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ABSTRACT. Let I m m J (
r

0 0 ) ( r , r ) , n < m, be the set of r-jets of immer­

sions with source 0 £ Wl and target 0 G Mm . The r-order Grassmannian with 

indices m, n is the quotient space Gr
nTl — Imm J L Q, (Rn, M m ) / L ^ , where Uu 

is the r t h differential group of IRn which acts on Imm JTQ Q JWn, R m ) to the 

right. We prove tha t G^ n is orientable if and only if the number (r ) + 

( m - n ) ( n + [ ) is odd. 

1. Introduction 

The aim of this short remark is to study the orientability of the higher order 
Grassmann manifolds Gm n , which generalize the classical notion of a (first or­
der) Grassmann manifold G^^ . The geometric structures of this type have been 
introduced by E h r e s m a n n [2] and are also used as underlying structures for 
the geometric theory of partial differential equations (see [3]; the manifold Nm 

of k-jets of n-dimensional submanifolds of a manifold N from [3; 7.1] is a fibre 
bundle with base IV and type fibre Gn+mn). 

The Grassmann manifold Gm ? n consists of n -dimensional vector subspaces 
of IRm ; these subspaces can be canonically identified with some equivalence 
classes of 1-jets of immersions from IRn to Rm with source and target at the 
origin 0 . We understand Gni^n as a manifold of such equivalence classes. The 
rth order Grassmann manifold Gmn is then defined as a manifold of equivalence 
classes of r-jets of immersions from Wl to Wn . 

Using the methods of algebraic topology one can easily see that GniJl is 
orientable if and only if m is even. In this paper, we find by an elementary 
method a condition of orientability of Gnl n for arbitrary r . 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 53C42, 58A20. 
Key w o r d s : Immersion, r-jet, Differential group, Higher order Grassmannian. 
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2. H i g h e r o r d e r G r a s s m a n n i a n s 

In this section, we define the manifold Gr
nn . Our me thod is analogous to a 

me thod used in [1; 16.11.10] in the special case r = 1. 

Let r , n , and m be positive integers, n < m. Denote by Ln the r th 

differential group of R n , i.e. the group of invertible r- jets with source and target 

at 0 £ R n . Consider the manifold I m m J L 0 ) ( R n , R7 n) of regular r-jets with 

source 0 £ R n and target at 0 £ R m and the following canonical right act ion 

of L r on I m m J r
0 i ( ) ) ( R n , R m ) : 

Imm J{m (R n , Rm ' ) x Vn 3 (Jrg, Jra) -> Jrg o a £ Inmi J('u<0) (R" . R m ) . (2.1) 

An orbit of this act ion containing an r-jet J0g will be denoted by [J0g] . the 

orbit space I m m JL 0 ) ( R n , R m ) / L r by Gr
nin1 and the canonical projection of 

I m m J r
0 i 0 ) ( R n , R m ) onto Gr

mn by TT . 

For fixed m and n we shall denote by 7 , J , K, e t c , multi-indices of 
the form { i i , i2, . . . , in} , where 1 < ij_ < %2 < • • • < iri < rn . For a multi-
index I = {ii,i2,-'-jin} we denote { z n + 1 , z n + 2 , . . . , z m } = {1, 2 , / ? . } - / . 

where in+1 < in+2 < • • • < im, and define mappings r / : R m —-> R" and 

« / : R m - • R m " n by 

r / ( ^ . . , x m ) = ( * V . . , ^ ) , 

« / ( x 1 , . . . , x m ) = ( a ; * ^ 1 , . . . , a ; i m ) . (2.2) 

Fur ther we set 

Pi(Jo9) = (JLTi9^ Jo^ig), 

Tj = {J0
rg G Imm J (

r
0 i 0 ) ( R n , R m ) | JrTig £ L r ; 

(2.3) 

pi is a diffeomorphism from J ( 0 5 0 ) (R r \ R m ) to J ( ^ 0 ) ( R n , R n ) x J(J')<0)(K
TI, R m ~ " ) . 

and the restr ict ion pj |rp is a diffeomorphism from Tj to L r x JL 0 ) (R n , R'" ~ " ) . 

