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Math. Slovaca 41. 1991, No. 1. 101—111 

ON SOME PROBLEMS IN THE OSCILLATION THEORY 
OF SELF-ADJOINT LINEAR DIFFERENTIAL EQUATIONS 

ONDREJ DOSLY 

ABSTRACT. The known results concerning the oscillation properties of second order 
equations are extended to self-adjoint equations of the even order. Some open 
problems associated with this extension are formulated. 

1. Introduction 

Consider a self-adjoint linear differential equation of the second order 

- (P (x )yT + 4(x)y = 0, (1) 

where p(x) e C\ q(x) e C°, p(x) > 0 on I = (a, b), —co^a<b^oo. The 
following statements concerning the oscillation behaviour of this equation are 
well known, see [3], [12]. 
i) Let ux, u2 be (linearly independent) solutions of (1) for whichp(x)(ux (x)u2(x) — 
— u\(x)u2(x)) = 1. Equation (1) is oscillatory at b (for terminology see Sec. 2) 
if and only if 

Í " dx 
00, CЄ I. 

c />(*)(«! (*) + («2 (*)) 

ii) Let M, , w2 be the same as in i). Equation (1) is disconjugate on / if and only 
if 

u n Ґ dx J(щ , u2, /) = — 
Ja p(x)(u)f(x) + Щ(X 

^ K. 

)) 

Particularly, (1) is 1-special on I if J(ux, u2, I) = n and 1-general on I if J(ux, 
w2, I) < n for every pair of solutions ux, u2 for which p(uxu'2 — u\u2) = 1. 

AMS Subject C lassi f ication (1985): Primary 34C10. Secondary 34A30. 
Key words: Self— adjoint linear differential equation, Oscillation, Conjugacy, Linear Hamil-
tonian system 
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iii) Let equation (1) be conjugate on an interval I0 ~l I. There exists a function 
q(x) e C° such that q(x) > q(x) on I0 and the equation 

-(p(x)y')'+ q(x)y = 0 

is conjugate on I0. 
The aim of this paper is to extend these results to selfadjoint linear differential 

equations of the even order 

_(-\y(pk(x)y(y» = 0, (2) 
A = 0 

Pi e CA, pn > 0 on I, and to formulate some open problems associated with this 
extension. 

The principal method we use is the application of the results of the trans­
formation theory of linear Hamiltonian systems to equation (2), combined with 
oscillation criteria for the so-called trigonometric systems. 

2. Preliminary results 

Two points x,, x2 e I are said to be conjugate relative to equation (2) if there 
exists a nontrivial solution of this equation for which y(,)(x,) = 0 = y(,)Cx2), 
/ = 0, . . . , « — 1. Equation (2) is said to be disconjugate on an interval I0 _z I 
whenever there exists no pair of points of I0 which are conjugate relative to (2), 
in the opposite case (2) is said to be conjugate on I0 .Equation (2) is said to be 
nonoscillatory at b if there exists c e I such that this equation is disconjugate on 
(c, b), in the opposite case (2) is said to be oscillatory at b. 

Let y be a solution of (2). Set w, = y, u2 = y\ ..., un = y{"~ ]\ vn = p,y("\ 
vn_k= —v'fl_k + ]+pn_ky

{"~k\ k=l, ..., n — 1. Then the pair of vectors 
u = (w,, ..., un)

T, v = (v,, ..., vn)
T(,,T" denotes the transpose) is a solution of the 

linear Hamiltonian system 

(3) 
u' = A(x)u + B(x)v, 
v' = C(x)u — A T(x)v . 

where A, I?, C are n x n matrices with entries 

/ 1 for j = i 4- 1, / = 1, ..., n — 1 , 
A — ' 
Ay — \ 

\ 0 elsewhere, (4) 
B =diag{0, ...,0,p-1}, 
C =diag{p0, ...,/?„}. 

