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LOCAL CHARACTERIZATIONS 
OF DARBOUX BAIRE 1 FUNCTIONS 

MARTA POPOVlCOVA 

In [1] there are given several characterizations of Darboux Baire 1 functions. 
Some of them can be considered as local characterizations. In this paper we are 
concerned with mutual relations between them, including a local characterization 
of Darboux functions given in [2]. 

Let / denote a real valued function defined on an interval / . Let us consider the 
following properties of / at x e I: 

(1) For each real number h>0 we have I+(x)czf((x, x+ h)) and I-(x) c= 

f((x-h, x)), where I+(x) = lim inf f((x, x+h)), lim sup f((x, x + h))) and 
h-*x+ h-+x + 

I-(x) = (lim inf f((x-h, x)), lim sup f((x-h, *>)). 
/ . - * X+ / l-»X + 

(2) f(x)e(\im inf f(t), lim sup f(t)) n (lim inf f(t), lim sup / ( / ) ) . 
r-Kc r-wc t~*x

+ l7*x* 

(3) f(x)eK+(f, x)r\K~(f, x), where K+(f, x) = {y ; for each neighbourhood 
N of y and for each real number h>0 is f~\N) n (x, x + h)£0}, similarly 
K~(f,x). 

(4) For each a>f(x) and h>0 we have {t;f(t)<a} n (x,x + h)i=0 and 
{t;f(t)<a} n (x -h,x) + 0, and for each b<f(x) and h>0 we have {t\f(t)>b} 
n (x-h,x)^0and {t;f(t)>b} n (x, x + h)±0. 

(5) For each a >f(x) and h>0, cardinalities of {t; f(t)<a} n (x, x + h) and 
{t;f(t)<a} n (x-h,x) are c. For each b<f(x) and h>0, cardinalities of 
\t;f(t)>b} n (x,x + h) and {t;f(t)>b} n (x-h,x) arec. 

(6) There is a perfect set P such, thatx e P, is a bilateral limit point of P and flP 
is continuous atx. 

In [5] and [7] it is proved that for Baire 1 functions condition (2) is a local 
condition for Darboux functions. In [8] it is proved that for Baire 1 functions 
property (3) fulfilled in each x el is equivalent to Darboux property. 

It is obvious that / has the property (4), resp. (5), in each x e I iff / is from the 
class M0, resp. Mu defined in [9]. In [9] it is also proved that for functions of Baire 
class 1 the class of Darboux functions is equivalent to the class M0 and Mu 
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In [6] it is proved that a function is of Baire class 1 with the Darboux property in 
I iff for each x el the property (6) is fulfilled. 

In the following we prove the relations between the properties (1)—(6), for any 
real functions defined on the interval I. 

Theorem 1. The properties (2) a (4) are equivalent. 

Proof, (2) implies (4). If f(x)<a, then a>lim inf f(t) _nd a>lim inf f(t). 
t-*x t-*x+ 

Hence x is a bilateral accumulation point of {t;f(t)<a}. If f(x)>b, then 

b < lim sup f(t) and b < lim sup f(t), hence JC is a bilateral accumulation point of 

{f,'f(t)>b}. 

(4) implies (2). Let / (x)^( l im inf f(t), lim sup /(f)) n (lim inf f(t), 
t-*x t-*x t-*x 

lim sup / ( t ) ) . Then the following cases can occur: /(jc)<lim inf f(t), f(x)< 
' — * + t-*x~ 

lim inf f(t), f(x) > lim sup f(t), and f(x) > lim sup f(t). 
t-*x+ t-*x t-*x+ 

Let / ( J C ) < lim inf f(t). Put a e (f(x), lim inf f(t))< Then from the definition of 
t-*x t-*x 

lim inf it follows that there is h > 0 such that {t; f(t)<a} n (JC - h, x) is an empty 
set, which contradicts (4). 

The proof in other cases is similar. 

Theorem 2. If a function f has the property (1) at x el, then it also has the 
properties (2)—(5) atx. 

Proof. (1) implies (2). Let /(jc)_(lim inf f(t), lim sup/ ( t ) ) n (lim inf / ( t ) , 
t-*x t-*x t-*x + 

lim s u p / ( 0 ) . Then one of the four inequalities: /(jc)<lim inf f(t), f(x)> 
t-*x+ t-*x~ 

lim sup f(t), /(JC) < lim inf f(t) and f(x) > lim sup f(t)holds. Let f(x) < lim inf f(t). 
t-*x t-*x+ \ t-*x+ t-*x 

Then there are h>0 and c such that / ( j c )<c< l im inf f(t) and (f(x), c) n 
t-*x~ 

/((JC — h, JC)) = 0, which is a contradiction to the assumption because (f(x), c) cz 
I_(JC). The proof in the other cases is similar. 

