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INTEGRATING BOUNDED FUNCTIONS
FOR THE DOBRAKOYV INTEGRAL

CHARLES SWARTZ

In [5] and [6], I. Dobrakov has developed a theory for the integration of
vector-valued functions with respect to operator-valued measures which is much
more general than the, perhaps-better-known, integration theory developed by R.
Bartle in [1] (cf. [4] II. 4). Due to the generality of the Dobrakov integral, it is
even non-trivial to integrate bounded mesurable functions as is evidenced by
Example 7' of [5]; this should be contrasted with Theorem 3 of [1] and the
restrictive definition of measurability employed in [1]. In Theorem 5 of [5],
Dobrakov shows that under suitable restrictions on the measure y, it is indeed true
that all bounded measurable functions are u-integrable. In this note, we point out
that in a certain sense Dobrakov’s result in Theorem 5 is best possible. We then use
this result to make several remarks pertaining to various other results of [5].

Let X, Y be (real) B-spaces and L(X, Y) the space of bounded linear operators
from X into Y. If ¥ is a g-algebra of subsets of a set S and u: T—>L(X, Y) is
finitely additive, the semi-variation of u is defined by

S (Bl

fi(E) =sup

where the supremum is taken over all partitions { E;} of E and all x, € X,, || x| <1.
Let bca(Z, L(X, Y)) be the space of all vector measures u: ¥— L(X, Y) which
have bounded semi-variation and are countably additive in the uniform operator
topology of L(X, Y).

The finitely additive set function u: — L(X, Y) is strongly bounded (continu-
ous in [5]) if fi(E;)— 0 whenever {E;} from X decreases to the empty set. If u is
strongly bounded, then y has finite semi-variation ([6] Th. 5), and since ||u(E)||<
A(E), pebca(Z, L(X,Y)). The converse is false, i.e., u may belong to
bca(Z, L(X, Y)) and fail to strongly bounded (Example 7 of [5]; see also the
example constructed in Theorem 1 below). However, if the space Y contains no
subspace isomorphic to co then every ue bca(Z, L(X, Y)) is strongly bounded
([5], *-Theorem).

141



Throughout this paper, the term integral will refer to the integral of Dobrakov
developed in [S], [6]. Let u: ¥— L(X, Y) have bounded semi-variation and be
countably additive with respect to the strong operator topology of L(X, Y). A
measurable function f: S— X is said to be scalarly u-integrable if f is y'u-integra-
ble for each y'eY'; y'u: ¥— X' is the measure defined by (y'u(E), x)=
(y', u(E)x) (the term weakly integrable is used in [5]). If f is scalarly u-integrable,
then y'— [sf dy'u defines an element of Y” for each E € X, and we denote this

element by f f du. If fis scalarly u-integrable, then fis u-integrable iff [¢f due Y
E

for each Ee€X ([8]). It follows from Theorem 5 of [5] that every bounded
measurable function is scalarly u-integrable; however, a bounded measurable
function may fail to be integrable (Example 7' of [5]).

From Theorem 5 of the *-Theorem of [5], it follows that if Y contains no
subspace isomorphic to ¢, then every bounded measurable function is u-integrable
for every ue bca(Z, L(X, Y)). The following theorem shows that in a very real
sense this result is best possible.

In what follows 2 will denote the power set of the positive integers N.

Theorem 1. Let X be infinite dimensional. Then there exist ue bca(P,
L(X, co)) and a bounded measurable function f: N— X such that f is not
u-integrable.

Proof: By Corollary 2.3 of [7], there is a bounded sequence {x}} < X' such that

xj—0 weak* and inf ||x}||>0. Let g={2"", 2"'+1, ... 27—1} and note ¢
J

contains 2’ integers. Let {¢;} be the canonical basis vertors in co, ¢, = { &} x-1 and
set y;=(1/2""")e,. For k € N define T € L(X, co) by Tix = (x}, x)y; where k € g;.
The series =T, is subseries convergent in the strong operator topology since for

xeX, ;Tkx=§;(x},x)e,», and, moreover, since ||Tk||—0, the series =Tk is
=1 j=
norm-subseries convergent (see the proof of Theorem IV.1.1 of [3]). Define

u: P— L(X, co) by u(o)=> T.. By the observations above u is countably
keo

additive in the norm topology :and fi(N) <sup ||x}|| so u e bca(P, L(X, c)).
J

For each j pick x; € X, ||x;|| =1, such that (x}, x;) + 1/j>||x}||. Define f: N— X
by f(k)=x; where ke o;. Then f is bounded and P-measurable, but f is not
u-integrable since

(xj, x;)+0 and L fdu =,Z ;i”(k)xi_—';(x;’ x;) € € I"\co.

