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Math. Slovaca 38, 1988, No. 1, 

COMPLEMENTARILY DOMATIC NUMBER 
OF A GRAPH 

BOHDAN ZELINKA 

The domatic number of a graph was introduced by E. J. Cockayne and S. T. 
Hedetniemi [1]. Further a lot of variants of this concept were introduced and 
studied, e. g. the total domatic number [2], the connected domatic number [3] 
etc. Here we shall introduce a new variant of the domatic number, namely the 
complementarily domatic number. First we recall the definition of the domatic 
number. 

Let G be an undirected graph, let D be a subset of the vertex set V(G) of G. 
The set D is called dominating in G if to each vertex xe V(G) — D there exists 
a vertex y e D adjacent to x. A domatic partition of G is a partition of V(G), all 
of whose classes are dominating sets in G. The maximum number of classes of 
a domatic partition of G is called the domatic number of G and denoted by d(G). 

Now we turn to the definition of the complementarily domatic number. Let 
again D be a subset of V(G). The set D is called complementarily dominating if 
to each vertex xeV(G) — D there exist vertices yeD, zeD such that y is 
adjacent and z is non-adjacent to x in G. A complementarily domatic partition 
of G is a partition of V(G), all of whose classes are complementarily dominating 
sets in G. The maximum number of classes of a complementarily domatic 
partition of G is called a complementarily domatic number of G and denoted by 
dcp(G). 

Note that a complementarily dominating set of G is simultaneously a domi­
nating set of G and a dominating set of its complement G. 

The following propositions are clear from the definition. 
Proposition 1. Let G be a graph, let G be its complement. Then dcp(G) == dcp(G). 
Proposition 2. Let G be a graph with n vertices. Then dcp(G) ̂  n/2. 
Proposition 3. Let G be a graph, let G be its complement. Then 

dcp(G)^mm(d(G),d(G)). 
In [1] it was proved that d(G) ^ S(G) + 1 for any graph G, where S(G) is the 

minimum degree of a vertex in G. The following proposition follows directly 
from this fact. 

Proposition 4. Let Gbea graph with n vertices, let S(G) be the minimum degree 
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of a vertex in G, let A(G) be the maximum degree of a vertex in G. Then 
dcp(G) = mm(8(G) + \,n-A(G)). 

Now we shall proved some theorems. 
Theorem 1. Let G be a disconnected graph. Then dcp(G) = d(G). 
P r o o f Let 3 be a domatic partition of G with d(G) classes. Each class of 

3f has non-empty intersections with vertex sets of all connected components of 
G. Let D G @ , xe V(G) — D. Let C be the connected component of G which 
contains x, let C be another connected component of G. As D is a dominating 
set of G, there exists yeD adjacent to x; evidently y is in C. Now in C there 
exists a vertex ze D; it is evidently non-adjacent to x. Hence 3) is a complemen­
tarity domatic partition of G with d(G) vertices. As dcp(G) = d(G), we have 
dcp(G) = d(G). 

Corollary 1. Let G be a graph whose complement G is disconnected. Then 
dcp(G) = d(G). 

According to [1], every graph has the domatic number at least 1; if it has no 
isolated vertex, it has the domatic number at least 2. Obviously also every graph 
has the complementarily domatic number at least 1. But the assertion about the 
complementarily domatic number at least 2 is not so simple. 

A vertex of G is called saturated if it is adjacent to all other vertices of G. 
Theorem 2. Let Gbea graph containing either an isolated vertex, or a saturated 

one. Then dcp(G) = 1. 
P r o o f If G contains an isolated vertex, then d(G) = 1 and, according to 

Proposition 3, also dcp(G) = 1. If G contains a saturated vertex, then its comple­
ment G contains an isolated vertex and the assertion follows from Proposition 1. 

Theorem 3. Let G be a disconnected graph without isolated vertices. Then 
dcp(G) ^ 2. 

Proof. The assertion follows from the quoted assertion from [1] and 
from Theorem 1. 

Corollary 2. Let G be a graph without saturated vertices whose complement is 
disconnected. Then dcp(G) = 1. 

Theorem 4. Let G be a connected graph of the diameter at least 4. Then 
dcp(G) = 2. 