(1) implies (3). Let f(x)iK+(f,x)nK~(f,x). Then there exists h>0 and N 
such that f (N) n (JC,JC + /Z) = 0 or / _ 1 (N) n (x-h,x) = 0, where N is 
a neigbourhood of /(JC). Thus we have a contradiction. 

(1) implies (4). We have already proved that (1) implies (2) and according to 
Theorem 1 (2) and (4) are equivalent. 
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(1) implies (5). If 2+(JC) = 0, then the function / is continuous at JC from the right 
and the sets {t;f(t)<a} n (JC, x + h) and {t;f(t)>b} n (JC, jc + ft), for a>f(x) 
and b<f(x), have cardinalities c for every h>0. 

Similarly in the case I-(x) = 0 the sets {t; f(t) < a } n (JC - ft, JC) and {t; f(t)>b} 
n (JC - f t , JC) have cardinalities c for every h > 0 , a >f(x) and b <f(x). 

Let I+(x)=t0. Let a>f(x). Denote ai = min(a , lim sup/ (<jc , JC + k))). Then 
k-> 0+ 

we have (JC, x + h) n { t ; / ( t ) < a } => (JC, jc + ft) n/ _ 1(( l im inf / ( < J C , x + k)), ax)), 

which has cardinality c for every h >0. 

For b<f(x) let us denote fei = max(&, lim inf f(<x,x + k))). Then we have 

(JC,JC + /Z) n {t;f(t)>b} => (JC,JC + /Z) nf~\(bu lim sup/ (<jc , jc + k)))), which 

has cardinality c for every ft > 0 . 
Similarly for / - (JC) ^ 0 we have that (JC - ft, JC) n {t; f(t)<a} and (JC - ft, JC) n 

{t; / ( 0 > b } for /(JC) < a and f(x)>b, resp., have cardinalities c for every ft > 0. 

R e m a r k 1. For functions of Baire class 1 none of conditions (2)—(6) im­
plies (1). 

E x a m p l e 1. Define a function / on ( - 1 , 1) as follows: 

1 for;te{l/ri}r=iu{-l/rt}r=i, 
f(x) l 0 f o r j c 6 < - l , l ) - ( { l / n } : = i u { - l M } : = i ) . 

For JC = 0 the function / fulfils conditions (2)—(6) at JC, but it does not fulfil 
condition (1); moreover it is approximately continuous at x = 0. 

R e m a r k 2 . It is known that approximately continuous functions have the 
Darboux property. Example 1 shows that an approximately continuity of a function 
/ at a point x does not imply local property for Darboux function at x. 

Theorem 3. Property (3) implies properties (2) and (4). Property (5) implies 
(4) and (2). 

The proof is evident. 

R e m a r k 3. The reverse implications of Theorem 3 are not valid. 

E x a m p l e 2. Let us define a function as follows: 

( 1 for x e {l/n}n=iv{-l/n}n=i, 
l /2forjc = 0, 
O f o r j c e < - 1 , l ) - ( { l / n } : = l U { - l / n } : = i u { 0 } ) . 
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The function / is of Baire class 1 and at the point x = 0 it fulfils conditions (2) and 
(4) and it does not fulfil any conditions of (3), (5) and (6). 

R e m a r k 4. Properties (3) and (5) are independent. 
E x a m p l e 3. Let / be a characteristic function of a set A = {1, 1/2, 1/3, 1/4, 

..., —1, —1/2, —1/3, ..., 0}. The function/ fulfils condition (3) at x = 0, but does 
not fulfil (5) and (6). 

E x a m p l e 4. Put 

l f o r ^ e U ( 2 - 2 ' - 1 , 2 - 2 i ) , 

f(x) = \otorxe(-l,0), 

^ - l f o r x e l J ( 2 " 2 i , 2 - 2 f + 1 ) . 
£ = 1 

The function / is of Baire class 1, it fulfils condition (5) at x = 0 but it does not 
fulfil conditions (3) and (6). 

R e m a r k 5. The above mentioned examples demonstrate that any of the 
properties (2)—(5) does not imply (6). 

Theorem 5. If a function f has the property (6) at x el, then f has also the 
properties (2)—(5) at x. 

Proof. (6) implies (3). Let there exist a perfect set P such that xeP, x is 
a bilateral point of accumulation of P and flP, is continuous at x. Hence 
f(x)eK+(f,x)nK-(f,x). 

(6) implies (2) and (4). According to Theorem 3, (3) implies (2) and (4) and 
from the foregoing it follows that (6) implies (2) and (4). 