We say that the solution (u, v) of (3) is generated by the solution y of (2). 
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Two points xx,x2e /are said to be conjugate relative to a linear Hamiltonian 
system of the form (3) if there exists a solution (u, v) of this system such that 
u(xx) = 0 = u(x2) and u(x) is not identically zero between xx and x2. Oscillation, 
nonoscillation, conjugacy and disconjugacy of (3) are defined by means of 
conjugate points in the same way as in the case of equation (2). It is obvious that 
two points are conjugate relative to (2) if and only if they are conjugate relative 
to (3) with the matrices A, B, C given by (4). This fact enables us to make use 
of the results of oscillation theory of linear Hamiltonian systems for the inves­
tigation of oscillation properties of (2). 

Simultaneously with (3) consider the matrix system 

U' = A(x)U+B(x)V, 
V = C(x)U - AT(x)V, K) 

where U, V are n x n matrices. It is obvious that the columns of these matrices 
form solutions of (3). If these solutions of (3) are generated by solutions yx, ..., 
yn of (2), we say that the matrix solution (U, V) of (5) is generated by yx, ..., 
yn. A self-conjugate solution (Ub, Vb) of (5) (i.e. Ub

T(x)Vb(x) = Vb
T(x)Ub(x)) is 

said to be principal at b if the matrix Ub(x) is nonsingular near b and 

lim I U~\s)B(s)UT~ \s) ds\ = 0, where c e I is sufficiently close to b. 

One can show that the solution (Ub, Vb) is principal at b if and only if there exists 
a self-conjugate solution (U, V) of (5) such that U(x) is nonsingular near 

b, UT(x)Vb(x) - VT(x)Ub(x) = E (the identity matrix) and lim U~\x)Ub(x) = 0. 
x -> b — 

The principal solution (Ua, Va)ata is defined in the same way. System (3) is said 
to be identically normal on / whenever the trivial solution (u, v) = (0, 0) is 
the only solution for which u(x) vanishes on a nondegenerate subinterval of/. 
Two solutions (Ux, Vx), (U2, V2) of (5) are said to be linearly independent if every 
solution of (5) can be expressed in the form (U, V) = (UXCX + U2C2, VXCX + 
+ V2C2), Cx, C2 being constant n x n matrices. If (Ux, Vx), (U2, V2) are self-con­
jugate, one can show that they are linearly independent if and only if their 
"Wronskian" Ux

T(x)V2(x) - Vx
T(x)U2(x) is nonsingular. 

The following theorem describes a certain transformation of (5) and plays an 
important role in the further investigation. 

Theorem A. [5, Th. 1]. There exist n x n matrices of real-valued functions 
H(x), K(x) e C\I), H(x) being nonsingular, such that the transformation 

U = H(x)S, V = K(x)S + HT~ \x)C (6) 

transforms (5) into the so-called trigonometric system 

S' = Q{x)C,C'=-Q{x)S, (7) 
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where 

Q(x) = H-\x)B(x)HT~\x). (8) 

This theorem implies that a given pair of self-conjugate solutions (£/,, Vj), 
(C/2, V2) of (5) for which UTV2 — VTU2 = E can be expressed in the form 

([/,, V,) = (Яs, KC + -^S), 
(U2, V2) = (ЯC, - / ; s + Я г - ' ( ľ ) , (9) 

where (S, C) is a self-conjugate solution of (7) for which .Sr(x)S(x) + 
+ CT(x)C(x) = E (the so-called trigonometric matrices). The matrix H(x) is 
given by the relation 

H(x)HT(x) = Ux(x)UT(x) + U2(x)UT(x). 

Note that the concept of the trigonometric system was introduced by 
B a r r e t t in connection with the extension of the Priifer transformation to 
matrix systems. The possibility to transform (5) into the trigonometric system 
was proved in [5] and any n x n matrix si(x) for which si \x) = Q (x) was called 
the phase matrix of (5) determined by the pair of solutions (U,, V,), (t/2, V2). 
If n = 1 and B(x) = 1, then the phase matrix is identical with the phase function 
of the second order equation u" — C(x)u = 0, introduced by Boruvka. 

The followng statement concerns the oscillation behaviour of trigonometric 
systems. In a somewhat different form it can be found in [8] and under a stronger 
assumption (Q(x) is positive definite) it is expressed in book [12]. 

