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INTEGRATING BOUNDED FUNCTIONS 
FOR THE DOBRAKOV INTEGRAL 

CHARLES SWARTZ 

In [5] and [6], I. Dobrakov has developed a theory for the integration of 
vector-valued functions with respect to operator-valued measures which is much 
more general than the, perhaps-better-known, integration theory developed by R. 
Bartle in [1] (cf. [4] II. 4). Due to the generality of the Dobrakov integral, it is 
even non-trivial to integrate bounded mesurable functions as is evidenced by 
Example 7' of [5]; this should be contrasted with Theorem 3 of [1] and the 
restrictive definition of measurability employed in [1]. In Theorem 5 of [5], 
Dobrakov shows that under suitable restrictions on the measure \x, it is indeed true 
that all bounded measurable functions are /i-integrable. In this note, we point out 
that in a certain sense Dobrakov's result in Theorem 5 is best possible. We then use 
this result to make several remarks pertaining to various other results of [5]. 

Let X, y be (real) 5-spaces and L(X, Y) the space of bounded linear operators 
from X into Y. If -T is a cr-algebra of subsets of a set 5 and JU: E-+L(X, Y) is 
finitely additive, the semi-variation of \i is defined by 

fi(E) = supj^fi(Ek)xk\\, 

where the supremum is taken over all partitions {Ek} of E and all xkeX, \\xk \\ ^ 1. 
Let bca(Z, L(X, Y)) be the space of all vector measures JU: JS-^L(X, Y) which 
have bounded semi-variation and are countably additive in the uniform operator 
topology of L(X, y) . 

The finitely additive set function JU: E-^L(X, Y) is strongly bounded (continu­
ous in [5]) if fi(Ej)—• () whenever {Ef} from 2 decreases to the empty set. If \i is 
strongly bounded, then \x has finite semi-variation ([6] Th. 5), and since ||ju(.E)|| ^ 
fi(E), (iebca(Z, L(X, Y)). The converse is false, i.e., \i may belong to 
bca(Z, L(X, Y)) and fail to strongly bounded (Example 7 of [5]; see also the 
example constructed in Theorem 1 below). However, if the space Y contains no 
subspace isomorphic to c0 then every \i e bca(H, L(X, Y)) is strongly bounded 
([5], *-Theorem). 
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Throughout this paper, the term integral will refer to the integral of Dobrakov 
developed in [5], [6]. Let //: ~~—>L(X, Y) have bounded semi-variation and be 
countably additive with respect to the strong operator topology of L(X, Y). A 
measurable function / : 5—>Xis said to be scalarly //-integrable if / i s _y'//-integra-
ble for each y'eY; / / / : .~7-»X' is the measure defined by (y'fi(E), x) = 
(y', ii(E)x) (the term weakly integrable is used in [5]). I f / i s scalarly//-integrable, 
then y'^JEfdy'fi defines an element of Y' for each EeS, and we denote this 

element by I / d//. If / is scalarly //-integrable, then / is //-integrable iff jEf d// e Y 

for each EeH ([8]). It follows from Theorem 5 of [5] that every bounded 
measurable function is scalarly //-integrable; however, a bounded measurable 
function may fail to be integrable (Example 7' of [5]). 

From Theorem 5 of the *-Theorem of [5], it follows that if Y contains no 
subspace isomorphic to c0, then every bounded measurable function is //-integrable 
for every \i e bca(Z, L(X, Y)). The following theorem shows that in a very real 
sense this result is best possible. 

In what follows 3P will denote the power set of the positive integers N. 

Theorem 1. Let X be infinite dimensional. Then there exist // e bca(&, 
L(X, Co)) and a bounded measurable function f: N—>X such that f is not 
//- integrable. 

Proof: By Corollary 2.3 of [7], there is a bounded sequence {x'j} c: X' such that 

Xj-*0 weak* and inf | |x}| |>0. Let ay = {2'~\ 2 ' - 1 + l, ... 2 ' - l } and note Oj 

contains 2y~ integers. Let {ey} be the canonical basis vertors in c0, c, = {(5,*}r=i and 
set yj = (l/2'_1)c ; . For keN define Tk eL(X, c0) by Tkx = (x), x)yj where ke Oj. 
The series 2T* is subseries convergent in the strong operator topology since for 

xeX, y^Tkx = 2.(x'j, x)ej9 and, moreover, since ||T*||—>0, the series ZT* is 

norm-subseries convergent (see the proof of Theorem IV.1.1 of [3]). Define 

jU: £~*—>L(X, Co) by fi(o)= ~>] Tk. By the observations above fi is countably 
ke a 

additive in the norm topology ;and fi(N) ^ s u p ||JC/|| so \iebca(&, L(X, c0)). 