Remark 2. The construction of the measure u in Theorem 1 is motivated by
Example 7 of [5]. Note that the function f constructed above is actually an
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elementary function, where f: S— X is Z-elementary if f= ZCE,x,- with the { E;}
i=

disjoint from X and x;e X. (Here Cg denotes the characteristic function of E.)

Using Theorem. 1 we obtain the following Corollary which gives several
characterizations of B-spaces not containing a copy of ¢, in terms_of integrability
for the Dobrakov integral.

Corollary 3. Let X be infinite dimensional. The following are equivalent:

(i) Y contains no subspace isomorphic to co,

(ii) every. bounded function f: N— X is integrable with respect to each
webca(?, L(X, Y)),

(iii) every bounded elementary f: N— X is integrable with respect to each
uebca(?, L(X, Y),

(iv) every pe bca(P, L(X, Y)) is strongly bounded,

(v) every scalarly u-integrable function is u-integrable for each
uebca(?, L(X, Y)).

Proof: (i) implies (ii) follows from the *-Theorem and Theorem 5 of [5]; (ii)
clearly implies (iii) and (iii) implies (i) by Theorem 1. (i) implies (iv) by the
*-Theorem of [5]; if (iv) holds, then (ii) holds by Theorem 5 of [5]. (v) implies (ii)
since a bounded measurable function is always scalarly integrable ([5], Theorem 5),
and (i) implies (v) by Theorem 17 of [5].

Remark 4. Note the equivalence of (ii) and (iv) above shows that the
*-Theorem of [5] is also best possible.

Theorem 1 also gives the following characterization of finite dimensional spaces.

Corollary 5. X is finite dimensional iff every bounded function f: N— X is
u-integrable with respect to every u € bca(?, L(X, co)).
Proof: If X is finite dimensional, we may assume X=R by treating the

coordinate functions of f. Then L(X, c))=co and f fdu= > u(k)f(k), where
E ke E

the series is norm-subseries convergent in ¢, since the {f(k)} are bounded and
u: P— co is norm countably additive ([3], p. 59).

The converse follows from Theorem 1.

As noted above Dobrakov shows in Theorem 5 of [5] that if u: - L(X, Y) is
strongly bounded, than any bounded measurable function is u-integrable. We show
below in Theorem 6 that this result is also best possible.

Theorem 6. Let u: — L(X, Y) have bounded semi-variation and be count-
ably additive in the strong operator topology. If every bounded (elementary)
Z-measurable function is u-integrable, then u is strongly bounded.

Proof: Let {E;} = X be disjoint and ||x;]|<1, x; € X. Set f= 2 Cex;, where Cg
=
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denotes the characteristic function of E. Then f is scalarly u-integrable with

f fdu= 2;4(E,-)x,e Y” (Theorems 10 and 17 of [6] applies to the measure y'u
S 1=

for each y' € Y'.) By hypothesis f fdueY and <y’,f fdy>=2y’u(E,-)x, for
s s 1

y' €Y' (Theorem 17 of [6]). Thus, Zu(E;)x; is weak-subseries convergent and,
therefore, norm-subseries convergent by the Orlicz—Pettis Theorem ([3] p. 60).
By [2], Lemma 3.1, u is strongly bounded.
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UHTETPUPOBAHUE OTPAHMYEHHBLIX ®YHKIUU OJIs1 UHTEIPAJIA
JOBPAKOBA

Charles Swartz

Pe3iome

B craTbe paccMaTpHBAaeTCs HHTErPUPOBAHHE BEKTOPHBIX (DYHKLMIA IO ONEPaTOPHOI Mepe B cMbIciie
o6pakoBa. IIpy HEKOTOPBIX YNOGHBIX OTPAHHYEHMAX HAJIOXKEHHBIX HA MEPY, BCE OrPaHHYEHHbIE
n3MeprMble QYHKUMH HHTerpupyeMbl. [Ioka3aHo, YTO, B HEKOTOPOM CMBbIC/IE, 3TOT Pe3yNbTaT Ay4LUHi
BO3MO)KHI>[ﬁ, H MPHUBOJSATCA TAKXKE HEKOTOpHE uanbueﬁmue PeE3ynbTaTHI.
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