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EXISTENCE CRITERIONS 
FOR GENERALIZED SOLUTIONS 

OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 
W I T H O U T G R O W T H RESTRICTIONS 

SVATOSLAV STANĚK 

(Communicated by Milan Medvěd') 

ABSTRACT. Existence results are given for the functional differential equation 
(g(x')Y = f(t,x,x',xt,x't) with nonlinear boundary conditions. Sufficient condi­
tions are formulated only in terms of sign conditions. Solutions are considered in 
the generalized sense. 

1. Introduction 

For r > 0, let Cr be the Banach space of continuous functions on [—r, 0] 
with the norm || • | | 0 and let X be the Banach space of continuous functions on 
J = [0,1] endowed with the norm || • | | . For each x G C°([-r, 1]) and t G J , 
xt G Cr is defined by 

xt(s) =x(t + s), se [-r ,0] . (1) 

We say that F: J x E 2 x Cr -> E satisfies the local Caratheodory conditions 
on J x E 2 x C 2 (F G Car(J x E 2 x C 2 ) for short) if 

(i) F(-, x, y, u, v) is measurable on J for each (x, y, u, v) G E 2 x C 2 , 
(ii) F(t, •,-,-,•) is continuous on E 2 x C 2 for a.e. t G J , and 

(iii) for arbitrary a > 0, there exists an ha G LX(J) such that 

\A + \y\ + IMIo + I H o < a => \F(t,x,y,u,v)\ < ha(t) for a.e. t e J . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34K10, 34B15. 
K e y w o r d s : existence, functional boundary conditions, generalized solution, Caratheodory 
conditions, topological degree, Borsuk's theorem, sign conditions. 
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Consider the functional differential equation 

x" =F(t,x,x',xt,x't) (2) 

with F G C a r ( J x R 2 xCr). If ip, (p' G Cr , then the initial values x0 = tp, x'0 = ip' 
(i.e., x(t) = (p(t), x'(t) = <p'(t) for t G [—r, 0]) determine — under proper 
assumptions on F — the unique "classical" solution x G C1([—r, 1]) D AC1 (J) 
of the initial problem 

(2), x0 = <p, x'0 = <p', (3) 

and, consequently, there is no sensible way to give boundary conditions for so­
lutions of (3). Here AC1 (J) denotes the set of functions having absolutely con­
tinuous derivative on J . Boundary conditions of the type 

h(xo) + ^ i ) = V» ls(xo) + h(x'i) = V> (4) 

for (2) were considered, for example, in [2], [5] and [8] with the linear bounded 
operators li: Cr -> Cr (i = 1, 2, 3,4) and </?, i/> G Cr. The special case of (4) are 
periodic boundary conditions x0 = xx, x'0 = x'x. For F independent of x't, the 
boundary value problem for (2) with boundary conditions (for ip G Cr, A G R) 

x0 = y, x(l) = A 

was considered, for example, in [2] and [9]. Another approach to "classical" 
solutions of BVPs for (2) was given by H a s c a k [6] who considered the nth 
order linear differential equations with delays. Let (p,i/> e Cr and V((p, ij>) be 
the set of all maximal solutions x G C° ([—r, 0] U Jx) D ACl(Jx) of (2) satisfying 
x0 = (p + cx, x'0 = ip + c2 and limx'(i) = ip(0) + c2 , where cx,c2 G R and Jx 

is an interval, 0 G Jx C J . Then the set V(ip,ip) depends on two parameters 
cx and c2 . To obtain an x G V((p,i/>) we can give two boundary conditions 
(generally nonlinear) as is shown in [12]. Here the existence results are proved 
by Leray-Schauder degree theory and Borsuk's theorem. 

There is another approach to BVPs for functional differential equations which 
is connected with the conception of "generalized" solutions (see, e.g., [1]). The 
principle difference between "classical" solutions and "generalized" ones of BVPs 
for functional differential equations consists in the continuity of "classical" solu­
tion at the point t = 0 while this condition is not (generally) claimed for "gen­
eralized" ones. Moreover, for our second order equation (2) the initial values for 
solutions and their first derivatives (that is x0 and x'0) can be arbitrary points 
of the Banach space Cr. This paper considers functional BVPs from the point 
of view of "generalized" solutions. 
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2. Formulation of BVP, notation 

Let r > 0 be a positive number. We say that x: [—r, 0] —j> R is a 29-function if 
either x is continuous on [—r, 0] or there exists exactly one point of discontinuity 
tv G (—r, 01 for x such that lim x(t) exists and is finite and lim x(t) = x(t). 