Then Tj is an open (obviously L r - inva r i an t ) submanifold of I m m JL 0 ) (R" . R m ) . 

L E M M A . The canonical action of the differential group L'n defines ov 
Imm JL 0 ) (R" , R m ) the structure of a principal Ln -bundle. 

P r o o f . We have to show t h a t t he graph G r a p h 1Z of the equivalence re­

lation 1Z on I m m JL 0 ) ( R n , Rm ' ) associated wi th the group action (2.1) is a 

closed submanifold of I m m J r
0 0 ) ( R n , R m ) x Imm J r

} 0 ) ( R n , R m ) , and t ha t the 

action (2.1) is free (see [1]). 
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Consider for any multi-index I the graph Graph Tj of the mapping 

r , : T,xL'n 3 [jy, r0a) -> J^K/oj^0(j f;r /oj (; f f)-1oj t> e j[0)0)(nr , i r - » ) . 

Since this mapping is smooth, Graph T/ is a closed submanifold of 
Ti x Lr

n x J (
r

0 ) 0 ) ( K m , K m - n ) . But 

Graph Tin (Tj x Imm J(
r
0?0)(Rn, R m ) ) 

= (idTj xp71)(Graphr /) n (T/ x ImmJ(
r
0i0)(IRn,Rm)) . 

Since IJ Tj = Imm JJ() 0 ) (R n , R m ) , the set Graph7£ is a closed submanifold of 

Imm J r
) ( ) ) ( R n , R m ) x Imm J (

r
0 j 0 ) (R n ,K m ) . 

To complete the proof, we have to show that the action (2.1) is free. Choose 
for any multi-index I two jets, JQ9\ E TJ and J0g2 E Imm J(

r
0 0 )(R n , R m ) , 

and suppose that there exists Jra G Ln such that J0g2 = ^ogi ° Joa • Since 

J'l)Ti ° Jo92 = Jori ° Jo9i ° Jo° > w e n a v e Joa = (Jori ° Jo9i)~l ° (JoTI ° ^og'2), 
which completes the proof. 

From Lemma it follows that there exists a unique smooth structure on Gnl n 

such that the mapping ix is a smooth surjective submersion. Considered with 
this smooth structure, Gni n is called the rth order Grassmannian (with indices 
m, n ) . 

We shall introduce an important example of a smooth atlas on the manifold 
G'n),n . Set for any multi-index I 

Ui = 7r(Tj) (2.4) 

and consider the mapping 

$ / : Vi ^ [J0
r<?] -> J0

r«/ o Jig o (J^n o J ^ ) " 1 € J [ 0 i 0 ) ( R n , l R m - n ) . (2.5) 

Since <£/ o TT is smooth, and 

( ^ X - W = ^ ( J ^ n , ^ ) " 1 O J£(idR„,/l)) , (2.6) 

4>/ is a diffeomorphism. We set 

<Pi = X°$i, (2-7) 

where \ is the canonical global system of coordinates on JL 0 \ (Rn , R m _ n ) . If 

j;;h e J;o m (R 7 \ R m ~ n ), h= ( b n + 1 , . . . , hm), then 
( 0 ,0 ) 

^""IftřггbгC"!- ( M ) 
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where 1 < s < r , n + 1 < a < rn, and 1 < Aq < • • • < k\s < n. The pair 

(Uj^pi) is a char t on Gm n and the system ((Uj,pi)) is a smoo th at las . 

In the next pa ragraph we shall use the mapping 

* : Vm x G;„,„ 9 (J (>, K.g]) - K « o g) e G'nKII . (2.9) 

It is easily seen t h a t this mapping is defined correctly, and defines a smooth left 

act ion of Lm on Gm n . 

