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MORPHISMS OF A CERTAIN CLASS OF 
MONOUNARY ALGEBRAS 

JIRI NOVOTNY 

1. Introduction 

The power of monounary algebras was studied in [4]. The present paper is 
dealing with the so-called bipower (the carrier is the set of all bijective homo-
morphisms of the given monounary algebras), monopower (the carier is the set 
of injective homomorphisms) and epipower (the carier is the set of surjective 
homomorphisms) of algebras. Further, isomorphic embeddings and homomor-
phic images are studied, similarly as Birkhoff [2] did for ordered sets. We 
investigate their connection to operations of addition, multiplication and ex­
ponentiation for monounary algebras of a given class. Results are presented in 
the form of explicit formulas for the number and the type of the resulting 
algebras and in the form of rules which hold for the studied relations. 

2. Basic notions 

The cardinal number of a set M is denoted by the symbol \M\. The ordered 
pair A = (A,f), where A is a set and fa mapping of A into itself, is called a 
monounary algebra. 

We study the class 91 of monounary algebras consisting of a finite number of 
cyclic components. Compare [4]. The type t(A) of any algebra A of the studied 
class 91 can be expressed in the canonical form of a polynomial ax1 + a22 + 
+ ... + amm meaning that the algebra A has exactly a, /-element cycles for 
any / with 1 ̂  i :g m and no other elements. 

The mapping h: A -> B is called a homomorphism of A = (A,f) into B = 
= (B, g) iff h(f(x)) = g(h(x)) for any xeA. By Horn (A B) we denote the set 
of all homomorphisms of A into B. An isomorphism of A onto A is called an 
automorphism. If A, B are isomorphic algebras, we write A^ B. The set of all 
automorphisms on the algebra A is denoted by Aut A. 

The sum A + B of the algebras A = (A,f), B= (B, g) e 91 where AnB = Q 
is defined to be the algebra C = (C, h) such that C = AKJ B, h = fug. 
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By the product A • B of the algebras A = (_4,f), fi = (£, g) e 21 we mean the 
algebra C = (C, h) such that C = ^ x £ and h(a9 b) = (f(a), g(b)) for any 
(fl,ft)eC. 

The power AB of the algebras 4 = C4,f), B = (B, g) e 51 is defined to be the 
algebra C = (C, /*) such that C = Hom(B, 4 ) and h(q>) = <p-g for any <pe C. 

By Comp A we denote the set of all components of the algebra A. Compa­
re [4]. 

Let (iV, /) be the set of all positive integers ordered by divisibility, let Ka N. 
Then we put minKT = {neK; for any meK, m/n implies m = n} which denotes 
the set of minimal elements of the ordered set (K, /). 

1. Let A, B e 91. Then Horn (A, B) * 0 iff for any m e min {| T\; Te Comp A} 
there is nemin{|r'|; T e Comp B} such that n/m. 
Proof: Horn (A, B) # 0 iff for any Te Comp A there is T e Comp B such that 
IT'l/IT]. This is equivalent tp the following condition: For any memin{|r | ; 
r e C o m p 4 } there is nemin{|r'|; F e C o m p B} such that n/m. • 

2. Let A, Be% t(A) = m, t(B) = n, m, n > 0 . Then m n = g.c.d. (m, n) 
I . cm . (/T7, n), where g.c.d. means the greatest common divisor and l.c.m. the 
least common multiple. 

For any positive integers i,, i2, ..., ik we have 

. . . _ ii -i2... 4 r- - -i #i' h-- h — ~ ; TT - # i> ^ ? • • •? hU 
[il9 i 2 , ..., ljtJ 

where [/,, l2, ..., ik] denotes the l.c.m. of /,, i2, ..., ik. 
Proof: The product A* B contains the elements (ah bj), 1 ^ i ^ m, 1 ̂ j ^ n. 
Each element (ah b-) lies in a cycle whose number of elements is l.c.m. (m, n). 
Since m-n = g.c.d. (m, n)-l.c.m. (m, n), the type of A* B is g.c.d. (m, n) l.c.m. 
(m, n). The following assertion can be proved by induction. • 

3. Bimorphisms, monomorphisms and epimorphisms 

A bijective homomorphism, (isomorphism in fact) of A into B is called a 
bimorphism. The symbol Bi (-4, B) denotes the set of all bimorphisms of A 
into B. 