For ^ = 0 define lim x(t) = x(0). Denote by Dr the topological space of 

D -functions (on [—r, 0]) with the topology of pointwise convergence on [—r, 0]. 
We say that / G Car ( J x R2 x D2) (i.e., / satisfies the local Caratheodory 
conditions on J x R2 x D2) if (cf. (i)-(iii)) 

(V) / ( • , x, y, u, v) is measurable on J for each (x, y, u, v ) E R 2 x J ) r
2 , 

(ii') /(£, • , - , - , • ) is continuous on R2 x D 2 for a.e. t G J , and 
(iii') for arbitrary a > 0, there exists an /ia G ^ ( J ) such that 

|x| + | y | + s u p { | u ( s ) | ; s G [-r ,0]} + sup{|u(s) | ; s e[-r,0]} <a 

=> \f(t, x,y,u,v)\ < ha(t) for a.e. teJ. 

Before we formulate our BVP, we define the sets A and B which are con­
nected with boundary conditions. Let A be the set of all functionals 7 : X —> R 
that are 

(a) continuous, 7(0) = 0, 
(b) increasing (i.e., x,y G X , x(t) < y(t) for t G J => 7(3;) < 7(2/)) 

and B be the set of all continuous functionals 5>: X x X —r R. 
Some examples of functionals belonging to A are given below: 

t2 

max{x(£); teJ^, min{x(t)', t G J x } , q(x(^0)) , q(x(s)) ds , 

ti 

where Jx C J is a compact interval, £0 G J , 0 < £x < t2 < 1 and q: R -» HI is 
continuous increasing, g(0) = 0, while the following functionals (for 0 < £-_ < 
£2 < 1, a,b G J , J x , J2 compact subintervals of J , q,p G C°(R)) 

*2 *2 

/* y/l + x2(t) dt, f x(t) yjl + y2(t) dt, 

ti ti 

mdix{q(x(t)) ; t G J x } + min{p(y(t)) ; t G J 2 } 

belong to the set i3. 
Let (p,i/; eCr, a,(3 e A, A G B and / G Car(J x R2 x F>2). Consider BVP 

(g(z ')) ' - = / ( t , x , ^ , x t , ^ ) , (5) 

a ( x ) = 0 - /?(*') = A(x, a ' ) , 

x0(s) = </?(s), x0(^) = tp(s) for 5 G [-r, 0) , 
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where g: R —> R is an increasing homeomorphism with inverse g_1 and such 
that g(0) = 0. 

By a solution of BVP (5), (6) we mean a function x G Cl(J) such that 
g(x') G AC (J), a(x) = 0, (3(xf) = A(x,x') and (5) is satisfied for a.e. t G J 
where 

<p{t + 8) for t + s G [-r, 0) , 
x (s) - J 

* U ( í + s) for t + sЄ J , 

^(* + s) for t + 5G [~r,0), 

'(t + s) for t + se J. 

Here •AC(J) denotes the set of absolutely continuous functions on J . 
We present sufficient conditions for the existence of BVP (5), (6). The con­

ditions are formulated only in terms of sign conditions. The proofs of existence 
results are based on the topological degree method and Borsuk's theorem (see 
e.g. [4]). 

The special case of BVP (5), (6) (with A = 0) is BVP 

(g(x'))' = h{t,x,x'), (7) 

a(x) = 0, /J(x ' )=0, (8) 

l 

where a,/? G A and h G Car(J x E 2 ) . Setting a(x) = x(0), (5(x) = Jx(s) ds 
o 

for x G X, the boundary conditions (8) have the form of the Dirichlet conditions 

x(0) = 0, x(l) = 0. (9) 

Our existence results for BVP (5), (6) generalize those for BVP (7), (8) with 
g(z) = z and h e C°(J xR2) in [7] and are closely related to results in [10] and 
[11]. We observe that BVP (7), (9) with h independent of x' was considered in 
[3] from the point of view of existence results for multiple solutions. 

Next we use the following notation. 
For each K > 0, 

[K]v = {{x,u,v)\ (x,u,v)eRxD2

r, \x\<K, 

sup {KOI; te[-r90]}<K, sup{|t;(t)|; t G [-r,0]} < K) , 

and for each L3 < Lx < 0 < L2 < L 4, 

[L3,Ll,L2,L4]AB = 

= {(7,$); (7,$)G^x/3, 

sup{|*(x,y)|; (x,y)GX 2, ||x|| < L , ||y|| < L) < \ min{-7(- t i) i7(£2)}} , 
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where L = max{—L3,L4}. 
Throughout this paper, we shall assume that / G Car (J xR2 x D2) satisfies 

the assumption: 

(H) There exist constants L{ e R (i = 1, . . . ,4) and \x,v e {-1,1} such 
that L3 < Lx < 0 < L2 < L4 and 

vf(t,x,L3,u,v) > 0 , vf(t,x,Lx,u,v) < 0, 

nf(t,x,L2,u,v)>0, fif(t,x,L4,u,v) < 0 

for a.e. t e J and each (x,u,v) e [L]v with L = max{-L 3 ,L 4 }. 

