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POLARITY ON C*-ALGEBRAS
BOHUMIL SMARDA

Polarity, as a symmetric and antireflexive relation, was investigated on many
algebraic and geometric structures. For instance, the disjointness on lattice
ordered groups is a polarity with interesting properties described by G.
Birkhoff, F. Sik, P. Conrad and P. Jaffard (see [4], [5], [8]). The basic
properties of some polarities on C*-algebras are investigated in this paper.
Namely, the relation of polarities and ideals of C*-algebras and the lattice
characterization of sets of polars.

Let us introduce some notations. If 4 is a C*-algebra (see [6]) with the unit
element 1, then A4, is the set of all hermitian elements in A and A* is the set of
all positive elements in A. £d(A), £(A) and #(A) denotes the set of all closed
ideals, closed left ideals and closed right ideals in A. The set of all real (complex)
" numbers is denoted by R (C).

An order ideal N of A is a subset in A* fulfilling N+ N< N, aN < N for
aeR* and 0 <y <x, xeN, yeA=yeN. Effros [7] describes a bijection
between closed left ideals and closed order ideals of a C*-algebra. This bijection
is possible to extend on a lattice isomorphism between closed left ideals in 4 and
closed directed convex subgroups in A4,.

Recall that a frame is a complete lattice L fulfillinga A \/ b, = \/(a A b,) for
all a, {b,} = L. A quantale is a complete lattice Q equipped with an associative
binary operation - so thata-\/b, = \/ (a-b,), (\/b,)-a = \/(b,-a) and 1-a = a,
for all a, {b,} = Q. All unexplained facts concerning frames (quantales) can be
found in [9] ([10]). Namely, a quantale Q is called regular if a = \/{be Q: ceQ
exists such that ¢-b =0, ¢ v a = 1} holds, for any ae Q.

§ 1. Meets and ideals

R. Archbold in [1] and [2] gives conditions for the existence of meets of
positive elements a, b € 4 in the partially ordered set 4,. A consequence of these
conditions is the Shermann theorem [1] saying that a C*-algebra is com-
mutative iff its set of hermitian elements is a lattice.

1.1 Proposition. Let A be a C*-algebra, a,be A*. Then the following asser-
tions are equivalent:
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.anb=0 in A,
AaA-AbA = {0}.
ad-bA = = {0}.
Aad n AbA = {0}.
. Aa- Ab = {0}.

Proof 1 <2:see[l], Th. 1.
2<>3: There holds aAd-bA = {0} <> ad-bA = {0} -
<>aAd-bA ={0}<>ad-bA ={0} and AaAd-AbA = {0}<> AaAd-AbA = {0} <=
<> AaA-AbA = {0} <= AaA-AbA = {0}. It follows that AaAd-AbA = {0} =
= AaA-AbA = {0} = aAd-bA = {0} = aAd-bA = {0}. Finally, we have a4-bA =
={0}=>ad-bA = {0} = (daAd)-(AbA) < A[(aA)(AbA)] = A-(aAd-bA) = {0} =
= AaA-AbA = {0}.
2<>5: We can prove similarly as 2 < 3.
3<4: Two-sided closed ideals form a frame and thus 4aAd-AbA = AaAn
N AbA.

Remark. It follows from the proof that the Proposition 1.1 holds even if
(right, left) ideals in parts 2, 3, 5 are not closed. Further, the equivalence of
assertions 2, 3, 4, 5 holds for a,be A4, in general.

1.2. Lemma. If a, be A", a, e R anda A b=0in A*, thenaa n Bb =0 in
At

Proof. We have aa > 0, fb > 0 and let de 4, aa, b > d > 0 hold. Then
aa—d>0,p—d>0andif a#0# B, thena—a'd=a '(aa—d) >0,
b—pB'd=p"(Bb—d)>0. It implies a>a 'd>0, b>p'd>0 and
O=anb>yd>0,where y=min{a~', B~'}. It means that yd = 0, y # 0 and
togetherd =0, aa A fb=01in A*.