1. Let 4 , Be%. Then, clearly, we have 
(i) Bi(4, .8)#0iff4^B, 
(ii) Bi(4, B)^ AutA. 

2. Let 4 , Be% t(A) = a,1 + a22 + ... + amm = t(B). Then 

|Bi(4, B)\= J! *,«'*• 
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Proof: The assertion follows from 3.1 since the number of automorphisms 
is given by the same formula. See [4], 5.5. • 

By the bipower Bi (A, B) of the algebras A = (-4,f), B = (_5, g) e 91 we mean 
the algebra C= (C, h) such that C = Bi(A B) and h((p) = <p-ffor any (peC. 
Regarding 3.1 the algebra Bi (A, B) is isomorphic to the algebra Aut .4 which 
is defined analogously. 

3. For the positive integers a, m, n, m ^ n we have 
(i) Aut m _.__ m, 
(ii) Aut (m + n) __=. g.c.d. (m, n) I . c m . (m, n), 
(hi) Aut (am) zta\ma~xm. 
Proof: (i) is evident; (ii) follows from (i) and 2.2 taking into account that 
the number of automorphisms is m • n; (iii) follows from the fact that automor­
phisms, whose number is a! raa, turn out to be algebras of the type m. • 

4. Let _4e9I, t(A) = a,1 + a22 + ... + amm. Then 

n *"* 
1 — i — m - _-Aut A s_ [/], 

m 
where [/] is the least common multiple of elements of the set / = {/; 1 — i = ra, 
at>0}. 
Proof: The resulting algebra is of the type which is the least common mul­
tiple of types of nonzero cycles of the given algebra (compare 3.3 (ii)). Now, the 
assertion follows from 3.2 and 3.1 (ii). • 

An injective homomorphism of A into B is called a monomorphism. The 
symbol Mon (A, B) denotes the set of all monomorphisms of A into B. 

5. Let A, Be51 be connected algebras (having just one component). Then, 
clearly, Mon (A B) ± 0 iff A s B. 

6. Let A Be% t(A) = a,1 + a22 + ... + amm, t(B) = bx\ + b22 + ... + 
+ bnn. Then, clearly, Mon(A B) # 0 iff m ^ n, a{ = b„ 1 = i ^ m. 

1. Let A Be% t(4) = a,1 + a22 + ... + a m m , t(5) = b,1 + b 2 2 + ... + 
+ bnn. If Mon(A B) ^ 0, then 

|Mon(A£)l= n VaW, 

where Va(b) is the number of a-tuples formed of different elements of a set with 
b-elements. 
Proof: The number of injective mappings of an a-element set into a b-ele-
ment set is equal to the number of a-tuples formed of different elements of a set 
with b-elements. From this and from 3.2 the assertion follows. • 

By the monopower Mon (A B) of the algebras A = (_4,f), B = (B, g)e*H 
we mean the algebra C = (C, h) such that C = Mon (A B) and h((p) = <p-ffor 
any cpeC. 
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8. For the positive integers a, b, c, d, m, n we have 

(i) M o n ( m , n ) - j " ? i f m = "' 
w (0 otherwise; 

am if m = « 
(ii) Mon(/7i, an) ^ 
v 10 otherwise 

(iii) Mon(am, bn) ^ \K(b)^^m if m = n, a = b, 
(0 otherwise; 

(iv) I fm^r t . t hen (K(C)- Vb(d)m°- V ~ ' 

M o n ( a m + 6n, cm + </n) =_ < § c d - ^m ' "> l c m - (m> "> 
if a ^ c, !3 ^ a", 

1.0 otherwise. 

Proof: (i) follows from 3.5; (ii) follows from (i); (iii) follows from (ii) and 
3.7, since the type of the resulting algebra is m; (iv) follows from (iii) and from 
the multiplicative rule (compare 2.2). • 

9. Let A, Bell, t(A) = a,1 + a22 + ... + amm, t(B) = 6,1 + b22 + ... + 
+ b„ n. If Mon (A, B) # 0, then 

n wi* 
Mon (A, B) s. -------- [/], 

[I] 

where [I] is the lowest common multiple of elements of the set I = {i; 1 ^ i S 
f$ m, at > O}. 
Proof: The assertion follows from 3.7 and 3.8. Compare the explanation in 
the proof of 3.4. D 

A surjective homomorphism of A onto B is called an epimorphism. The 
symbol Ep (A, B) denotes the set of all epimorphisms of A onto B. 

