockayne and S.
T. Hedetniemi, d(C,) = 2 for n non-divisible by 3 and d(C,) = 3 for n divisible
by 3. Therefore the complementarily domatic number of these circuits cannot
be greater. For C, a complementarily domatic partition is shown in Fig. 4. Let
C, for n = 6 have the vertices u,, ..., u,and edges y;u; ., fori=1,...,n — 1 and
uuy. If n is divisible by 3, then we may put D; = {u|j = i (mod 3)} fori=1,2,3
and {D,, D,, D;} is a complementarily domatic partition of C,. If n is not
divisible by 3, then we may put D; = {y}|j = i (mod 2)} for i = 1, 2 and {D,, D,}
is a complementarily domatic partition of C,.

We have met a graph G such that d,,(G) < min (d(G), d(G)). We shall prove
an existence theorem.
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Theorem 9. For any integer k = 5 there exists a graph G with 4k vertices such
that d(G) = d(G) = k + 1, d(G) = k.

Proof. Let V,, V,, V}, V, be pairwise disjoint sets, |Vj| = |Vj| = |V} = |V} =
= k. We construct a graph G with the vertex set V=V u V,u V;u V,. Two
vertices of G are adjacent if and only if either they both belong to V; U ¥, or one
belongs to V] and the other to V;, or one belongs to V; and the other to V,. There
exists a domatic partition 2 of G with k + 1 classes such that one classis ;U V,
and all the other classes of & are two-element sets consisting of one vertex of
V, and one vertex of V;. As 8(G) = k, we have d(G) = k + 1. The complement
G of G is evidently isomorphic to G, hence also d(G) = k + 1. Now let D be a
complementarily dominating set in G. If D~ V| = 0, then V; = D, because the
vertices of V; are adjacent only to vertices of ¥|. Analogously if D n V; = 0, then
Vo, D.If Dn V; =0, then V;, = D, because the vertices of V; are non-adjacent
only to vertices of V;. Analogously if DNV, =0, then ¥, = D. Hence if D is
disjoint with one of the sets V|, V5, 1}, V,, then |D| = k = 5. If D has non-empty
intersections with all of them, then |D| = 4. Hence there exists no complemen-
tarily domatic partition of G with more than k classes. There exists a com-
plementarily domatic partition of G with exactly k classes; it is an arbitrary
partition of G such that each of its classes contains exactly one vertex from each
of the sets V}, V,, V;, V,. Therefore d.,(G) = k.

Finally we shall describe a construction of graphs G with the maximal
possible complementarily domatic number, i.e. with d,(G)= |n/2].

Construction C. Let n = 2k, where k is a positive integer. Let V = {u,, ..., u,,
vy, ..., . If i, j are two numbers of the set {1, ..., n} and i # j, we join either y;
with u; and v; with v;, or u; with v; and v; with ; by an edge. Further we may add
edges u,v; for arbitrary numbers i.

Letn = 2k + 1, where k is a positive integer. We perform the construction for
n = 2k. Then we add a vertex w and for any i = 2 we join it with exactly one of
the vertices u;, v;. Further we may join w with u, or v, or with both of them.

Proposition 5. Construction C yields exactly all graphs G with d(G) =
= | n/2 |, where n is the number of vertices of G.

Proof is left to the reader.

Now we present two problems.

Problem 1. Consider the class of graphs G with the property that the diameters
of both G and G are 2 or 3. Characterize graphs from this class whose complemen-
tarily domatic number is 1.

Problem 2. How large can the difference min (d(G), d(G)) — d,,(G) be?
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JOMNMOJIHUTEJABHO JOMATHUYECKOE YHUCJIO T'PADA
Bohdan Zelinka

Pe3omMme

JIONOJIHUTENILHO JOMHHHMPYIOIIMM MHOXECTBOM B rpade G Ha3blBaeTcs MOAMHOXeECTBO D
MHoxecTBa V(G) BepunH rpada G, obnamarouiee TeM CBOHCTBOM, YTO JUIS KaXJOW BEPUIMHBI
x € V(G) — D cyumiecTByeT BepiiMHa y € D, cMeXHas C X, U BepluMHa z € D, HecMexHas ¢ x. Makcu-
MaJIBHOE YHCJIO KJIACCOB pa3buTHa MHOxecTBa V(G), BCe KJIacChl KOTOPOro SABJSAIOTCA QOMOJ-

HHUTEJIbHO JOMHHUPYIOIIMMH MHOXECTBAMH, Ha3bIBAETCA JOMOIIHMTEIbHO JOMATHYECKHM YHCIIOM
rpada G. B pabote onucaHbl €ro OCHOBHbIE CBOMCTBA.
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