(6) implies (5). Let there exist a perfect set P such that x e P, x is a bilateral point 
of accumulation and flP is continuous at x. Let a>f(x). Then {t;f(t)<a} n 
(x-h,x) ZD {t; f(t)<a} n(x-h,x) nP, which is a set of cardinality c, because 
flP is continuous a t x . 

Similarly {t;f(t)<a}n(x, x + h) has cardinality c and for b<f(x) the sets 
{t;f(t)>b} n (x-h,x) and {t;f(t)>b} n (x,x + h) have cardinalities c. 

In [3] there is given an example of a function which takes on every real number 
as value a continuum number of times on every perfect set. It is obvious that such 
a function is Darboux but it does not fulfil condition (6). 

We can prove the following theorem. 

Theorem 6. If f is a Borel function, then (1) implies (6). 

Lemma. Let f satisfy (1) at xel, then for each h>0 and e>0 we have 
f~l((f(x)-e,f(x) + e))n (x, x + h) and f~\(f(x)-e, f(x) + e)) n (x - h , x) are 
sets of cardinalities c. 
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Proof of Lemma . Let xel and I+(x)af((x, x +h)) for every A > 0 . We 
show that for every e > 0 , f~\(f(x) - e, f(x) + e)) n (x,x + h) has cardinality c. 

Let us consider the following cases: (a) _+(*) = 0 a n d (b) I+(x)ef(x). 

(a) Let I+(x) = 0. Then lim s u p / « x , x + h)) = lim inf f((x, x + h)) = f(x). 
h-+0 / .—0 + 

Hence / is continuous from the right at x and we have that card f~\(f(x)-e, 
f(x) + e)) n (x,x + h) = c for every h>0 and £ > 0 . 

(b) . If f(x) e I+(x), then I£ = U(x) n (f(x)-e,f(x) + e) is a subinterval of 
f(<x,x + h)). Clearly card f~\l£) n <JC,X + A) = C and f ' ( J . ) n (x,x + h) c_ 
/ - 1 ( ( / ( x ) - £ , / ( x ) + £)) n <x, * + /*). 

Similarly it can be proved that the condition I-(x) a f((x-h,x)) for every 
h > 0 implies that f~\(f(x) - e, f(x) + e)) n (x - h, x) has cardinality c for every 
A > O a n d £ > 0 . 

Proof of T h e o r e m 6. According to Lemma, the set f~1(f(x) — e, f(x) + e) n 
(x, x + h) has cardinality c for every h > 0 and e > 0 . Then there is /*. > 0 , /*! </* 
such that f~\(f(x) - e, f(x) + e)) n <^ + hu x + h) has cardinality c. This follows 

from the fact that f~\(f(x) - e, f(x) + e)) n (*,* + h) = U « * + Un,x + h)) n 
n=no 

/ _ 1 ( ( / ( . r ) - ^ , / ( ^ ) + e)), n0 = min {n; \ln<h). Since / is a Borel function, 
/ \(f(x)~£, f(x) + e)) n <x + /ii, x + /z) is a Borel set and according to the 
Alexandroff—Hausdorff's theorem [4, p. 355], there is a perfect set Px a 
f~\(f(x)-e,f(x) + e)) n (x + hx, x + h). 

Similarly, according to Lemma the set f~\(f(x) - e/2, f(x) + e/2)) n (x, x + hx) 
has cardinality c and there is h2>0, h2<hx such that f~\(f(x)-e/2, f(x) + e/2)) 
n (x + h2, x + hx) is a Borel set of cardinality c. Therefore there is a perfect 
set P2df-\(f(x)-e/2, f(x) + s/2)) n (x + h2,x + hx). By induction there is 
a decreasing sequence of positive numbers {hi}7=\ converging to 0 such that 
f~\(f(x)-£/2l~\ f(x) + e/2i~1)) n (x + hi9 x + ht-x) has cardinality c. Therefore 
there is a sequence of perfect sets {Pi}T=x, 

f~\(f(x)-e/21-1, f(x) + e/2i~1))n(x + ht, x + h^)^Pt. 

Put P+ = U Pn. Since U Pn is dense in itself, P+ is a perfect set. From the 
n = l _n = l 

construction of P+ it follows that //P+ is continuous from the right at x. 
Similarly from the condition that I-(x)af((x—h, x)) for every h > 0 it follows 

that there is a perfect set P_ containing x and //P_ is continuous from the left at x. 
Put P = P+vP-. P is a perfect set and f/P is continuous a t* . 
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ЛОКАЛЬНЫЕ СВОЙСТВА ФУНКЦИИ ДАРБУ ПЕРВОГО КЛАССА ВЭРА 

Марта Поповичова 

Резюме 

В статье исследуются взаимоотношения между свойствами (1)—(6), кторые являются локаль­
ными свойствами функции Дарбу первого класса Бэра, для функции одного переменного. 
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