Theorem B. Let the matrix Q (x) be nonnegative definite near b and neither 
S(x) nor C(x) can be identically singular on a nondegenerate subinterval of I for 
every self-conjugate solution (S, C) of(l). Then (1) is oscillatory at b if and only 
if 

TvQ(s)ds=ao, (10) Í 
where Tr() denotes the trace of the matrix indicated. 

Now recall the extension of the Sturm comparison theorem to linear Hamil-
tonian systems. Let A], B{, Cx be n x n matrices of continuous, real-valued 
functions, Bx, Cx being symmetric and Bx nonnegative definite on /. Consider the 
system 

U' = Ax{x)U+Bx{x)V9 . 
V = Cx(x)U - AT

x(x)V. v ; 

If the 2n x 2n matrix 
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Bx(x)-B(x) Ax(x)-A(x) 
A[(x) - A т(x) C(x) - C,(.x) 



is nonnegative definite, (11) is disconjugate on some interval I0 _= / a n d both 
systems (5), (11) are identically normal on I0, then (5) is also dinconjugate on 
I0, see [4, Proposition 10]. Consequently, if the functions pj(x)eCj(I), 
j = 0, ..., n — 1, satisfypj(x) > p7(x) on Z0and (2) is disconjugate on/0 , then the 

n- 1 

equation ( - l)"(pny
(w))(w) + £ ( ( - \)kpky

{k))(k) = 0 is also disconjugate on I0. 
k = 0 

3. Main results 

Let yx, ..., y2n be linearly independent solutions of (2) and let (Ux, Vx), 
(C/2, V2) be the solutions of the corresponding linear Hamiltonian system, 
generated by yx, ... ,yn and yn + x, ..., y2n, respectively. The system of solutions 
yx, ..., y2n is said to be normalized if (Ux, Vx), (U2, V2) are self-conjugate and 
UT(x)V2(x)-VT(x)U2(x) = E. 

Theorem 1. Let yx, ..., y2n be a normalized system of solutions of (2) and let 
(Ux, Vx), (U2, V2) be the solutions of (5) generated by yx, ... ynandyn + x, ... ,y2n, 
respectively. Equation (2) is oscillatory at b if and only if 

' p-x(x)eT(Ux(x)UT(x) + U2(x)UT(x)y]en dx = oo , (12) 

where en = (0, ..., 0, \)Te R". 
Proof. By Theorem A the solutions (Ux, Vx), (U2, V2) can be expressed 

by (9), where (S, C) is a solution of (7) with the matrix Q given by (8). As both 
Ux, U2 have only isolated singularities (see, e.g., [8]) and H(x) is nonsingular, 
the same holds for S and C. Since the transformation (6) preserves oscillation 
behaviour, according to Theorem B it suffices to prove that (10) holds. Tr Q = 
= Tr H~]BHT-] =Tr BHT-]H~l = Tr pn

 x diag {0, ..., 0, 1H/ / / / 7 )" 1 = 
= p",Trdiag{0, . . . , 0 , \}(UXUT + U2U[)'X = p-xen(UxU

T + U2U[)-xen, i. 

e., in view of (12) Tr Q(x) dx = oo and (2) is oscillatory at b. 

Now recall some fact concerning the classification of disconjugate differential 
equations and systems. Suppose that (1) is disconjugate on /. As this equation 
is a special case of (3), the definition of its principal solutions at a and b is the 
same as for (3). If the principal solutions at a and b of this equation are linearly 
idependent, then (1) is said to be 1-general on /. In the opposite case (i. e., if 
yfl = y/> * k> ^ beging a nonzero real constant) (1) is said to be 1-special on /, see 
[3]. This classification of the second order equations can be extended to linear 
Hamiltonian systems in the following way (see [6]). Let (3) be disconjugate on 
/and let (Ua, Va), (Ub, Vb) be the principal solutions at a and b of (5), respective­
ly. The system (3) (or (5)) is said to be k-general on / if the rank of the matrix 
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Ua(x) Uh(x) 
Va(x) Vh(x) 

equals n + k, k e {0, ..., b}, for every xe I. Analogously, equation (2) is said to 
be k-general on I whenever the corresponding linear Hamiltonian system has 
this property. 