3. Auxiliary results 

L E M M A 1. Let f e Car(J x R2 x D2), cp,ip e Cr and u,v e X. Then 
f(t,u(t),v(t),ut,vt) eLx(J), where 

U(s) = flp(t + S>> fort + s£[-r>0)> 
Ut^S) \u(t + s) fort + seJ, 

f ^(t + s) fort + se[-r,0), 
vAs) = < tK J \ v(t + s) for t + seJ. 

P r o o f . Evidently, ut,vt e Dr for t e J. Set a = 2(\\u\\ + \\v\\) + \\y\\0 

+ ||^||0. By (iii'), there exists an ha e L1(J) such that 

\f(t,u(t),v(t),uvvt)\ <ha(t) fora.e. teJ; 

hence to prove our lemma it is sufficient to show that f{t,u(t),v(t),ut,vt) is 
measurable on J. For n e N, £ < r, define un, vn e C°([-r, 1]) by 

> W for t € [ - r , - l ) , 

\ W = -n(ip(-^)-u(0))t + u(0) f o r t € [ - £ , 0 ) , 

k u(t) for teJ, 

(Hi) for * e [ - r , - l ) , 

*>n(0=< -n(1>(-$)-v(0))t + v(0) for *G [ -1 ,0 ) , 

( v(t) for teJ. 

We first prove that f(t,u(t),v(t),unt,vnt) is measurable. Fix n e N, £ < r . 
Let us set &* = £ for f = 0,1, . . . , k, k = 2,3,... and pfc(t) = u(£lk), qk(t) = 
v(fi*)> ^ = *Vi*> *>** = V i , f o r * G &*>&*]> *>*(*) = "(£*)> ?*(*) = 
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v(£fc), zkt = umik>
 wkt = vniik for t e (£ i j f c , f i + M ] , i = 2 , 3 , . . . , * - 1. Then 

the functions f(t,pk(t),qk(t),zkt,wkt) are measurable for each k e N, A: > 2, 
lim p.(t) = ix(t), lim ^ ( t ) = v(t) for t € J and lim z. . == u n t , lim u;fel = 

k-»oo k-*oo fc->oo k->oo 
vn t in Dr for each t € J . Therefore (cf. (ii')) lim f(t,pk(t),qk(t),zkt,wkt) = 

k—>oo 

f(t,u(t),v(t),unVvni) for a.e. t G J which implies that f(t,u(t),v(t),unt,vnt) 
is measurable for all n G N, A- < r . Since lim i/ , = u , , lim v . , = vt in 

.Dr for each t e J, lim f(t,u(t),v(t),unVvnt) = f(t,u(t),v(t),uvvt) for a.e. 
fc—•oo 

t e J by (ii'), and consequently f(t,u(t),v(t),ut,vt) is measurable. D 

LEMMA 2. Le£ 7 G *4, /i G [0, 00) and let the equality *y(x) - t*l(-%) — 0 he 
satisfied for some x G X . T/ien J/iere e:riste a £ G J suc/i £/ia£ #(£) = 0. 

P r o o f . Define g e A by g(w) = 7(10) - fi'y(-w) for UJ G X . Then 
g(x) = 0. If x(t) ^ 0 on J , then g(x) > 0 provided x(t) > 0 on J and g(x) < 0 
provided x(t) < 0 on J , and so g(x) 7-= ,0(0) = 0, which is a contradiction. D 

LEMMA 3 . Let (7 ,* ) e [L3iLl,L2,L4]ABJ /1 e [0,1] and let the equality 

i(y) - »i(-y) = $(*> y) - / *$ ( -£ , - y ) 

be satisfied for some x, y G X , ||x|| < L,, ||y|| < L , wftere L = m a x { - L 3 , L 4 } . 
Then there exists a r G J 8uc/i ;tfia£ 

£ i < 2 / ( r ) < L 2 . 

