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ABSTRACT. Let Imm.Jj,

sions with source 0 € R™ and target 0 € R™ . The r-order Grassmannian with

indices m, n is the quotient space G, ,, = Imm ](70 0)(IR", R™)/L], , where LI,

(R*,R™), n < m, be the set of r-jets of immer-

is the rth differential group of R’ which acts on Imm J(’0 0)(]R”,]R’“) to the
right. We prove that G, ,, is orientable if and only if the number ("!") +

(m — n)(’l'fl) is odd.

1. Introduction

The aim of this short remark is to study the orientability of the higher order
Grassmann manifolds G7, ,,, which generalize the classical notion of a (first or-
der) Grassmann manifold G, ,, . The geometric structures of this type have been
introduced by Ehres mann [2] and are also used as underlying structures for
the geometric theory of partial differential equations (see [3]; the manifold N},
of k-jets of n-dimensional submanifolds of a manifold N from [3; 7.1] is a fibre
bundle with base N and type fibre Gf;_,_,mm ).

The Grassmann manifold G, consists of n-dimensional vector subspaces
of R ; these subspaces can be canonically identified with some equivalence
classes of 1-jets of immersions from R” to R™ with source and target at the
origin 0. We understand G, ,, as a manifold of such equivalence classes. The
rth order Grassmann manifold G, , is then defined as a manifold of equivalence
classes of r-jets of immersions from R to R .

Using the methods of algebraic topology one can easily see that G, is
orientable if and only if m is even. In this paper, we find by an elementary
method a condition of orientability of G . for arbitrary r.
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2. Higher order Grassmannians

In this section, we define the manifold G7, ,, . Our method is analogous to a

method used in [1; 16.11.10] in the special case r = 1.
Let r, n, and m be positive integers, n < m. Denote by L! the rta
differential group of R” | i.e. the group of invertible r-jets with source and target

at 0 € R". Consider the manifold Imm Iy ())(R”,R’”') of regular r-jets with

source 0 € R" and target at 0 € R™ and the following canonical right action

of L; on ImmJ{ (J)(R”’,R’”);

Imm Jg ) (R, R™) x L}, 5 (Jig, Jga) — Jggoa € Imm ) (R".R™) . (2.1)

An orbit of this action containing an r-jet Jjg will be denoted by [J)g]. the
orbit space Imm.Jg o, (R",R™)/L}, by G},

Imm J{ ) (R",R™) onto G, by .

m.n

and the canonical projection of

For fixed m and n we shall denote by I, J, K, etc., multi-indices of

the form {iy,i9,...,i,}, where 1 < iy < i3 < -+ < i, < m. For a multi-
index I = {iy,ia,...,1,} we denote {i,i1,int2, - im} = {1,2...., m} — 1.
where 7,11 < ip42 < -+ < 4y, and define mappings 7;: R — R" and

,‘\':I : R'"L N R’IFL*M by

Further we set

/)I(Jgg) = (70T19, Jy '119)

2.3)
={Jjg € Imm Jo,0)(R*R™) | Jg7rg € Ly} (

p1 is a diffeomorphism from Jig o, (R™,R™) to Jg o) (R™, R™) x Jjj ) (R" R ")
and the restriction PI‘T is a diffeomorphism from T[ to Ly, xJj, 0) (R R

Then T} is an open (obviously L], -invariant) submanifold of Imm J (R . R™).

(0.0)

LEMMA. The canonical action of the differential group L), defines op
Jmm ./(’6 ())(R”,R”') the structure of a principal L], -bundle

Proof. We have to show that the graph GraphR of the equivalence re-
lation R on Imm J(TO 0) (R™ R™) associated with the group action (2.1) is a

closed submanifold of Imm Jo. m(R” R™) x Imm J{.0)(RTR™) . and that the
action (2.1) is free (see [1]).
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Consider for any multi-index I the graph GraphI'; of the mapping
Uy Ty L 3 (g, Jga) = Tymro§go(Jyriosg) "o lya € Jiy o) (R R"").