The next theorem generalizes the above given statement ii) concerning second 
order equations. 

Theorem 2. Let (2) be disconjugate and k-general on I, 0 ^ k ^ n. Ify], ... 
••• > y2* is a normalized system of solutions of of this equation and (Ux, V,), (U2, 
V2) are the same as in Theorem 1, then 

(n — k)к ^ p-x(x)eJ(Ux(x)U?(x) + U2(x)U[(x))-le„ dx < пк . (13) 

Proof. Let stf(x) be a phase matrix of the linear Hamiltonian system cor­
responding to (2) determined by (U,, Vi), (U2, V2). By Theorem A there exist 
n x n matrices II(x), K(x) e C1 (I) such that (U], V,), (U2, V2) can be expressed 
by (9), where (S, C) is a self-conjugate solution of (7) with Q = srf' = 
= H~]BHT-\ satisfying 

ST(x)S(x) + CT(x)C(x) = E. (14) 

Denote by (Sa, Ca) the principal solution of (7) at a, for which (14) holds. Note 
that such a solution always exists, since the principal solution at a is the limit 
for t! —> a— of the solutions (S(x; tx, t2), C(x; tx, t2)) given by the boundary 
condition S(tl9 ti, t2) = 0, S(t2, tx, t2) = E, tl5 t2 e I, see [4, Chap. II], and 
STS + CTC = K, K being a constant rz x n matrix, for every solution of (7). 
Self-conjugacy of (Sa, Ca) and (14) imply 

Sa(x)ST(x) + Ca(x)CT

a(x) = E. (15) 

Denote by X = Ca + iSa, G = XXT = CaC
T - SaS

T + 2iSaC
T, i2 = - 1. One 

can verify directly that X' = iQX and C = i(QG + GQ). The Jacobi formula 

yields det G(x) = det2 X(x) = det2 X(x0). exp \li Tr Q(s) ds\. Passing to 

the limit for x0 -> a — in the last expression, we have 

det G(x) = exp Ui f Tr Q(s) dsl. (16) 

Indeed, we have lim Ca~
l(x)Sa(x) = 0, hence lim Sa(x) = 0 (because by (14) 

x -> a— x -* a — 

II Ca~
](x)\\ ^ 1, where || II denotes the spectral matrix norm) and thus by (15) 
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lim X(x) = lim Ca(x) = E. The matrix G(x) is unitary (i.e., G* = G \ 
x a— x -*• a — 

where "*" denotes the conjugate transpose of the matrix indicated), hence its 
eigenvalues lie on the unit circle in the complex plane. Denote these eigenvalues 

by exp {i~-j(x)}9 j = 1, .. . , n, where dj(x) are such that lim CLj(x) = 0. Then 
x -*• a — 

det G(x) = Y\ e xP 0a/(x)} = e xP \i Z aAx)\ a n ( i according to (16) 
1 = 1 I 1 = 1 J 

£ ctj(x) = 2 [XTvQ(s)ds. (17) 
1=1 J a 

Now we need the following statements whose proofs can be found, e.g., in 
[ l ,Chap.X] . 
i) If det S(x), det C(x) do not vanish on any nondegenerate subinterval of /, 
then (Zj(x) are increasing functions. 
ii) Det Sa(x0) = 0 for some x0 e I if and only if the nuber 1 is an eigenvalue of 
G (x0). The multiplicity of x0 as the zero of det Sa(x0) equals the dimension of the 
linear space generated by the eigenvectors of G (x0) corresponding to the eigen­
value 1. 