P r o o f . By the definition of the set [LS,LX,L2,L4]AB, 

| * (x ,y ) | < | m i n { - 7 ( £ i ) , 7 ( L 2 ) } , | * ( - x , -y)\ < | m m { - 7 ( I - i ) , 7 ( £ 2 ) } > 

and consequently 

|7(y) - P7(-V)l = l $ ( ^ ^ ) - . " * ( - * , -» ) l < m i n { - 7 ( i i ) , 7 ( i 2 ) } • (10) 
If y(t) < Lx on J , then i(y) - fii(-y) < i(Lx) - ^i(-Lx) < 7 ( L J < 0; 
hence \l(y) ~ »l(~y)\ > -l(Li) w h i c h contradicts (10). If y(t) > L2 on J , 
then l(y) — ^l(—y) > l(L2)~/i7(—L2) > 7(L2) > 0, a contradiction. Therefore 
L < y(r) < L2 for a r G J . D 

Let Lo < Lx < 0 < L2 < L4 be constants (see assumption (H)), L = 
max{—L3 ,L4} and let n0 G N be a positive integer such that 

Ll ~ L3 > 7T ' L4~L2> — ' 
rt0 n0 

For each n G N, n>n0, define / n by / as follows: 

/ (t,x,y,u,i;) = /(M,Mw)>f i>e) for (^ , l / ,«^)eJxI 2 xI) r
2 , (11) 
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where 

\ Xsi 

for \x\ < L, 

ign(x) for \x\> L, 

u(s) for \u(s)\ < L, 

Lsign(u(s)) for \u(s)\ > L, 

(similarly for v) and 

й(s) = | 

(12) 

L4 for L4 < y, 

y for L2 + \ < y < L4 , 

1y-L2-l ioxL2 + \<y<L2 + l 

K(У) = { 
^2 

У 

for L2 < y < L2 + i , 

for Lx<y<L2, 

for Lx - i < y < Lx, 

(13) 

2y-Lx + l ioxLx-l<y<Lx-
1-, 

У 
L, 

for L3 < y < Lx - l, 

for y <L3. 

Then fn G Car(J x 
p € LX(J) such that 

x Dl). Since / G Car(J x R2 x .D2), there exists a 

|/(t,-r,y,Tz,v)| <pC0 for a.e. te J, each (x,u,i>) G [L]P and Ls <y < L4. 

Clearly (cf. (11)), 

|/Jt,x,2/,u,*/)|<p(*) (14) 

for a.e. t G J , each (x,y,u,v) G E2 x £)2 and n > n0 . 

Let Y = C1(J) be the Banach space with the usual norm. For using the 
topological degree argument and Borsuk's theorem to prove an existence result 
for BVP (5), (6) we investigate an auxiliary operator equation and an auxiliary 
BVP which are denned below. 

Let v?,^ G C r , a G A, (/?,A) G [L3,Ll,L2,L4]AB. For each c G [0,1] and 
n G N, n > n0 , we define the operator 

T-. Y x 
nc 

-> Y x 
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by 

Tnc(x,A,B) = 

( t s 

A + jg-l(в + cj fn(т,x(т),x'(т),xт,x'т) dт) ds + (c- l tø" 1 (-Я)ť, 
0 0 

A + a(x) + (c - l )a(-x) , 
B + ß(x') + (c- l)ß(-x') - A(x, x') - (c - l)Ã(-x, -x') j , 

(15) 
where 

/ x f ^ ( T + s) for r + 5 G [-r, 0), 
T \ x(r + s) for r + s G J, 

(16) 
, J II>(T + S) for r + 5 G [-r, 0), 

X T ^ ~ \ X'(T + 5) for r + s G J 

and A: X x X -> E is given by the formula 

A(s,y) = A(x-p) (17) 

with x G X defined by 

x(t) for |x(«)| < i , x(ť) = { 
.tsign(x(*)) for \x(t)\ >L K 

(similarly for y). The operator Tnc is well-defined because, by Lemma 1, 

fn(t,x(t),x'(t),xt,x't) e LX(J). 

Moreover, ((3,A) G [L3,Ll,L2,L4]AB. We next consider the auxiliary BVP 
(cf. (6), (11) and (17)) 

(g(x'))' = fn(t,x,x',xt,x't), n>n0, (19n) 

a(x) = 0, 0(x') = A(x,x'), 
x0(s) = <p(s), x'0(s) = ip(s) for s e [-r, 0), 

together with the operator equation (cf. (15)) 

Tnc(x, A, B) = (x, -4, B), c G [0,1], n > n 0 . (21n) c 

We see that a; is a solution on BVP (19n), (20) if and only if (x, x(0),g(x'(0))) 
is a solution of the operator equation (21n) x. Thus to prove an existence result 
for BVP (19n), (20) it is sufficient to show that there exists a solution of (21 n) 1 . 
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We denote by M x the modulus of continuity of g~l on the interval I = 

{<; teR, \t\ < / p ( _ ) d _ + m a x { - g ( L 3 - l ) , g ( L 4 + l )}j , i .e . , 

Mg.1(e) = snp[\g-l(t1)-g-1(t2)\- tx,t2el, l^-t^Ke} for £G[0,oo) . 