1.3. Proposition. Let A be a C*-algebra and a, be A*. Thena A b=0in A*
iff Aan Ab = {0}. o

Proof. <=: If 0<x<a,b for xed, then xe dan Ab = {0}. =: The
smallest closed order ideal d containing a has the formd = {ce 4:0 < ¢ < Aafor
some AeR*}. If a A b=0in A*, then with regard to 1.2 4 b = {0} holds.
Theorem 2.4 from [7] implies the existence of a bijection p between closed left
ideals in 4 and closed order ideals in 4 such that p(/) = I'* for Ie #(A) and

p~ (@) = Aa, p~'(b) = Ab. The consequence is Aan Ab = {0}.

1.4. Corollary. Let A be a C*-algebra and a,be A*. Then there holds: 1.
anb=0inAd,=anb=0inA".

2. If a A bin A, exists, then a A b=0in A" impliesa A b=0in A,.

Proof. 1. It follows from 1.2, 1.3. and the fact dan Ab < Aa- Ab be-
cause #(A) is an idempotent quantale.

2. It is clear.

Remark. A simple example in the C*-algebra of real square matrices of

w.bs».w—
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rang 2 _ilOWS that the conversion of the assertion 1. from 1.4. is not true and thus
Aan Ab = {0} does not imply Aa- Ab = {0} for a,be A", in general.

L.5. Lemma. Let A be a C*-algebra and a€ A. Then there holds:

1. Aa* = a*A, aA* = Aa*.
2. Aa = Alal, a*4 = |a|A. .

Proof. 1. xe da* < x*e Ada<>{y,a} - x*e Ada<>{y,a} - x*, where {y} =
< A is a suitable sequence <> {a*-y*} - x <> xe a*A4. The second formula fol-
lows from the first. - ' -

2. We have |a|* = a*-ae Aa and the Corollary 2.2 from [7] implies |a| € Aa,
1e., Ala| = Aa. If a = ula| is a polar decomposition of a, ue A** and if {u,} = 4
is a sequence which weakly converges to u, then {u,|a|} < A|a| weakly converges
to a, Ala| is closed with regard to the weak convergence (A4 is dense in 4** in
the weak topology), i.e., ac Ala| and Aa < A|a|. Together Aa = Ala| and
a*A = Aa* = Ala|* = |a|A4 hold.

1.6. Corollary. Let A be a C*-algebra and a, be A. Then there holds:
1. lal A 16l =0 in A" <> Aan Ab = {0}.

2. |lal A |b] =0 in A,<> Aa- Ab = {0}.

Proof follows from 1.1., 1.3. and 1.5.

1.7. Proposition. Let A be a C*-algebra, £(A)(¥(A4,), (respectively) be the
complete lattice of all closed left ideals in A (closed directed convex subgroups in
A, with the property (S): ae Ce €(A,), Ae R = dae C, respectively).

Then the mapping f: £(A) — €(A,) such that f(B) = BN A, for Be £(A) is
a lattice isomorphism.

Proof. If Be¥(A4), then Bn A, is a closed subgroup in A4, and
B*=(A,nB)* =A*nB because (4,nB)* <« Bt A*nB<(4,nB)*
holds. B* is an order ideal and thus each element ae 4, B has the form
a=a* —a ,wherea*,a €eA* nB. B" is convex, |[ale BY,|a| > a*,a” >0
and it implies 4, N Be 6(A4,). Further, we have 4,nB= B* — A* and thus
f=g-h, where h(B)=b* for Be¥(A) is a bijection (see [7]) and
g(B*)=B* — B* = A, n Bis also a bijection. The mappings g, #andg~', A~'
preserve the inclusion and thus f'is an isomorphism of complete lattices.

1.8. Lemma. Let Be #(A). Then B is a two-sided ideal in A iff B = (4,
N B) + i(A, N B).

Proof. =: Clearly (4,n B) + i(A,~ B) < B holds. If Be £« (A), then B
is selfadjoint (see [7], Remark after 2.8) and for each be B we have b = b" + ib’,

where b" = %(b +b*), b’ = —;—(b — b*),i.e., Bc (4,n B) + i(4,n B).
i

<: For each beB we have b=b, +ib,, where b, b,eAd,NnB and
b* = b, — ib,e B. It means that B is self-adjoint, i.e., Be £ (A).
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1.9. Corollary. Let A be a C*-algebra. Then the mapping f: S (A) — € (4,)
such that f(B) = BN A, for Be #d (A) is an isomorphism of frames S (A) of
closed ideals in A and € (A,) of invariant closed directed convex subgroups in A,
with the property (S).