3 . H i g h e r o r d e r G r a s s m a n n i a n s o r i e n t a b i l i t y t h e o r e m 

T h e following theorem clarifies the orientabil i ty of the higher order Grass­
mannians . 

T H E O R E M . The rth order Grassmannian Gm n is orientable if and only if th( 

number ( ) + (m — n) ( . _ -. ) is odd. 

P r o o f . We shall use indices a , 11, k , t, s , and Aq k,s . where n + 1 < 

a < m. n + 2 < fi < m, 1 < k < n, 1 < t < n. — 1 . 1 < .s < r . and 

1 < Aq < • • • < fcs < n. 

T h e proof can be divided into three steps. In the first s tep, wre derive the t rans­

formation formula (3.7) between char ts (Uj,pj), (Uj,pj). where 

I = { 1 , . . . , n } , and J = {1 , . . . , 77 — 1 , 7 7 + 1 } . We note t ha t if the man­

ifold Gmn is orientable, then for any two points x,x E Uj D Uj it holds 

sgndet / ) ( ( /? / o pj1)(x) = sgndetD(pj o ( ^ J 1 ) ( x ) . In the second step, we show 
t h a t this formula considered for specially chosen points x, x G Uj H £// is equiv-

( ^» I T* \ / T) 1 r- \ 

) + (rn — w)( , , '_ 1 ) is odd. This will 
prove the first implication of the theorem. In the th i rd s tep, we prove tha t from 
the same formula it follows t h a t the manifold Gm n is orientable. 

Set 
/ = { 1 , . . . , 77} , J = { 1 , . . . , n - 1.77 + 1} . ( : u ) 

and denote pj = (xk k ) , and pj = (x£ A. ) . For fixed indices .s . O. and 

Aq,. . . . ks define 

, 1 if a = n + 1 , 
(\(o~, «s, Aq, . . . , ks) = 

0 if a > n + 1 

and denote by /3(<r, s, Aq,. . . , A:iS) t he number of indices Aq ks which are 
equal to n, in the special case of a = n + 1 , s = 1 , and Aq = !f set 

o ( n + 1, V77) = 0 , 

/3(n+ l , V n ) = 2 . 
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If there is no danger of confusion, we wri te a , /3 ins tead of a(cr, s, fci,. . . , fc.s) , 

,^(a , .s , fci , . . . , fc t S) . 

The set of polynomials in t he variables (xt ) , (xtt ) , . . . , (xt t _ ) , 

(x\\ t _ i n ) (v E { c r , n - r - l } , { i i , . . . , fs_i} C {fci, . . . , fc.s, n} , tx < • • • < t . s _ i ) , 

each non-zero member of which is independent of t h e variable x n + 1 and is at 

least of second degree, will be denoted by Pk k . T h e set of functions of the 

form 

, _____ P2 P.s + 1 
q Po xi\+J (x^y ^ {x^y+i' 

where / J 0 , P I , • • • , R s - i € Pk_...k_ , will be denoted by Qkl_k_ . 

Let ;r e i V / f l Uj , <I>j(x) — J r / i . Since, by our choice of I and J , 

дxn 

t h e n there exists a m a p p i n g h such t h a t , on a n e i g h b o u r h o o d of 0 G Wl , we 

have 

hn+l(x\.. .,xn-\hn+l{x\ ... , x n ) ) = x" , 

h"{x\ ..., xn) = h"(x\..., xn~\hn+1{x\..., x")) 

(inverse function t h e o r e m ) ; T h e n $,/(x) = J Q / I . 

T h e r e is t h e following relat ion between t h e m a p p i n g s h, a n d h: 

дяh<т 

(3.2) 

dsha Brk^ Brks 

( i \ » • •• r*> »>\ 

a/iT i ť).ГA"i . . .дxh* t a u n + П «+# 

Әз;n 

Ì 2 L I / я s - l f Ч ^ t é W O2 Ji" O4"1/!1 ' 0 8 / l " \ 
+ 9 \ 7 i x ^ ' dx^dx1* ' " ' ' 9 x f l . . . a x * « - i ' 9 x ' i . . . a c ' » - ' ^ x " j ' 

where O. £ Qk_m„K , ^ 6 {<r, n + 1} , { t i , . . . , f s - i } C {fci, . . . , fc.,,n} , t\ < . . . 