L E M M A 4. Le£ / satisfy (H). Le_ (w,_40,_50) 6e a solution of (21n)c /or some 
c G [0,1] and n > n0 . T/ien _/ie inequalities 

\\u\\ < max{-__3, L4} + ± , L3 - ± < ti'(t) < L4 + ± , t G J , (22) 

|_40| < max{-L3 ,L4} + ± , |B0 | < max{-g(__3 - 1), </(L4 + ±)} (23) 

are satisfied and, moreover, 

\u'(tx) -u'(t2)\ <MJ I jp(_) ds j , <_,i26J. (24) 

P r o o f . First we assume that c = 0, that is (u,A0,B0) is a solution of 
(21n)0. Then u(t) = A0 + (g~l(B0) - g'^-B^t, a(u) - _ ( -«) = 0, /J(u') -
P(-u') = A(u,u') — A(—u, — u'), and consequently u(£) = 0 for a f € J by 
Lemma 2 (with 7 = a, \i = 1) and __ < u'(r) < _2 for a r G J by Lemma 3 

(with 7 - / ? . _ - A . A i = l ) . Hence _40 = -(_ - 1(-50) ~ <7_1 (-#<)))£> ^1 < 
_7_1(-?o) - g~l(-B0) < J-2 and then 

|«(*)| = \{g-1{B0)-g-1(-B0))(t-0\ < \g-1(B0)-g-1{-B0)\ 
< max{—L1,__2} < max{—__3,L4} , 

L3 < Lx < u'(t) <L2<L± 

for t G J and ^ ' ( . J -u'(t2)\ = 0 for tvt2 G J . Thus inequalities (22)-(24) 
are satisfied. 

Let c G (0,1]. Then the equalities 

u(t) 

t s 

A0 + jg-Jв0 + cj fn(т,u(т),u'(т),uт,u'т) dт) ds 

+(c - l)g-Ҷ-B0)t, teJ 

and 
a(u) + (c- l )a(-u) = 0, 

ß(u') + (c- l)ß(-u') = Ã(u,tt') + (c- l)Ã(-u, -« ' ) 

(25) 

(26) 

313 



SVATOSLAV STAN--K 

are satisfied. By Lemma 2 (with 7 = a, ju =. 1 - c), there exists a f G J such 
that 

fi(f) = 0 (27') 

and, by Lemma 3 (with 7 == /?, $ = A, /a = 1 - c), there exists an 77 G J such 
that 

i i1<u /(»?)< .L2 . (27") 

From (25) we deduce 

u(0) = A0 , u'(0) = g^(B0) + (c- l)g-\-B0) (28) 

and 
t 

u'(t) = g-1(B0+cJ fn{s,u(s),u'(s),ua,u'3) d s ^ c - l ) ^ - ^ ) , t € J . 
0 

(29) 
Using the second equality in (28) we shall prove that 

\B0\<\g(u'(0))\. (30) 

Indeed, if 7x'(0) > 0, then necessarily B0 > 0 and therefore u'(0) > g~1(B0) 
since (c - l ) ^ " ^ - ^ ) > 0. Hence B0 < g(u'(0)) and (30) is satisfied. If 
u'(0) < 0, then B0 < 0, and consequently u'(0) < g~1(B0) < 0, which im­
plies (30). 

We now show that inequalities (22) are satisfied. Assume (cf. (27")) 0 < 
77 < 1. Let max{u'(t)] 77 < t < 1} = u'(t0) > L3+/x + £ for a t0 G (77,1] 
where [x G {—1,1} (for // see assumption (H)). Then there are rj <t1 <t2 <t0 

such that u'(tx) = L3+/x, u'(i2) = L3+M + i and L3+M < u'(t) < L3+/ l + £ for 

t G [t!,*2]; h e n c e u'(*2) - U'ih) = n > ° ' 0 n t h e 0 t h e r h a n d (Cf- ( U ) - ( 1 3 ) 
and (29)), 

u'^-u'^) 
ti t2 

= g-l\B0 + cj fn(s,u(s),u'(s),us,u's) As + cJ f(s,^,L^^us,us) ds j 

0 ti 
ti 

- 9~l\B0 + c J fn(s,u(s),u'(s),us,u's) ds j < 0 

t2 . 
since # - 1 is increasing and cff(s,u(s),L3+ ,ua,u') ds < 0 by (H), a contra-