10. Let A, Be% be connected algebras. Then, clearly Ep(_4, B) 7-= 0 iff 
\B\I\A\. 

11. Let 4 , Be%t(A) -=0,1 + a22 + ... + amm,t(B) = b,1 + b22 + ... + 
+ b„n. If Ep(A #5) # 0, then 

I <>,* I by. 

Proof: The assertion follows from the fact that any epimorphism maps 
components of A onto components of B satisfying the condition of divisibility 
(see 3.10). Q 

By the epipower Ep(4, B) of the algebras A -= (A, f ) , B = (B, g)e9l we 
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mean the algebra C = (C, h) such that C = Ep(A B) and h(<P) = <p-ffor any 
cpeC. 

12. For the positive integers a, m, «, p, q we have 

(i) E p ( m , n ) ^ j " i f " / w ; . v / ' [0 otherwise. 

(ii) Ep(am,n)*\n°~[nifn/m; 
7 [0 otherwise. 

(
2 g.c.d. (p, q) l.c.m. (p, </) 
if p/m, p/n, q/m,q/n; 
g.c.d. (/>, q) l.c.m. (p, <jr) 
if/Vm,/^«,q/n, 
or /?^m, p/n, q/m, 
or /?/m, p/n, q/m, q\n, 
or /?/m, />/«, qXm, q/n; 
0 otherwise. 

Proof: (i) follows from 3.10; (ii) follows from (i) taking into account that 
the number of epimorphisms is n". If we consider, for instance, that p/m, p/n, q/n 
we obtain pq epimorphisms. Thus, by 2.2, this equals g.c.d. (p, q) l.c.m. 
(p, q). In the case when both p and q divide m and n, we obtain'twice the number 
of epimorphisms. In the remaining cases there does not exist any epimorphism. 
Together, we have (iii). • 

Let P be the set of p elements, Q the set of q elements. By the symbol S(p, q) 
we denote the number of surjective mappings of the set P onto the set Q. 

13. For the positive integers p, q we have 

s(p,q)=i(-iy-j(^jf. 

Compare [1] pp. 106 and 121 and [3] p. 109. 
If p = 0, the above mentioned formula gives S(p, p) = p! and in the case of p < q 
we obtain S(p, q) = O. Compare [3] p. 44. 

14. For the positive integers a, b, m, n, a > b we have 

Ep(am,M = f f l _ , |1
(-1)"'(/) / an ifn^ 

(.0 otherwise. 

Proof: The assertion follows from 3.12 (ii) and 3.13. • 
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4. Isomorphic embeddings and homomorphic images 

Let us denote by the symbol 4 CE: B the fact that there is a monomorphism 
(injective homomorphism) of the algebra A into the algebra B. 

1. The relation CE: is a partial ordering on 91. Formally, for any 4 , B, Ce 
e 21 we have 
(I) 4 CE: 4 , 
( 2 ) 4 c B , B c C i m p l i e s 4 CE: C, 
(3) 4 CE: B, B CE 4 implies 4 s B. 

Proof. The reflexivity and transitivity are evident, let us prove the antisym­

metry. Let t(4) = £a.-/, {(B) = Zfy/ ^ ^ ^ ^ ' t" i e n a* =" ̂  ^or a n y ' anc* ^ 
' j 

B CE: 4 , then fy = a; for any j (see 3.6). From this we obtain t(4) = t(B). D 
In general, it does not hold that either 4 ce: B or B CE: 4 (take, e.g., t(4) = 

= 3, t(B) = 4). 
Let us denote by the symbol A< B the fact that there is an epimorphism 

(surjective homomorphism) of the algebra B onto the algebra 4 . 
2. Analogously we have: The relation < is a partial ordering on 91. Form­

ally, for any 4 , B, Ce2I, we have 
(4) 4 < 4 , 
(5) A < B, B < C implies 4 < C, 
(6) 4 < B, a < 4 implies 4 s B. 

Since, in general, it does not hold that 4 -< B iff 4 CE: B (take, e.g., t(4) = 
= 2, t(B) = 4) we shall study the defined relations separately. 

3. Both relations are clearly consistent and the one-element cycle is a homo­
morphic image of every nonempty algebra. Formally, for any 4 , B, C, De2I, 
we have 
(7) Let B^ C. Then 4 CE: B implies 4 GE C and B CE: D implies C CE: D. 
(8) Let £ s C. Then A< B implies 4 < C and B < D implies C < D. 
(9) 1 < A for any 4 ^ 0 . 