• • • < /.s_i . This formula can be verified by induct ion; by a direct calculation 
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with the help of (3.2), we obtain 

8hn+1 

дhn+1 1 дhn+1 дxt 

дxn 

дhn+г 

дxn 

дh^ 
дh^ дxn 

дxn ~ <9/г n + 1 ' 

дxť дhn+ï 

дxn 

дhџ дhn + 1 

дh" дhu дxn дx' 

дxf дxl дhn+1 

дxn дxn 

д2hn+1 д2hn+1 дhn+1 д2h"+l 

д2-hn+i ^ д{xn)2 д2hn+1 дҳtдx" дҳt ІҲ~~~~ 

Ә(XП)2 ~ / ð Л » + n З ' дxtдxn~ / 9 An+l\2 ґдh" + 1 \ 3 

(3-0 

dxn ) \ dxn ) \ dx11 

which satisfies (3.3), and by differentiation of the (s — 1)-order formula 

d-'-hT 

д*-1^ , ^nдxkl ...дxk* 

'дhr' 
я~ь д k , = ^ 1 ) " ~ — (3-5) 

dxn 

fdhv d2hv ' d8~2hv d*-lhu 

+ q\dx~~^ ' dx^dx1* ' " " ' dxfl ...dx1*-* ' dxl1 ...dx~^dx~»~ 

(<?i G Qk^.ks--, > l^ ^ {cr,n + 1}, {^i,...,^_2} C { k i , . . . , k s _ i , r z } , tx < . . . 

• • • < ta-2 • a n d 7 -= /3(cr, 5 - 1, ki,..., ka-i)) with respect to xk* , we obtain 

(3.3). 

Since 

•̂••"-̂  = a - ^ 1 * . ( 0 ) ' •̂••*>) = ^ S ^ r W (3.6) 
(see (2.8)), formula (3.3) has in 0 G Mn the form 

xa 

Xk±...ks = ̂ T n+^a+P +(l(Xt1i
xt1t2i- '•ixt1...ti,-1i

x't1...ts-in) < (3.7) 
\Xn ) 

which is the transformation formula between the charts (Uj, pj). (Uj, p j) . 
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Now let us consider two specially chosen points x, x £ Uj H Uj , x = [fog] , 
x = [JQ(J] , where g(x1,... , x n ) = ( x 1 , . . . , x n , x n , 0 , . . . , 0) , and ^ ( x 1 , . . . , x n ) = 
( x 1 , . . . , x n , - x n , 0 , . . . , 0 ) . According to (2.5), there holds $ / (x) = $ j ( x ) 
= J r b , and $/(x) = $ j ( x ) = JQJI , where h(xx,... , x n ) = ( x n , 0 , . . . , 0) , and 
lt(x\ . . . , x n ) = ( - x n , 0 , . . . , 0 ) . From (2.7) and (2.8) it immediately follows 
that 

жfc1...fcs(
x) — xk1...ksi

x) — ì 

Xb, ь \ x ) — Xb, ь \ x ) — bk1...ks\-ьJ — •ьk1...k 

1 for a = n + 1, s = 1, ki = n , 

0 in all other cases , 

— 1 for cr = n + 1, 5 = 1, fci == n , 
(3.8) 

(3.9) 

0 in all other cases. 