*i 
diction. 
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Let max{u'(i); 0 < t < 77} = u'(t*) > L3_^ + £ for a t* G [0,77). Then 
there are t* < t3 < t4 < 77 such that u'(£3) -= £ 3 ^ + ^ , ^'(£4) = £3-^ a n d 

£3_p < u'(t) < L3_^ + 1 for t G [t3,t4]; hence u'(t3) - u'(t4) = £ > 0. On the 
other hand (cf. (11)-(13) and (29)) 

u'(t3)-u'(t4) 

= 9~l\B0 + cJ fn(s,u(s),u'(s),us,u's) ds j 

-9~l\B0 + cj fn(s,u(s),u'(s),us,u's) ds + c / /(s,u(s),L3_M ,u5 ,u'5) ds j 

0 t3 

<0 

since g~l is increasing and c f f(s,u(s)yL3_ ,us,u's) ds > 0 by (H), a contra-
*3 

diction. If 77 ----- 0 (resp. 77 = 1) we can similarly prove that max{V(£); t E J } < 
L3+M + £ (resp. max{y(£); t e J} < L3_^ + £) . This proves u'(t) < L4 + £ 
for t G J . The proof for w'(£) > L3 — ^ on J is similar. The inequalities 
L3 - £ < w'(£) < L4 + £ for £ G J and (27') show that the first inequality in 
(22) isn satisfied. Then (23) follows from (22), (28) and (30). 

Finally, we verify (24). Fix t19t2 G J . Then (cf. (14), (23) and (29)) 

!«'(*,) - t t ' ( t 2 ) 

ti 

9~l\B0 + cJ fn(s,u(s),u'(s),u3,u's) ásj 

o 
ti 

-9~l\B0 + cJ fn(s,u(s),u'(s)Jus,u's) ds j 
o 

/ t2 

<Mg..1\\J\fn(s,u(s),u'(s),us1u's)\ds 

1f\jp(s)dsY 
<мg 

D 
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4. Existence results 

LEMMA 5. Let f satisfy (H) and ip,ip € Cr. Then for each n G N. n > n0, 
the operator equation (2ln)x has a solution (u,A0,B0) satisfying (22) -(24). 

P r o o f . Fix n G N, n > n0. Set (L = max{-L3 ,L4}) 

f l n - - { ( x , A B ) ; ( . , i , i 5 ) G Y x R 2 , ||x|| < L + 1 , ||x'|| < L + ± , 

|^ | < L + 1 , |* | < max{-<7(L3 - I ) , <?(L4 + ! ) } } . 

Then Qn is an open bounded subset of Y x R2 and is symmetric with respect 
to 0 G dn. Define the operator Wn: [0,1] x Cln -» Y x R2 by 

KVn(c,x,A,5) = T n c(x,A,^) . 

Clearly, VVn is continuous and we show that Wn is a compact operator. Let 
{(c., x., A^, 2^)} C [0,1] x iln be a sequence and set 

for j G N. Then 

t s 

z.(t) = A. + fg~1 (Bj + Cj j/n(r,xj(T),x;(r))xir>x;.r) d r ) ds 
0 0 

+ ( c j - l ) < r 1 ( - i ? . ) t , 

i^. = Aj + a(Xj) + (Cj - l)a(-Xj), 

Vj = Bj + /?(x;.) + (c. - l)/3(-X'j) - A(xp*;.) - (Cj - l)A(-xJ., -x)), 

and so (cf. (14)) 

i 

\Zj(t)\ < L + i + a"1 (s„ + | p ( a ) ds) + m a x f - ^ - S J , 5 - 1 (-?„)} > 
0 

1 

K(i)l <9~1(sn + fp(s) ds) + m a x { - f f - 1 ( - 5 J , if1 '-?,,)} 
o 

for í 6 J and j G N, where 

S„ = max{-5(L3 - £), <?(L4 + „-)} . 
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Moreover, 

WЛh) - zЛt2) 

< 

<м 

<Mg-, 

9 1\B3+Cjj fn(S>Xj(S)'X,j(S)iXjs'X,js) d s 

0 

ti 

- g'1 \Bj + Cj J fn (s,Xj(s), x'ó(s), xjs,x'js) ds j 

o 
/ t2 \ 

J \fn(S>Xj(S)'X,j(S)>Xjs'X'jS)\
 ds 

t2 

I p{s) ds 

for tl,t2€ J and j G N. This proves that {zA is bounded in Y and {zUt)} is 
equicontinuous on J. Furthermore, {RA and {VA are bounded in E because of 
{c,}> iAj}> iBj} are bounded in R, \a{±Xj)\<max{-a{-L-^), a{L + ±)}, 
\!3{±x'j)\<m^{-f3{-L-r),l3{L+1-)} and 

|A(±x.,±^.) | < \mm{-fi{Lx),(}{L2)} . 