Proof. If Be £« (A), then BN A,e% (A4,). Let Ce€ (A4,). Then C* is an
invariant closed order ideal in 4. With regard to [7], Th. 2.8. there exists an ideal
Be #d (A) such that 4, n B = C. The mapping f'is a restriction of the mapping
ffrom 1.7. on £ (A) and f'is also a bijection.

1.10. Corollary. If A is a C*-algebra, then there holds.

1. Invariant closed convex directed subgroups in A, form a frame.
2. f(B-C) = f(B)n f(C), for B,Ce I (A).
3.f(B) = A,n B and f~'(C) = C + iC, for Be #.d (A) and Ce % (A,).

Proof. 1. is clear.

2. f(B-C)=f(BNC)=(BNnC)n A, =f(B)nf(C).

3. C + iCis a subgroup in A4 closed with respect to scalar multiplication. C*
is an invariant closed order ideal ind Be . « (A) exists such that B* = C* (see
[7],2.8). Then 4,nB=C* — C~ = Cand f~'(C) = B = C + iC follows from
2.8.

§ 2. Polarities

A polarity is a symmetric and antireflexive binary relation. Some properties
of polarities were investigated by F. Sik in [12] and [13]. Let us describe
some polarities on C *-algebras.

Definition. x-polarity (6-polarity, respectively) is a binary relation on a C*-
algebra A with the following property:

axb<>la| A |b| =0 in A4,
(adb<>|a| A |b] =0 in A", respectively), for a,be A.

2.1. Proposition. x-polarity and &-polarity are symmetric and antireflexive
binary relations on C*-algebra A with the following properties:
1. axb<> AaA- AbA = {0},
axb<> Aan Ab = {0},
axb <> a*xb*,
axb => adb,
. anb<>|al*"xb, adb < |al*"6b,
for a, be A and each positive integer n.
Proof. » and & are symmetric relations and their antireflexivity follows
from the fact that a = 0<>|a| = 0 for ae A.
1. and 2. follows from 1.6. and 1.1.

DA
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3. Propositions 1.1. and 1.5. implys axb<> Aa- Ab = {0} <> (Aa- Ab)* =
= Ab*- Aa* = b*A-a*A = {0} < b*xa* <> a*xb*.

4. follows from 1.4. o

5. follows from 1., 3., 1.5. and the fact Aa = A|a|’ for ae A. Namely, |a’e

€ Ala| = Ala]’ < Ala| and |a)*€ A|a]** = |a| € Ala]** (see [7], 2.2) = Ala] < A|al*.

Definition. Let ¢ be a polarity on a non-empty set M and B < M. Then
B, = {me M: mob for any be B}. If B = (B,), = B,, then B is called a ¢-polar
in M. The set of all ¢-polars in M is denoted by @(M).

The mapping B — B, for B = M is a closure operator and B, = B, holds.
We shall write b, instead of {b};, for be M. Let us investigate these notions for
» and ¢ polarity on C*-algebras.

2.2. Proposition. x-polars are closed ideals in a C*-algebra A.

Proof follows from the fact that axb<> Aa-Ab = {0}, from the properties
of left ideals in 4 and from the continuity of the multiplication in A4.

Remark. A simple example in the C*-algebra of real square matrices of
rang 2 shows that d-polars are not closed with respect to the addition.

2.3. Proposition. If A is a C*-algebra and B = A, then there holds:
1. B is the greatest ideal Ce #.4 (A) with respect to the property C n B,, = {0}.
2. If (B) is the ideal generated by B in A, then B, = {(B),.

Proof. 1. B, n B, = {0} holds and if Ce £« (A) such that Cn B, = {0},
then for ce A and b e B, there holds Ac- Ab = ¢n B, = {0},i.e.,cxband C < Bj,.

2. follows from 2.2. .

2.4. Proposition. If A is a C*-algebra, then the mapping B — B, in the frame
FId (A) is a nucleus and »(A) is a frame. x(A) is a complete Boolean algebra in
which the complement of a x-polar B is B, /\ {B,€ x(A): Ac A} = [\ {B,€ #(A):
Ae A} and \/ {B*e x(A): Ae A} = (| {B,€ #(A): Ae A}),.

Proof follows from 2.2, 2.3. and from the properties of regular elements
in frames.