Using (3.7) we get 

detD(<pj1o<pI)(<pI(x))= [ ] (-1)", 
(T,s,k1,...,ks 

detDitfovrifaix)) = J] (-l)a(-ir+^, 
<7,S,ki,...,fcs 

which means that if the manifold Gm n is orientable, then 

II (-!r= II (-ir(-ir+/3, (3.10) 
a,s,k1,...,ks a,s,k1,...,ks 

which is equivalent to saying that the number 

E (a+^) 
<T,S,fci,...,fc s 

is even. After some combinatorical calculations we get 

E (a + « - ( " + r ) + ( ™ - B ) ( ; + ' ) - l . (3.11) 
<T,S,rCi , . . . , r C s 

In the last part of the proof, we shall show that the condition (3.10) is 
sufficient for the manifold Gr

n n to be orientable. We shall need the following 
simple assertion, which can be proved by induction. 
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Let G be a smooth manifold, ((UL,ipL)) , i = 1 , . . . ,N. a smooth atlas on G. 
Suppose that there is a point XQ £ P| UL . and that for any indices / 1 . / 2 £ 
{1, . . . , N} the mapping det D(<pLl, p^1) has a constant sign on all its domain. 
Then the manifold G is orientable. 

Let I = {zi,22, • • • ,^n} , J = {jiij2? • • • :jn} be two arbitrary multi-indices. 
Denote again pj = (xk kJ and pj = (x% ks). The set Uj — Uj is given by 

UI-UJ = {xeUI\ det(AJ
t
k(x))=0, k, t e {1, 2,. . . , n}} . (:U2) 

where A: Uj -> Rn x Rm is a matrix such that A\k(x) = <5* , and .4;,T(.r) = 
x*J(x). Then the set Uj D Uj is non-connected and has two components. The 
set Uj — Uj , and therefore the set Gmn — Uj is of measure zero. Then there 
exists a point £n £ f] Ui • 

If the function det D(pi o Pj1) has a constant sign on all its domain, we 
write (Uj, (/?j) ~ (Uj, <^j). We shall prove that the relation ~ is transitive. Sup­
pose (Uj,pj) ~ (Uj,pj) and (Uj,pj) ~ {UK,PK) and choose two elements 
Ti, x2 £ U/ H Uj n UK belonging to different components of Uj D UA' • Now 

s g n d e t D ( ( ^ / o ^ 1 ) ( ( ^ K ( x i ) ) 

= sgn det £>((/?/ op~1)(pJ(x1)) -sgndet D(pj o p~1)(pK(xi)) 

= sgndet D(p 1 o pj1) (pj(x2)) - sgn det D(pj o p-1)(pK(x2)) 

= sgndet D((pi o (.O~1)((pK(x2)) . 

Thus, ( U / , ( p / ) - ( U x , ^ K ) . 
Let 5 m be the permutation group of m elements. Define a group homo-

morphism F: 5 m —> Lm by F(7r) = J^a^ , where cr,-: Rm -> Rm is given 
by a7T(x1^... , x m ) = (x 7 ^ 1 ) , . . . ,x7r(m)) . F is obviously injective. We denote 
Pm = F(Sm). The mapping * p , * p ( z ) = *(p, :c) , (see (2.9)) is a diffeomor-
phism of Gm n . 

Let I, J , K , L be multi-indices such that the sets I — J and A' — I 
have just one element. There evidently exists an element p £ P m such that 
($p((7/) ,y)/o$p) = (UK, (^K), and (tfp(£/j),<pjotfp) = (UL,ipL). Hence, from 
(Uj,pj) ~ (Uj,(/9j) it follows (UK->PK) ~ (ULjpL). Finally, if 7 and J are 
arbitrary multi-indices, then there exists a sequence 7 = A"i,. . . , A y — «I such 
that the set AT,+i — AT, has for any 1 < N just one element. From the transitivity 
of the relation ~ and from the above assertion it follows that, if there exists 
a pair of charts (Uj.pj) and (Uj,pj) such that (Uj.pj) ~ (Uj,pj). then 
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the manifold Gr
mn is orientable. As we have proved, if the number f n + r J -f 

(/// — //) ( n _ T J is odd, then for I = {1, . . . , n} and J = { l , . . . , n — 1, n -h 1} , 

(lJi^i) ~ (Uj,ipj). This proves our theorem. 
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