By the Arzela-Ascoli theorem and the Bolzano-Weierstrass theorem, {(zj, R-, V-)] 
is compact in Y x R2; hence Wn is a compact operator. 

By Lemma 4, Wn(c,x,A,B) / (x,A,B) for each (x,A,B) G dQn and c G 
[ 0 , l ] . T h u s D ( W ^ 
denotes the Leray-Schauder degree and J is the identity operator on Y x R2 . 
Since 

Wn{0, -x, -A, -B) = Tn0{-x, -A, -B) 

= (-A + {g-1 {-B) - g-1 {B))t, -A + a{-x) - a{x), 

-B + (3{-x') - /3{x') - A(-x, -x') + A(x, x')) 

= -Tn0{x,A,B) = -Wn{0,x,A,B) 

for each (x, A, B) G fJn, Wn(0, - ,- ,•) is an odd operator and then D(W"n(0, - ,- ,•) 
- J,fin,0) ± 0 by the Borsuk theorem. Thus D(Wn(l, •, •, •) - I,Qn,0) ^ 0, 
and consequently (21n)x has a solution (u,A0,B0) G f2n. This solution satisfies 
(22) - (24) by Lemma 4. • 
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T H E O R E M 1. Let f satisfy (E), a G A, (/3,A) G [L3JLVL2,L4]AB and 
<p,<iP G Cr, \\ip\\0 < L, ll^ljo < L with L = max{-L 3 ,L 4}. Then BVP (5), 
(6) has a solution x satisfying the inequalities 

\\x\\ <L, L3< x'(t) <L4 for teJ. (31) 

P r o o f . For each n G N, n > n0 , there exists a solution (itn,.An,i?n) of 
(21JJ satisfying (22)-(24) (with (u,A0iB0) = (un,An,Bn)) by Lemma 5, 
and consequently un is a solution of BVP (19n), (20). The Arzela-Ascoli 
theorem and the Bolzano-Weierstrass theorem show that there exists a con­
vergent subsequence {(uk ,Ak ,Bk )} of {(un,An,Bn)} in Y x I 2 and let 
(ukn,Akn,Bkn) -r (u,A,B) as n -> oo. Then (cf. (16) with x = un and 
*' = O iuknt}> {uknt)

 a r e convergent in Dr and uknt -> u t , ^ n t -> txj as 
n -> co, where 

n f V(* + *) fort + sG [-r ,0), 
Wt \ u(t + s) foT t + seJ, 

( i>(t + s) for t + s G [ - r , 0 ) , 

* I u'(t + s) foT t + seJ. 

Evidently, \\u\\ < L, - L 3 < u'(t) < L4 for £ G J , and consequently 

sup{|tit(5)|; 5 € [ - r , 0 ] } < L , sup{K(s) | ; s G [ - r , 0 ] } < I 

for t G J and (cf. (13)) lim hk (u'^t)) = u'(t) uniformly on J. Taking the 
limit in the equalities 

t 

0 « „ (-)) = 9Kn (0)) + J fkn (-, Ufcn (a), U'fcn (a), u ^ , , u'kJ ds, teJ, 
0 

«(«*n) = 0, (3(u'kn) = A(ukn,u'kn) 

as n -> oo, we obtain (cf. (11) and (17)) 

t 

g(u'(t)) = <1K(0)) +ff(s, u(s),u'(s), ti„ u's) ds , t G J , 

o 

a(u) = 0, /?(tz') = A(u,tz'), 
u0(s) = </>(s), u'0(s) = ^(3) for 5 G [-r, 0). 

Hence u is a solution of BVP (5), (6) satisfying (31). D 
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COROLLARY 1. Let h G C a r ( J x R 2 xD2), q G C°(R) and there exist constants 
L3 < Lx < 0 < L2 < L4 such that q(LJ = 0 for i = 1,2,3,4. If a G A, 
(P, A) G [LS,LVL2,L4]AB, then BVP 

(g(x'))' = q(x')h(t, x, x', xt, x't), (6) (32) 

has a solution x satisfying (31) provided (p,ijj G Cr, \\ip\\0 < L, H l̂lo < L with 
L = max{—L3, L 4 } . 