Since this mapping is smooth, GraphI'; is a closed submanifold of

Ty x Ly % Jf o (R™ R™™) . But

Graph R N (T} x Imm J&)‘O)(]R”,Rm))
— (idg, xp7 ) (GraphT;) N (T x Imm Tlo0)(R", R™)) .

Since JT; = Imm J{;, ;(R",R™), the set GraphR is a closed submanifold of

I I ) (R R™) X Tmm J{0.0) (R™,R™).

To complete the proof, we have to show that the action (2.1) is free. Choose
for any multi-index I two jets, JJg1 € T and Jjg2 € Imm J(TO’O)(R”.R”’).
and suppose that there exists Jja € L] such that Jigz = Jjg1 o Jjo. Since
JorioJige = Jyrio Jggio Jgor, we have Jia = (JgrroJigr) " o (JgTioig2).
which completes the proof.

From Lemma it follows that there exists a unique smooth structure on G7,,
such that the mapping 7 is a smooth surjective submersion. Considered with
this smooth structure, G7, |, is called the rth order Grassmannian (with indices
m,n).

We shall introduce an important example of a smooth atlas on the manifold

Set for any multi-index [

Yr
"mon -

Up =n(Tr) (2.4)
and consider the mapping
by Uy [J5g) — Jirrodigo (Jimrodig)™t e J(TO,O)(R",]R'”_"). (2.5)
Since ¥; om is smooth, and
(@7 1)(Jgh) = m(JG (1, k1) ™" 0 Jg (idn , B)) , (2.6)
d; is a diffeomorphism. We set
or=xo%r, (2.7)

where y is the canonical global system of coordinates onJ”,

(0’0) (R'n, , Rm,fn ) X H

Jih e .](7;).(1)(]}@”. Ry, b= ("L R then
O*he
Joh) = | 55— (0 a
\(Joh) <0m"’1 . Ozks ( )>’ o
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where 1 < s<r,n+1<oc<m,and 1 <k < --- <k, < n. The pair

(Ur, 1) is a chart on Gy, ,, and the system ((Uy,¢)) is a smooth atlas.

In the next paragraph we shall use the mapping

Vi L, X Gl D (Fonig)) — [Jjaog) € G

m.n -

(2.9)

It is easily seen that this mapping is defined correctly, and defines a smooth left
action of L7 on G

m m,n

3. Higher order Grassmannians orientability theorem

The following theorem clarifies the orientability of the higher order Grass-
mannians.

THEOREM. The rth order Grassmannian G is orientable if and only if the

m.,n
number (n 7+ 7') + (m — n)(? f {) s odd.
Proof. Weshall use indices o, pu, k, t, s.and ky,.... k. where n+1 <
c<m, n+2< p<m, 1 <k<n, 1 <t<n—-1.1<s < r.and

1<k < <k,<n.

The proof can be divided into three steps. In the first step, we derive the trans-
formation formula (3.7) between charts (U, o;), (Uy.py). where
I = {1,...,n}, and J = {1,...,n — 1,n + 1} . We note that if the man-
ifold G7, ,, is orientable, then for any two points z,7 € U; N U, it holds
sgndet D(pr 0 ;") (x) = sgndet D(p; 0 ¢, ")(Z). In the second step. we show
that this formula considered for specially chosen points x, & € U/; N U is equiv-

alent to saying that the number (n f T) + (m —n) ( :l T i) is odd. This will

prove the first implication of the theorem. In the third step, we prove that from
the same formula it follows that the manifold G7

m.n s orientable.
Set

I={1,...,n}, J={l,....n—1l.n+1}. (3.1)

and denote ¢y = (zf ;. ), and ¢; = (7 . ). For fixed indices s. o. and
ki,.... ks define

1 fo=n+1.
0O ifo>n+1

alo, s, k... ky) = {

and denote by (o, s, ky,..., ks) the number of indices kj..... ko which are
equal to n, in the special case of o =n+1, s =1, and k| = n set

an+1,1,n)=0,
Bn+1,1,n) =2.
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If there is no danger of confusion, we write «, 3 instead of «a(o,s,ky,... k),
'}((T S, kl» N ,ks) .