2.5. Proposition. The set 6(A) of all &-polars of a C*-algebra A is a complete
Boolean algebra in which the complement of a &-polar B is Bj, |\ {B,c 6(A):
AeA} = (\{B,e8(A): Ae A} and \/{B;e 8(A): Ae A} = (| ) {Bre 8(A): A A});.

Proof. d-polarity on A is a symmetric and antireflexive binary relation;
and let _us introduce a quasiorder < on A4 in the following way:
a < b<>Aa < Ab for a,be A. Then 6(A) is a complete Boolean algebra with
respect to the introduced operations if the following conditions are fulfilled (see
[12], Th. 1.4,4):

a) x>y, xfy=02>y, b) 050,
c) x0y, z < x=>z0y, d) x nondy=3z€e A4,
znon<0,z<x,z<y, forx,y, zeA.
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Let us prove these conditions for 6(4):
a) x>y, x6y = Ax 2 Ay, Ax 0 Ay = {0} = Ay = {0} = y = 0, b) clear, c) xdy,
z<x=>Axn Ay ={0}, Az < Ax= Azn Ay = {0} = z5y, d) x nondy= 3z,
znon<0edAxnAy=Az < Ax, Az< Ay, 0#z=>znon<0,z<x, z < y.

2.6. Corollary. Let A be a C*-algebra, B, C < A, |B| = {|b|: be B} and let B’
denote B], or B and ¢(A) denote x(A) or 8(A). Then there holds:

1. (J{Bieo(A): Ae A}Y = [\ {B; e p(A): Ac A} and ([ {B e p(A): Ac A}) =
= (U{Bi e p(A): A€ A},

2. B"=|B|'=|B"|', |A| A |B"| < B".

3.(B" I AIC")" =B"nC".

Proof. 1. It follows from [12], B.3.

2. If beB’, ceB”, then |b| A|c|=0 and B'=|B|, |[B"'=B"=B". If
ce|A| A |B"|, then ¢ = |a| A |b| for ae A, be B” and 0 < a| A |b| < |b] holds.
Ab* is an order ideal and that fact implies |a| A |b|€ Ab_and A(la| A [b]).
Ad = Ab- Ad = {0} for each de'B,(A(la| A |b]) » Ad = Ab N Ad = {0} for each
de Bj). Finally, |a| A |b|€ B” holds.

3. From 2. it follows that (JB"| A |C"|") < (4] A |B"])'n(J4| A |C"])" =
cB"NnC". If xeB"nC" and ye(|B"| A |C"]), then |x| = |x|] A |x|€|B"| A
A |C"| and |x| A |y| = 0 holds. It means that xe (|B"| A |C"|)".

Let us proceed with some general considerations of polarities. Let § # M be
a set, B(M) < exp M be a complete Boolean algebra such that | | B(M) = M.
Then {(a); = /\ (Pe B(M): ac P) is the smallest element from B(M) containing
a and let us define the polarity az on M: aagh<><a)zN b)Yy = Opyy, for a,
beM.

There holds Oy, = {ae M: aazm, for each me M}.

2.7. Proposition. 1. If m is a polarity on M then there holds: arb=>a, N
Nb; = Oy = {xeM: xnm for each me M}.

2. If mis a polarity on M such that (M) is a complete Boolean algebra, then
T = a,.

Proof. 1. If xea, n b;, then xeb,, i.e., xax and the rest follows from the
antireflexivity of 7.

2. If anb, then aa,b. If aa,b, a nonznb, then z¢0,,, exists (see [12],
Th. 1.4,4), zea, n b}, a contradiction.

Let us put @ > p foi the polarities @, f# on M when there holds: xfy = xav
for x, ye M.

2.8. Proposition. Let M be a set, (K) be a given property of a system of subsets
in M closed with respect to meets and covering M. Let 0 = (\{{m): me M},
where {m) is the smallest subset of M containing m and having the property (K).
Then there holds:
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0 is the greatest polarity on M such that polars form a complete Boolean
algebra, have the property (K) and O ,,,, = 0 iff 0 has the following property:

agh<><ay n<{b) = 0. *)

Proof. <=: If Bis a polarity on M, B(M) is a complete Boolean algebra,
Opmy = O and B-polars have the property (K), then there holds: apb=ayn
Nby= Oy (see 2.7,1) = apb for a,be M. It means that ¢ > B.