For each / pick Xj e X, ||jcy|| = 1, such that (x), Xj) + IIj> ||*y||. Define / : N—>X 
by f(k) = Xj where keoj. Then / is bounded and ^-measurable, but / is not 
//-integrable since 

(x'j, XJ)++0 and /d/i = n / i ( ^ / = X ( 4 ^ ^ r W 
JN 7=1 keoj y~T 

R e m a r k 2. The construction of the measure /i in Theorem 1 is motivated by 
Example 7 of [5]. Note that the function / constructed above is actually an 
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elementary function, where /: 5—>Xis -T-elementary if f=^CEjXj with the {Ej} 

disjoint from _T and xj e X. (Here CE denotes the characteristic function of E.) 
Using Theorem. 1 we obtain the following Corollary which gives several 

characterizations of B-spaces not containing a copy of c0 in terms, of integrability 
for the Dobrakov integral. 

Corollary 3. Let X be infinite dimensional. The following are equivalent: 

(i) Y contains no subspace isomorphic to c0, 
(ii) every bounded function f: IV—>X is integrable with respect to each 

\i e bca(0>, L(X, Y)), 
(iii) every bounded elementary f: IV—:>X is integrable with respect to each 

\i e bca(&, L(X, Y), 
(iv) every n e bca(2P, L(X, Y)) is strongly bounded, 
(v) every scalarly \i-integrable function is \i-integrable for each 

\x e bca(®, L(X, Y)). 

Proof: (i) implies (ii) follows from the *-Theorem and Theorem 5 of [5]; (ii) 
clearly implies (iii) and (iii) implies (i) by Theorem 1. (i) implies (iv) by the 
*-Theorem of [5]; if (iv) holds, then (ii) holds by Theorem 5 of [5]. (v) implies (ii) 
since a bounded measurable function is always scalarly integrable ([5], Theorem 5), 
and (i) implies (v) by Theorem 17 of [5]. 

Remark 4. Note the equivalence of (ii) and (iv) above shows that the 
*-Theorem of [5] is also best possible. 

Theorem 1 also gives the following characterization of finite dimensional spaces. 

Corollary 5. X is finite dimensional iff every bounded function f: IV—> X is 
[i-integrable with respect to every \i e bca(£P, L(X, c0)). 

Proof: If X is finite dimensional, we may assume X=R by treating the 

coordinate functions of/. Then L(X, Co) = c0 and I fd[i= 2) ii(k)f(k), where 

the series is norm-subseries convergent in c0 since the {f(k)} are bounded and 
[A: 0*—•CO is norm countably additive ([3], p. 59). 

The converse follows from Theorem 1. 
As noted above Dobrakov shows in Theorem 5 of [5] that if [A: Z—>L(X, Y) is 

strongly bounded, than any bounded measurable function is ^-integrable. We show 
below in Theorem 6 that this result is also best possible. 

Theorem 6. Let /i: 2-+L(X, Y) have bounded semi-variation and be count-
ably additive in the strong operator topology. If every bounded (elementary) 
2-measurable function is \i-integrable, then \i is strongly bounded. 

CO 

Proof: Let {Ej} cS be disjoint and ||jr/||<l, xs&X. Set f—^\CBpcj, where CB 
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denotes the characteristic function of E. Then / is scalarly /i-integrable with 

I f dpi = ^.li(Ej)Xj e Y' (Theorems 10 and 17 of [6] applies to the measure y \i 
Js y = l 

for each y' e Y'.) By hypothesis J fdfie Y and ly\ J f d^\ = ^y'fi(Ej)Xj for 

y' e Y' (Theorem 17 of [6]). Thus, 2ju(Ey)xy is weak-subseries convergent and, 
therefore, norm-subseries convergent by the Orlicz—Pettis Theorem ([3] p. 60). 
By [2], Lemma 3.1, // is strongly bounded. 
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ИНТЕГРИРОВАНИЕ ОГРАНИЧЕННЫХ ФУНКЦИИ ДЛЯ ИНТЕГРАЛА 

ДОБРАКОВА 

СЬаг1е§ 8\уаг1г 

Р е з ю м е 

В статье рассматривается интефирование векторных функций по операторной мере в смысле 
Добракова. При некоторых удобных офаничениях наложенных на меру, все офаниченные 
измеримые функции интефируемы. Показано, что, в некотором смысле, этот результат лучший 
возможный, и приводятся также некоторие дальнейшие результаты. 
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