The analogous relationship 7 CE: 4 does not hold in general. Take, e.g., 
t(4) = 2 

4. The sum is isotone, formally, for any 4 , B, C, De2I, we have 
(10) If 4 CE: B, C <£ D, then 4 + C CE: B + D. 
(II) If 4 < 6, C < D , then 4 + C<B+ D. 

We have also the following assertions on decompositions. 
(12) If 4 CE: B + C, then A s D + £ where D CE: B and £ CE: C. 
(13) If B + C< 4 , then 4 s D + £ where B < D and C-< £ 

Further, for any 4 , Be21, we have 
(14) 4 CE: 4 + B, B < E : 4 + B . 
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The analogous relationship A< A + B does not hold in general since in B 
there might be a component which cannot be homomorphically mapped onto 4 . 

However, the following assertion is evident: 
(15) 4 CE B implies A =- B or A + X^ B for some Xe9I. 

5. The product is isotone, formally, for any A, B, Ce2l, we have 
(16) 4 en B implies A- C en /?• C, 
(17) 4 -< B implies _4C-< S C . 
Proof: Let t(A) = J]a,./, f(«) = £ > , / t(C) = £c*fc. By 2.2 we have 

j * 

' ( * • Q = E I * A g-cd. (i, k) l.c.m. (/, *), 
i A: 

t(0. C) = X l f y * g.c.d. (/, A:) l.c.m. (/, Ac). 
i A: 

Since by 3.6 A CE 13 implies a, ̂  b, for any i, we obtain the assertion (16). 
If the mapping bi-»a is a surjective homomorphism of B onto 4 , then, 

clearly, (b, c) i—• (a, c) is a surjective homomorphism of /?• C onto 4 • C and thus 
we have (17). • 

6. For any 4 , fleSI we have 
(18) A < > l - S . 
Proof: The mapping (a, b)v-+a is clearly a surjective homomorphism of 
4- .8 onto A. • 

The analogous relationship A G: A- B, B ^0 does not hold in general, take, 
e.g., t(A) = 2, t(S) = 3. 

7. For any 4 , £?, Ce2I we have 
(19) <AGL B implies 4 C cr fic 

Proof: Let i be an injective homomorphism of A into B. If we assign to 
any homomorphism <peAc the mapping y/= i<p9 the clearly ^ G 5 C . Letj be a 
mapping / I c into i ? c such thatj(^) = y/. We prove thatj is an injective homo­
morphism. Let C = (C, h) and denote the operation in the algebra Ac by the 
symbolic and similarly fBc denotes the operation in the algebra Bc. 

For <peAc we have j(fAc(q>)) = j(<p-h) = i-(<p-h) and also fBc(j(q>)) = 
= fBc(i-<p) = (i-(p)-h. 
Further, to two different homomorphisms of 4 C there are assigned different 
homomorphisms of Bc. Thus, we have (19). • 

The analogous implication A < B implies that Ac< Bc does not hold in 
general. Take, e.g., t(4) = 4, t(B) = 8, t(C) = 12. 

8. For any 4 , fl, Ce9I we have 
(20) A < B implies CA CE CB. 
Proof: Let 0 be a homomorphism of B onto A. If we assign to any y/e CA 

the mapping y/ = <p- <9, then, clearly, ^ e C*. Let i be a mapping of CA into C a 

such that i(<p) = ^. We prove that i is an injective homomorphism. Let 4 = 
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= (A,f), B = (/?, g) and denote the operation in the algebra CA by the symbol 
fCA and similaryf.* denotes the operation in the algebra CB. For <pe C* we have 
i(fc<(<P)) = '(<?•/) = (<P-f)-& and also fcB(i(<p)) = £*(?>• 0) = (<p- <9)g. Since 
0 is a homomorphism of B onto A we have f<9= (9g and from this 
i(fcA(<P)) = jc*(i(P))- Further, to two different homomorphism of CA there are 
assigned different homomorphisms of CB. Thus, we obtain the assertion. • 

9. The relationship A cs: AB does not hold in general for all A, Be51. Take, 
e.g., t(A) = 2, *(8) = 3. 
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МОРФИЗМЫ ОДНОГО КЛАССА МОНОУНАРНЫХ АЛГЕБР 

^^п NоVо^пу 

Резюме 

В статье изуеаются биморфизмы, мономорфизмы и эпиморфизмы моноунарных алгебр 
данного класса. Далее изучаются свойства отношений изоморфного вложения и образования 
гомоморфных образов и их связь с операциями сложения, умножения и возведения в степень. 
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