Proof. Let u be a vertex of G with the property that there exists at least 
one vertex having the distance from u equal to the diameter a of G. For i = 0, 
1, ..., a let M, be the set of all vertices of G having the distance i from u. Let M2 

be the subset of M2 consisting of vertices adjacent to at least one vertex of M3, 
let M2" = M2 - M2. Now let Dx be the union of M0, M2"and all M, for odd i = 3, 
let D2 be the union of Af„ M2'and all M, for even / = 4. Let xe V(G) - Dx = D2. 
If x e Ml9 then it is adjacent to u e Dx and non-adjacent to any vertex of M^ = DX. 
If xeM2\ then it is adjacent to a vertex of M3 != Dx and non-adjacent io ueDx. 
If xeMt for even i = 4, then it is adjacent to a vertex of M,_ . - Dx and 
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non-adjacent to u e Dx. Hence Dx is a complementary dominating set in G. Now 
let xe V(G) — D2 = Dx. If xeM 0 , then x = u and is adjacent to any vertex of 
Mj c: D2 and non-adjacent to any vertex of M2 _ D2. If x e M2, then x is adjacent 
to a vertex of M, _= D2 and non-adjacent to any vertex of M4 _ D2. If x_M3, 
then JC is adjacent to a vertex of M2 _ Z>2

 a n d non-adjacent to any vertex of 
Mx _= D2. If xe M, for odd i ^ 5, then x is adjacent to a vertex of M,_, _ D2 and 
non-adjacent to any vertex of M, ~ Z>2. 

Corollary 3. Let G be a graph whose complement is connected and has the 
diameter at least 4. Then dcp(G) = 2. 

Theorem 5. There exist connected graphs G„ G2 of the diameter 2 such that 
their complements G„ G2 have also the diameter 2 and dcp(Gx) = 1, dcp(G2) = 2. 

Proof. The graph Gx is the circuit of the length 5. Let its vertices be w„ 
w2, t/3, w4, w5, let its edges be uxu2, u2u3, u3u4, u4u5, u5ux. Suppose that dcp(Gx) = 2. 
As the union of complementarily dominating sets is again a complementarily 
dominating set, we may suppose that there exists a complementarily domatic 
partition {Z>„ D2} of Gx. Without loss of generality we may suppose uxeDx. The 
vertices adjacent to ux are u2 and w5; therefore at least one of these vertices must 
be in D2. Without loss of generality we may suppose that u2 e D2. The vertices 
non-adjacent to ux are w3 and w5; therefore at least one of them must be in D2. 
First suppose u3eD2. The vertices adjacent to w3 are u2 and u4 and u2eD2, 
therefore u4eDx. The vertex u5 cannot be in Z>„ because it is adjacent only to 
vertices of Dx. It cannot be in Z)2, because there is no vertex of Dx non-adjacent 
to it. We have a contradiction. Now suppose u4eD2. The vertices adjacent to u3 

are u2 and u4 and they are both in D2\ therefore u3eDx. The vertex u5 cannot be 
in Z)„ because then there would be no vertex of D2 non-adjacent to w3. It cannot 
be in D2, because then there would be no vertex of Dx non-adjacent to u2. We 
have again a contradiction and thus dcp(Gx) = 1. 

The graph G2 is the Petersen graph in Fig. 1. The vertices of D, are denoted 
by 1, the vertices of Z>2 by 2. The partition {Z>„ Z>2} is a complementarily domatic 
partition of G2. 

Theorem 6. There exist connected graphs G„ G2 of the diameter 3 such that 
their complements G„ G2 have also the diameter 3 and dcp(Gx) = 1, dcp(G2) = 2. 

Proof. The graph G, is in Fig. 2. Suppose that there exists a complemen­
tarily domatic partition {Z>„ D2} of G„ Without loss of generality we may 
suppose that ux e Dx. The unique vertex adjacent to ux is u2, therefore u2eD2. The 
unique vertex non-adjacent to u2 is w4, therefore u4eDx. The unique vertex 
adjacent to u4 is w3, therefore w3 e D2. The vertex u5 cannot be in Z>„ because there 
is no vertex of D2 non-adjacent to it. It cannot be in £>2, because there is no 
vertex of Dx adjacent to it. We have a contradiction and thus dcp(Gx) = 1. 

The graph G2 is the path of the length 3. It is in Fig. 3; again the vertices of 
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Dx are denoted by 1, the vertices of D2 by 2 and {Di, D2} is a complementarily 
domatic partition of G2. 

Theorem 7. Let Pn be the path of the length n. Then dcp(Px) = dcp(P2) = 1, 
dcp(Pn) = 2forn = 3. 

Proof. The paths Px and P2 contain saturated vertices, thus the assertions 
for them follow from Theorem 2. The assertion for P3 was proved in the proof 
of Theorem 6. For Pn with n = 4 it follows from Theorem 4 and Proposition 3. 

u, uл / u 3 U, 

Fig. 2 

Fig. 3 Fig.4 

Theorem 8. Let Cn be the circuit of the length n. Then dcp(C3) = 1, dcp(C4) = 2, 
dcp(C5) = 1, dcp(Cn)for n _ 6 divisible by 3, dcp(Cn) = 2 for n^l non-divisible by 
3. 