Let (Sb, Cb) be the principal solution of (7) at b for which (14) holds. Similarly 

as above lim Sb(x) = 0. Since equation (2) is k-general on / and the trans-
V - b + 

formation (6) preserves this property, the system (7) is also rc-general on /. It 
implies that there exist linearly indepenedent vectors cx, . . . , cn _ k such that 

lim Sa(x)cj = 0, j = 1, ... ,n — k. Hence, according to i) and ii), at least n — k 
-» x b + 

eigenvalues of G(x) must make the full run around the unit circle, i.e., 

lim ( YJ aj(x)) ^ 2(w — k)71- O n the other hand, disconjugacy of (7) implies 

that det Sa(x) -# 0 on / (see, e.g., [14]), i.e., lim ( £ a ,(x)) ^ 2 ^ - This, 
x->b-\j_l J 

together with (17), completes the proof. 

Remark . Consider the fourth order equation 

(p(x)y")" = 0, (18) 

where p(x) e C2(R),p(x) > 0. After some computation one can verify that (18) 
is 2-general on R if and only if at last one of the integrals x2p~\x) dx, 

Jo 
/•0 /»oo /»0 

x2p~\x)dx is convergent, it is 1-general if x2p~\x)dx = x2p~](x)dx = 
J — oo Jo J — oo 
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= oo and at least one of the integrals p (x) dx, Г 
Jo 

. - 1 / p ](x) dx is conver­

gent, and it is 0-general if 
) /»0 

p~\x) dx = oo = F_1(x) dx, see [7]. Using 
J —X 

this fact and Theorem 2 we can get estimates for certain improper integrals 
involving solutions of (18). Particularly, one can 

{x-t)p-\ť)dt,y,= 
Jo Jo 

directly verify that yx = 1, y2 = x, y3 = \ (x — t)p~](t) dl, y\ =\ t(x — t)p ](t)dt 

form the normalized system of solutions of (18). In this case (13) reduces to the 
inequality 

(2 - k)n ^ 
•' í УÌ 

dx ^ 2к 

0 ^ k ^ 2, and if, e.g., p(x) = 1 we have the formula 

00 1 + x2 + x2/4 + x6/36  

-* (1 + * 2 + x4/4 + *6/36)(l + x2 + x4/4) - (JC + .v3/2 + x5/12)2 
dx = 2к 

(which can be also derived by the residuum theorem, but the computations are 
rather complicated). Similar formulae can be also obtained for the integrals 
involving solutions of the higher order equations. 

4. Open problems 

Let us turn our attention to the statement iii) of Section 1. This statement can 
be proved as follows. Let a(x) be a phase function of (1), i.e., there exists a 
real-valued function h(x) such that p = a' _1/z2, q = —(a'~]h')' — h2a'. Since 
(1) is supposed to be conjugate on I0 = (c, d), we have |a(d) — a(c)| > K. Let 
k be a real number for which K/\a(d) — a(c) | < k < 1 and set a! = ka, hx = k] 2h, 
p = a\ _ 1 h 2 , q = —hx(a\ ~lhx) — h2a\. Then/? = p, ax is the phase function of 
-(py'Y + qy = 0 and q = h(a'~]h')'- k2a'h2 > q. Since 
| a, (d) — ax (c) | = k \ a (d) — a (c) \ > 7C, the last equation is also conjugate on I0. 

Follow this idea in the case of higher order equations. Let stf(x) be a phase 
matrix of the linear Hamiltonian system corresponding to (2), i.e., there exist 
n x n matrices H(x), K(x) such that transformation (6) transforms this system 
into (7) with Q(x) = srf'(x). Substituing (6) into (5) we have 
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B = HQHT 

C = (K'-HT~]Q + ATK)H] 

A=H~](H' -BK). 

Suppose that (2) is conjugate on I0, i.e., it is the corresponding trigonometric 
system (7). Let k e (0, 1) be sufficiently close to 1 (it will be specified later). To 
prove that system (7) with kQ (x) instead of Q (x) is conjugate on I0, we use the 
following statement. 