The set of polynomials in the variables (zf ), (xf,,), .., (=} . ),
('r'l,,...l_\.,l'n) (U € {U’TL+ 1}’ {t17"'7t3—1} - {kla"'aksvn}a tl S S ts—l)7

cach non-zero member of which is independent of the variable z”*! and is at

least of second degree. will be denoted by P , . The set of functions of the
form

P2
(a3

P1 s+1
a=pot i+ R R s
n

(apthys+1’

where po,pry... ps—1 € P74 will be denoted by Q(k’lk .

Let v €eUynU,, ®i(x) = Jih. Since, by our choice of I and J,

(f)hn-f— 1

— #0,

61771

then there exists a mapping h such that, on a neighbourhood of 0 € R" | we
have

hn+l (.Tl, o ’wn-~17 En+l(wl7 o ’In)) = " \

- _ (3.2)
hH (;I,'l’ .. ,17“) = h“' ((I:l, e ,:E"_l,h"_H(ml, e 7$”))

(inverse function theorem). Then ®;(x) = Joh.

There is the following relation between the mappings h, and h:

O°h®
)*h” Oxk .. dxhs
ﬁ _ f1)"0‘”_1ﬁ_
Aok Oaks

3.3
((‘)hM L ) oo S
dam

( OhY O°hY 05~ LhY d*hY )
+q ’

Oxtr? Oxrtroxtz T Ot L. Oxts—1 T Oty L Ot 102

where q € Q7 v € {o,n + 1}, {ty, oo oter} CLkyyoooyksyn}, ¢ < ...
-+ < t,_y. This formula can be verified by induction; by a direct calculation
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with the help of (3.2), we obtain

Onnt1
Or"tt 1 On"tt ozt
Oz gl Oxt OR" 1
Oxn e
Oh* Oh* Oh" 1
Oh* ozn oh*  OR*  9zm Ox!
dzn Opn+l’ oxt :%f_m——’ (3.4)
Ox™ Oxm
9?pnt1 O?pnt1 Oh" L 92pntl
PR 8@ Rt g | o (o
oz ghntiN 3’ dztdzn ORI 2 * ORn+IN 3
( oz™ ) ( ox™ > ( oxn >
which satisfies (3.3), and by differentiation of the (s — 1)-order formula
95-1p0
PR addh . dakt .
Ozk1 ... Orks— GhrtH1I @Y (3.5)
(%)
. q(ahv h o R >
Oxtr ’ Ozt dztz " Ozt .. Oxts-2 " Ozt .. Qxts—29pn

(q]. € le,,,k5_17 v e {U7n+ 1}3 {t17"'7ts—2} - {kla"'aksflan}n tl S
ks

<o < ts_o,and v = B(o,s — 1,kq,...,ks—1)) with respect to =", we obtain

(3.3).
Since
" O5he Y 8350
o) = om0 ()= G (0 (36)
(see (2.8)), formula (3.3) has in 0 € R" the form
a:,(f
- (_1)(1& *_ q(x;/17x;/1f27 M "r;Jl,.J_\.,l ’ 'I'.;/lu.l.\vln) . (37)

TY, . ks EET ]
n

which is the transformation formula between the charts (U;. ;). (U;. 2,).
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Now let us consider two specially chosen points =,z € Uy NU;, = = [Jjg],
= [J5g], where g(z!.... 2") = (z!,...,2",2",0,...,0), and g(z!,...,2") =
' ... 2", —2",0,...,0). According to (2.5), there holds ®;(z) = ®,(x)
Joh, and ®;(z) = ®;(z) = J5h, where h(z!,...,z") = (z",0,...,0), and
(xt, ... 2") = (=2™,0,...,0). From (2.7) and (2.8) it immediately follows
that