The relation o defined by (*) is a polarity fulfilling the necessary conditions
(see [12], Th. 1.4,4) which guarantee that o(M) is a complete Boolean algebra.
There holds O, = 0 (see 2.7,1) and we shall prove that polars from (M) have
the property (K). If X = M, then X, = () {x,: xe X} and (x>, < x, <= {x,)
holds. We have {t) n{(z)> = {tDn<{x) =0 for each te x, and ze(x) ie.,
te{x), and x, (x)o Finally, x; 2 {(x,>,= x}, and thus X,=<{X002
2 (xy) 2 x, ie Xp =X,

=: It follows from 2.7,2.

2.9. Corollary. 1. x-polarity is the greatest polarity on a C*-algebra such that
polars form a complete Boolean algebra and polars are ideals.

2. O-polarity is the greatest polarity on a C*-algebra such that polars form a
complete Boolean algebra and polars are left ideals.

3. The greatest polarity B on a C*-algebra A such that polars form a complete
Boolean algebra and polars are right ideals has the following properttes
apb<>aAd N bA = {0} and afb = a*ob*, for a,be A.

Proof follows from 2.8. We have aﬂbaaA AbA = {0} = ad* N bA* =
= {0} <> a*ob* (see 1.5).

Now, we investigate a polarity corresponding to the multiplication in C*-
algebras.

2.10. Proposition. If ¢ is a binary relation on a C*-algebra A such that
agb<>a-b =0 for a, be A, then there holds:

1. agb<> Aa-bA = {0}.

2. agb<>b*ea*, ach<>|a| g|b¥*|.

3. axb=>aeb=> adb*.

Proof. 1. ach<>Aa-bA = {0}©Aa bA = Aa- bA {0}¢Aa bA = {0}.

2. b*ea* <> b*-q* =0<>a-b = 0<>ach<> Aa - = {0} <> Ala| - |b*|4 =
= {0} <>|a| - |b*| = 0<>|ale|b*| (see 1.5).

3. We have axb<>a-be AaA N AbA = {0} = agb (see 1.1). If aeb, then
la]-16*| = 0 and if ze A|a| N A|b*|, then z = m|a| = n|b*| for suitable elements
m,neA. It implies that |z*|> = z-z* = m]a||b*|n* =0 and thus z=0,
Alal N A|b*| = {0}. If pe Ala| n A|b*|, then sequences {m,}, {n;} = A exist such
that mja| - p, n|b*| - p and we have {0} = {mja|-|b*|n¥ - p-p*=|p*|* =
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=0=|p*|=0=p=0. According to 1.5 Aan Ab* = Ala|n A|b*| = {0}
holds; thus adb*. ‘
The relation ¢ is neither symmetric nor antireflexive, which is a reason to
introduce the following relation:

Definition. y-polarity on a C*-algebra A is defined in the following way:
ayb<=a*-b=0 for abeA.

2.11. Proposition. y-Polarity is a polarity on A and has the following proper-
ties: 1. ayb<>|a*| g|b*| < a*eb.

2. axub=>a*yb and ayb = a*6b*, for a,be A.

Proof. We have ayb<>a* b =0<b*.a=0<bya, aya<|a’ =0=a =
= 0. The rest follows from 2.10,2. and 3.

The polarity yis derived from the operation o on 4 such that acb = a*-b for
a,be A, which J. Rosicky [11] introduced. y-Polars are closed right ideals
in A that form a complete complemented lattice y(A4) and they have similar
properties as x-polars and d-polars. Namely, the analogy of 2.3 is true.

If I'is a left ideal in A, then I, is a two-sided ideal in 4. If we define a polarity
on A that is similar as y and that is defined by the formula a-b* = 0, then polars
are left ideals in A.

2.12. Lemma (A generalization of Th. 1, [3]). If (G,.) is a groupoid, is a
closure operatoron Gand XY = X-Y, \/ Y= U Y. for X, Y, Y.< G(iel), then
the following assertions are equivalent:

1. X- Y= XoY.

2. XoY=XoY.

. x(V/HeVaE-p

4. Xo(\/ %)=/ (Xo X). __

Proof. 3 = 4: Xo(V N =XV¥=VX N X1 =\/(X-1),
VX=X %X J,=X-\/Y.