P r o o f . Let us set f(t,x,y,u,v) = q(y)h(t,x,y,u,v) for (t,x,y,u,v) G 
J x R 2 x D2. Then / satisfies the assumptions of Theorem 1. The proof is 
completed by applying Theorem 1. • 

Applying Theorem 1 to (7) we give the following corollary. 

COROLLARY 2. Suppose that there exist constants Ll < L3 < 0 < L2 < L4 

and \i,v G { — 1,1} such that 

vh(t, x, L3) > 0, vh(t,x,Lx) < 0, 

fih(t, x, L2) > 0, iih(t, x, L4) < 0 

for a.e. t G J and each x G [—L,L], L = max{—L 3 ,L 4 } . Then BVP 

(7), a(x) = 0, 0(x') = \(x,x') (33) 

has a solution x satisfying 

IWI < L , L3< x'(t) <L4 for teJ 

provided a G A, (/3,A) G [L3,L1,L2,L4]AB. 

E X A M P L E 1. Consider the functional differential equation 

(ffpO*'))' = Q(x) sin(x') + h(t, x, x', xv x't), (34) 

where gp(u) = \U\P~2U, p > 1, gp(0) = 0, q G C°(R), h G Car(J x R2 x D2

r), 
subject to the boundary conditions 

max {x(t); t Є J } = 0, x'(tQ) = Л í ^lĄ-(x'(t))2 àt, 

o 

x0(s) = ¥>0O, ^ó(5) = ^ ( 5 ) for 5 Є t ~ Г ' °)> 

(35) 

where tQ G J , ^p,^ £ Cr and A G 1 . 

Assume that there exists a positive constant K such that q(z) > K for 
z G [~^L, i f ] and |/ i(*,x,y,u,i;) | < K for a.e. t G J and each (x,w,v) G f ^ ] ^ , 
|H| < ^ - . Then the function / : J x R2 x D2

T -> R, /(*, x, y, u, v) = r/(x) sin(y) + 
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h(t, x, y, u, v) satisfies assumption (H) with — L3 = L4 = -^-, — Lx = L2 = § and 
v = n — 1. Boundary conditions (35) are the special case of those for (6) with 

a(x) = max{:r(£); t G J } , /3(x) = x(t0) and A(x, y) = \f Jl+- (y(t))2 dt for 
o 

x,y G X. Clearly, a G 4 and (/?,A) G [ - f , - f , f , f ] ^ for |A| < ^ p ^ y 
since /? G .4, A G #, 

suP{|A(x,y)|; (x,y)eX2, \\x\\ < f , |M| < f } = |A| | ^ 1 + (*ff dt 
o 

6TT ' ' - 4 

and min{-/?(-§), /?(§)} = §. By Theorem 1, for each <p,^ G Cr and A G R 
such that ||(/?||0 < ^r, ||^||0 < T 1 , |A| < 2(i+L2)' t h e r e e x i s t s a solution x of 
BVP (34), (35) satisfying the inequalities 

| x ( * ) l < y , | x ' ( t ) | < y for * 6 J . 

EXAMPLE 2. Consider BVP 

(s/i(x'))' = p(t, x) + kx'2 (3 - x ' 4 ) , (36) / 4 N 

1 

/ arctanz(*) d* = 0, min{x'(t); t G J } = / i x(t)yjl + (x'(t))2 dt, 
I o (37) 

where p G Car(J x R) and k,ii G R, A; ^ 0. Assume |P(£,x)| < 2|k| for |x| < 2 
anda.e. te J. Then the function h: JxR 2 -> R, h(t,x,y) = p(t,x)+ky2(3-y4) 
satisfies the assumptions of Corollary 2 with —L3 = L4 = 2 , — L1 = L2 = 1 
and /i = — v = sign A;. Boundary conditions (37) are the special case of those 

l 
for BVP (33) with a(x) = Jarctan:r(t) dt, /3(x) = mm{x(t); t G J} and 

o 
A(x,y) = /j,fx(t)Jl+ (y(t))2 dt for x,y G X. Evidently, a G 4 and (/?, A) G 

o 
[ - 2 , - 1 , 1 , 2 ] ^ for \n\ < ^ since /? G A, AeB, sup{|A(x,y)|; (x,y) G X2 , 
INI < 2, IIHH < 2} = |/i|2x/5 < | and min{~/?(-l),/?(l)} = 1. Thus, by 
Corollary 2, there exists a solution x of BVP (36), (37) for any |/i| < -^g 

satisfying the inequalities ||x|| < 2, \\x'\\ < 2. 
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