S~

—

=

{1 forco=n+1, s=1, ky=n,

0 in all other cases,

(3.8)
Lo (@) =38, (D) { -1 foro=ndtl, s=1, ki=n,
)= . () =
hyk Fuoks 0 in all other cases.
Using (3.7) we get
det D((p;l o (pl)<(p1(gj)) = H (_1)(,2,
a,8,k1,...,ks
1 (3.9)
det Dig;' own)(er@) =[] (=D*D™7,
0,8,k1,...,ks

which means that if the manifold G7, ,, is orientable, then

[T o= II o=, (3.10)

o,8,k,...,ks 0,8,k1,....ks

which is equivalent to saying that the number

> (a+h)

o,8,k1,...,ks

is even. After some combinatorical calculations we get

Y (a+B)= ("j")ﬂm—n)(;"f;)—l. (3.11)

7,8,k1,...,kg

In the last part of the proof, we shall show that the condition (3.10) is
sufficient for the manifold G7, , to be orientable. We shall need the following
simple assertion, which can be proved by induction.



MICHAL KRUPKA

Let G be a smooth manifold, (U,,¢,)), ¢t =1,...,N, a smooth atlas on G .
Suppose that there is a point xy € (\U,, and that for any indices (y.12 €
{1,...,N} the mapping det D(p,,,¢;,") has a constant sign on all its domain.
Then the manifold G is orientable.

Let I = {i1,i2,..-,in}, J = {j1.J2,...,Jn} be two arbitrary multi-indices.
Denote again ¢; = (zf, ;) and ¢ = (7 ;). Theset Uy — U, is given by

Uy~ Uy ={zeU| det(A4]*(z)) =0, k,te{1,2,....n}}. (3.12)

where A: U; — R" x R™ is a matrix such that A*(x) = 6F . and A7 (r) =
27 (z). Then the set Uy N U; is non-connected and has two components. The
set Uy — Uy, and therefore the set G7, . — Uy is of measure zero. Then there

exists a point zg € (U .
If the function det D(¢; o @l;l) has a constant sign on all its domain. we
write (U, 1) ~ (Uy, ). We shall prove that the relation ~ is transitive. Sup-

pose (Ur, 1) ~ (Uy,py) and (Ujy,@y) ~ (Uk,pk) and choose two elements
ry,xy € U NU;N Uk belonging to different components of Uy N Uy . Now

sgndet D(py o 90;(1)(991( 11))
= sgndet D(ip; 0 ;") (ws(x1)) - sgndet D(p; 0 o) (o (x1))
= sgndet D(¢p; 0 07 ")(ps(22)) - sendet D(p; o @ t) (0 (x2))
= sgndet D(p; 0 05" ) ¢k (22)) -

Thus, (U[,(pl) ~ (UK7<PK)-

Let S,, be the permutation group of m elements. Define a group homo-
morphism F: S,, — LI by F(m) = Jjor, where ar: R™ — R™ is given
by ag(zl,... ™) = (:c”(l), ... ,x"(m)). F is obviously injective. We denote
Pr = F(S,,). The mapping ¥,, U,(z) = ¥(p,z), (see (2.9)) is a diffeomor-

phism of G7,

Let I, J, K, L be multi-indices such that the sets I —.J and A — L
have just one element. There evidently exists an element p € P/ such that
(\If,,(UI),LpI O\I/I,) = (Uk, ¢K), and (\IIP(UJ),QOJ O\III,) = (UL, 1) . Hence. from
(Ur,or) ~ (Ug,py) it follows (Uk, oK) ~ (Ur,pr). Finally, if T and .J are
arbitrary multi-indices, then there exists a sequence I = K, ..., A~ = .J such
that the set K, 1 — K, has for any + < N just one element. From the transitivity
of the relation ~ and from the above assertion it follows that. if there exists
a pair of charts (Ur,¢;) and (Uj, ;) such that (U;,¢p) ~ (Uj.0 ). then
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r

the manifold G, ,, is orientable. As we have proved, if the number (n j_ T) +

(m~u)<',f’f{> is odd, then for I ={1,...,n} and J={1,....,n—1,n+ 1},

(U1.¢1) ~(Uj,oy). This proves our theorem.
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