4 = 2: For Y,=Y(iel)itholds Xo Y =Xo\/ Y, =\/(Xc ) = Xo Y. 2=1:
X-YcXoY=XY.
1=3X-\VYi=X-Ycxul=X-(UN=UX-H=\VX-Y.

Remark. A similar lemma is true when we change the multipliers in
operations o and -. For example 1. Y- X < Yo X.

2.13. Theorem. On a C*-algebra A the following assertions are equivalent :
1. The set y(A) of all y-polars on A is a complete Boolean algebra such that
the complement of a y-polar B is B,

\/{Byey(A): Ae A} = (| J{Bie ¥(A): Ae A}, and B A C = (B- O); for y-polars
B, C. '
2. a*b=0<a-b=0 for each a, be A.
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3. A is commutative.

Proof. 1 =2:If a, be A, a*-b = 0, then aeb; implies a-beb’, - b, = b, A
Aby;={0}, i.e,, a-b=0. If a-b =0, then similarly (a*)*-b=0=a*eb,=
=Sa*-beb, by b, A b)={0}=a*-b=0.

2=1: a) We shall prove that (h-k), = (k-h), for each h, ke A. We have
a-b=0<«a*b=0<«=b¥-a=0<b-a=0 for a, be A and further xyhk <
<>x*hk=0<x-h)k=0=k(x-h=0=k*xh=0=x*k)*h=0«=
<>x*k-h =0<xyk-h, for xe A. It implies that ze (X-Y),<>zyxy (for each
xeX,yeY)ezyyx<=ze(Y-X),, forany X, Y < 4.

If we introduce Xo Y = (X-Y) for each X, Y < 4, then Xo Y = Yo X holds.

b) y(A)is aclosure system and let us prove Xo Y = Xo Y foreach X, Y < 4.
According to 2.12 it is sufficient to prove that X- Y, < X< Y. If ae X- Y, then
a = x-c for suitable xeX and ceY,. We have b*(x-y) =0=bxy=0=
= (bx)*y = 0=>bxe Y, for xe X, yeY, be(X-Y),. Further, (bx)*c=0=0=
=bxc=ba=b*a=0=aypb=ae(X-Y)].

It means that (y(4), o, v) is a multiplicative lattice (see 2.12, 2 =4),
XoA = X holds for any X e y(A) because y-polars are right ideals in 4. These
facts and 2.12,2 imply that o is associative. Namely, Xo (Yo Z) = Xo(Y-Z); =
=X (Y Z2)=X-(Y-2);=[(X-Y)Z],=(X-Y)e Z=(X-Y),0 Z=(XoY)o
oZforeach X, Y,Z < A-y(A)isaregular quantale and [10], Th. 2.5 implies that
y(A) is a frame. It means that Xo Y = X n Y for each X, Y e y(A). Finally, y(A4)
is a complemented distributive complete lattice, i.e., y(A4) is a complete Boolean
algebra. :

2 = 3:[8], Proposition 3.3 implies the existence of a set {X;: ie [} = #(A) for
each Ye #(A) such that Z,cX;=0,Z,v Y= 4 and Y = \/ (X: ie!) for suit-
able Z,e #(A) and iel. We have Z;- X, = 0 (see 2.) and therefore #Z(A) is a
regular quantale. 2(A) is a frame (see [10], Th. 2.5) and 4 is commutative.

3= 3: For a,be A4 there holds a*-b = 0 = (ab)*ab = 0= |ab|’ = =a-b =0
and further ab = 0= (a*-b)*-a*-b = 0= |a*b|* = 0=a*b = 0.

Remarks. 1. #(A) is a frame iff 4 is commutative (see [6], 2.5.7).

2. If y(A4) is a complete Boolean algebra, then y = ¢.
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MOJIAPHOCTU B C*AJITEBPAX
Bohumil Smarda
Pe3rome
B 570l cTaThe HCCIEnyIOTCA OCHOBHBIE CBOMCTBA mMosspHOCTeil B C*-anrebpax, a MMEHHO,

OTHOILCHUE NOJIAPHOCTEH M uaeanos B C*-anrebpax W peLIETOYHAS XAPAKTEPUCTHKA MHOXKECTBA
NoJsAp.
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