Proof. The assertion for C3 follows from Theorem 2. For C5 it was 
proved in the proof of Theorem 5. As it was proved by E. J. Cockayne and S. 
T. Hedetniemi, d(Cn) = 2 for n non-divisible by 3 and d(Cn) = 3 for n divisible 
by 3. Therefore the complementarily domatic number of these circuits cannot 
be greater. For C4 a complementarily domatic partition is shown in Fig. 4. Let 
Cn for n ^ 6 have the vertices w,, ..., un and edges utui+ , for i = 1, ..., AI — 1 and 
unux. If n is divisible by 3, then we may put Dt = {uj\j = i (mod 3)} for i = 1, 2, 3 
and {D]9 D2, D3} is a complementarily domatic partition of Cn. If H is not 
divisible by 3, then we may put Z>, = {uj\j _ i (mod 2)} for / = J, 2 and {/),, Z>2} 
is a complementarily domatic partition of Cn. 

We have met a graph G such that dcp(G) < min (d(G), d(G)). We shall prove 
an existence theorem. 
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Theorem 9. For any integer k _̂  5 there exists a graph G with 4k vertices such 
that d(G) = d(G) = k+l, dcp(G) = k. 

Proof. Let Vl9 Vl9 V3, V4 be pairwise disjoint sets, \VX\ = \V2\ = |V3| = \V4\ = 
= k. We construct a graph G with the vertex set V = Vx u V2 u V3 u V4. Two 
vertices of G are adjacent if and only if either they both belong to Vx u Vl9 or one 
belongs to Vx and the other to V39 or one belongs to V2 and the other to V4. There 
exists a domatic partition _2? of G with k + 1 classes such that one class is V2 u V4 

and all the other classes of Q) are two-element sets consisting of one vertex of 
Vx and one vertex of V2. As 8(G) = k, we have d(G) = k + 1. The complement 
G of G is evidently isomorphic to G, hence also d(G) = k + 1. Now let D be a 
complementarily dominating set in G. If D n FJ = 0, then ^ ___ D, because the 
vertices of î  are adjacent only to vertices of Vx. Analogously if D n V2 = 0, then 
V4 <__ D. If D n V^ = 0, then ^ _= D, because the vertices of V2 are non-adjacent 
only to vertices of V3. Analogously if D n V4 = 0, then ^ _= D. Hence if D is 
disjoint with one of the sets Vl9 Vl9 Vl9 V4, then \D\ ̂  k ^ 5. If D has non-empty 
intersections with all of them, then \D\ = 4. Hence there exists no complemen­
tarily domatic partition of G with more than k classes. There exists a com­
plementarily domatic partition of G with exactly k classes; it is an arbitrary 
partition of G such that each of its classes contains exactly one vertex from each 
of the sets V]9 Vl9 V3, V4. Therefore dcp(G) = k. 

Finally we shall describe a construction of graphs G with the maximal 
possible complementarily domatic number, i.e. with dcp(G) = |_«/2J . 

Construction C. Let n = 2k, where k is a positive integer. Let V = {uX9 ..., uk9 

vX9 ..., vk}. If/,j are two numbers of the set {1, ..., n} and / ^ j , we join either w, 
with Uj and v( with vj9 or u, with Vj and vt with u} by an edge. Further we may add 
edges upi for arbitrary numbers /. 

Let n = 2k + 1, where k is a positive integer. We perform the construction for 
n = 2k. Then we add a vertex w and for any / = 2 we join it with exactly one of 
the vertices ui9 vt. Further we may join w with ux or i;, or with both of them. 

Proposition 5. Construction C yields exactly all graphs G with dcp(G) = 
= |_ /?/2 J , where n is the number of vertices of G. 

Proof is left to the reader. 
Now we present two problems. 
Problem 1. Consider the class of graphs G with the property that the diameters 

of both G and G are 2 or 3. Characterize graphs from this class whose complemen­
tarily domatic number is 1. 

Problem 2. How large can the difference min(d(G), d(G)) — dcp(G) be? 
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ДOПOЛHИTEЛЬHO ДOMATИЧECKOE ЧИCЛO ГPAФA 

Bohdan Zelinka 

Peзюмe 

Дoпoлнитeльнo дoминиpyющим мнoжecтвoм в гpaфe G нaзывaeтcя пoдмнoжecгвo D 
мнoжecтвa V(G) вepшин гpaфa G, oблaдaющee тeм cвoйcтвoм, чтo для кaждoй вepшины 
xє V(G) — D cyщecгвyeт вepшинa yєD, cмeжнaя c)c,и вepшинa zє D, нecмeжнaя c x. Maкcи-
мaльнoe чиcлo клaccoв paзбития мнoжecтвa V(G), вce клaccы кoтopoгo являютcя дoпoл-
нитeльнo дoминиpующими мнoжecтвaми, нaзывaeтcя дoпoлнитeльнo дoмaтичecким чиcлoм 
гpaфa G. B paбoтe oпиcaны eгo ocнoвныe cвoйcтвa. 
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