Lemma. [4, Chap. II]. Let Q (x) be a nonnegative definite on I0 such that (7) is 
identically normal on I0. This system is conjugate on I0 if and only if there exists 
a pair of vector-valued functions y(x), z(x) which are piecewise of the class C] and 

C, respectively, such that y' = Q(x)z, supp>> cz I0 and (zT(x)Q(x)z(x) í d 
77 

- yT(x)Q(x)y(x)) dx < 0. 
Let (y, z) be the pair of functions from Lemma and let k e (0, 1) be such that 

J *d r>d 

zTAz dx - k2 yTQy dx < 0. Set z, = z, yx= ky, Qx = kQ. Then 
c Jc 

y'\ = Q\Z2, suppj 1 c=/ 0 and (zTQxzx - yx
TQxyx) dx = k\\ zTQz dx-

— k2 \ yTQydx < 0. Consequently, system (7) with kQ instead of Q is 

conjugate on I0. 
Now, let six = ksrf, Hx = k~]/2H, Kx = k~]/2K and denote by A, B, C the 

matrices in the system of the form (5), which is transformed by (6), with HX,KX, 
into (7) with kQ. Then by (19) B = HXQXHT = B, A = HX~](HX - BKX) = A, 
C = K'XHX - HT~ ]QXHX~] + ATKXHX~] = K'H~] - k2HT~ ]QH~] + ATKH~] = 
= C +(1 - k2)HT~ ]QH~], i.e., the matrix C - C = (1 - k2)HT~ ]QH~] is non-
negative definite and has rank 1 for every xe I0. From the last equality we see that 
the matrix C(x) is not generally in the diagonal form. A linear Hamiltonian system 
with A, B given by (4) and C nondiagonal corresponds to a (formally) more 
general self-adjoint equation 

n-\ r n - 1 -i(Ar) 

( - iy(pH(x)yiy) + I ( - n* I pv(x)yw = o, (20) 
A: = 0 l_/ = 0 J 

where pkj = pjk = Ckj. Consequently, following the "second order" method we 
have obtained only a partial analogy of the statement iii), which is summarized in 
then next theorem. 

Theorem 3. Let (2) be conjugate on I0 = (c, d) _= /. There exist functions pkj(x), 
k,j = 0, ..., n-\, such that pkj(x) = pjk(x), the matrix (pkj(x))kjl0 -
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— diag {p0(x), ..., pn _ j (x)} is nonnegative definite, has rank 1 for every x e I0 and 
equation (20) is also conjugate on I0. 

The open question is whether or not the full analogy of iii) holds. This leads 
to the following conjecture. 

Conjecture. Suppose that (2) is conjugate on I0 _l I. There exist functions 
pj(x) e CJ(I0) such that pj(x) > pf(x) on I0, j = 0, ..., n — 1, and the equation 

n 

Z (-l)k(P(x)y(k)){k) = 0, pn(x) = p„(x), is also conjugate on I0. 
k = 0 

The preceding investigation leads to a more general problem, which can be 
introduced in the following way: Consider a trigonometric system (7) and ask 

when the matrix Q(s) dx, c e I, is a phase matrix of some equation (2), i.e.. 

when system (7) results (using trnaformation (6)) from a linear Hamiltonian 
system corresponding to (2). Resolving this problem, we would have a useful tool 
for the construction of higher order self-adjoint equations whose solutions have 
the described properties. Using this technique for the second order equations, 
N e u m a n [10], [11] solved several open problems in the qualitative theory of 
these equations. 

Now investigate the inverse problem — to find a phase matrix of a given 
self-adjoint linear differential equation when the solutions of this equation are 
known. This problem is trivial for second order equations (the phase function 
a(x) is defined as a continuous function satisfying the equality tg a(x) = yx (x) 
y2(x), where yx, y2 are linearly independent solutions of the equation under 
consideration). In the higher order case one needs to solve certain first order 
linear differential systems with an antisymetric matrix, see [5]. In general, such 
systems can be solved explicitly only for 2 x 2 antisymetric matrices (which 
correspond to fourth order equations). In order to study the oscillation proper­
ties of self-adjoint equations via the properties of their phase matrices, it would 
be useful to know at least the phase matrices of some equation with relatively 
simple solutions, like y{2,,) = 0, y{2,,) ± y = 0, etc. 
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