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TOPOLOGIES CORRESPONDING
TO METRICS ON L-GROUPS

BOHUMIL SMARDA

Choe, Conrad, Jakubik, Holland, Wolk and other authors dealt with
Birkhoff’s problem : “Which directed groups are topological groups and topologi-
cal lattices in the interval topology?”’

They investigated the classes of lattice ordered groups which form topological
groups with respect to the interval topology. '

In the presented paper there are investigated valuations on a lattice ordered
group G with values in an abelian lattice ordered group H ; further there is studied
a topology on G which is defined by means of positive valuations.
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§1. Metrics on I-groups

Definition. Let v: G— H be a mapping of an l-group (G, +, v, A) into
a commutative l-group (H, +, v, A) fulfilling the condition:

v(x)+v(y)=v(xvy)+v(xay), forall x,yeG. 0))

Then v is calléd an I-valuation on G.

If there holds x=y > v(x)=v(y) (x>y > v(x)>v(y), respectively, for
x, y € G, then an l-valuation v on G is called isotone (positive, respectively) or
shortly, an li-valuation (an Ip-valuation, respectively).

A particular case of this notion (in the case when H is the additive group of all
reals with the natural linear order) was investigated by G. Birkhoff[1, p. 230].

Let us remark that the condition (I) is trivial in the case of a linear order on H
and the condition (I) has the form v(x)+v(y)=v(x +y)+ v(0) in the case of
x, y € G, x Ay =0, which is near the condition defining the group homomorphism.

1.1. Proposition. For an I-valuation v on an I-group G there holds:
v(x) = v(x*)+v(x7)—v(0), for all xe G.
Let us now consider the notion of a metric.
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1.2. Proposition. If v: G— H is an li-valuation on an I-group G and
d: GXG—H is a mapping such that d(x,y) = v(vvy)—v(xay), for all
x, y€ G, then there holds:
a) d(x, x)=0, d(x, y)=d(y, x), d(x, y)=0,
b) d(x, y)+d(y, z2)=d(x, z),
c) dlavx,avy)+d(anx,any)=d(x,y),
for all x,y, z,aeG.
Proof. The assertions of a) are obviously valid.

c)d(avx,avy) + dlanx,any) = {v[(avx) v (avy)] — v[(avx) A (avy)]}

{v[(anx) v (any)] — v[(arx) A (ary)]} = v(av(xvy)) — v(av(xay))
v(an(xvy)) — v(aa(xay)) = [v(a) + v(xvy)] — [v(a) + v(xay)]
vixvy) — v(xay) = d(x, y).

I+ +

b) With regard to a) and c¢) we have d(x,y) + d(y,z) = d(x y,y)
+ d(xay,y) + dlyvz,y) + d(yaz,y) = d(xvyvz, yvz) + d(yrx,y)
+ d(yvz,y) + d(xAayaz, xAy) = v(xvyvz) — v(yvz) + v(y) — v(yax)
+ v(yvz) — v(y) + v(xAay) — v(xAyaz) = v(xvy) — v(xay) = d(x,y).

Definition. Let v: G— H be an li-valuation on an I-group G. Then a mapping
d: G X G- H is called an I-pseudometric mapping on G iff there holds:

d(x,y)=v(xvy)—v(xAay), forall x,yeG. (1)

For an I-pseudometric mapping d on G there holds:
d(xvy,y)=d(x, xAy), for x,yeG.

1.3. Proposition. Let v be an li-valuation on an I-group G and d be an

I-pseudometric mapping corresponding to. v. Then v is a positive I-valuation iff
there holds:

d(x,y)=0>x=y, for x,yeG.
Proof. 1. If v is an Ip-valuation and x, ye G, x#y, then xvy>xAy and
d(x,y) = v(xvy) — v(xAy)>0 holds.
2. If the l-valuation v fails to be positive, then there exist x, y € G such that

x>y and v(x) non>v(y) hold. We have 0<d(x,y) = v(x) — v(y), i.e.,
v(x)=v(y). Further v(x)=wv(y) and d(x, y)=0 implies x =y, a contradiction.

Definition. Let v: G— H be an Ip-valuation on an I-group G. Then a mapping

d: G X G — H fulfilling (II) is called an I-metric mapping on G (an I-metric on G).
Let us put now a natural condition on an l-metric.

Definition. Let d be an I-metric on an I-group G. Then we say that d is
compatible with group operation if and only if there holds:
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d(x+a,y+a)=d(x,y), forall x,yeG. (I

Let us introduce a mapping v: G— H in the following way: ©(g) = v(g) — v(0),
for all g € G. Then there holds:

1.4. Theorem. Let v be an Ip-valuation on an I-group G and d be an I-metric
corresponding to v. Then d is compatible with group operation iff the mapping © is
a group homomorphism.

Proof. <€:d(x+a,y+a) =v[(x+a)v(y+a)] — v[(x+a) A (y+a)]
v[(xvy)+a] — vl(xay)+a] = vl(xvy)+a] + v(0) — {3[(xAy)+a]
v(0)} = v(xvy) + v(a) — D(xAy) — 0(a) = D(xvy) — D(xAYy) = v(xVvy)
v(0) = [v(xay) = v(0)] = v(xvy) — v(xay) = d(x,y).

>:Letx, ye G.Denote xAy=u, uA0=u,. Then we have v(x +y) = [o(x + y)
(x+u)] + [o(x+u) — a(x+u)] + [0(x+u) — 3(x)] + v(x) = v(x)
dix+y,x+u) +d(x+u,x+u) — dx+u, x+0) = v(x) + d(y, u)
d(u, ur) = d(us, 0) = v(x) — d(0, u1) + d(us, u) + d(u, y) = v(x) — (v(0)
() + (0(w) — o(w)) + (9(y) — 9(w)) = v(x) + o(y).

1.5. Theorem. Let v be an Ip-valuation on an I-group G, d be an I-metric
corresponding to v. Then the following assertions are equivalent:

1. v is a group homomorphism.

2. d(x+a,y+a)=d(x,y), for each a, x, y e G.

3. dla+x,a+y)=d(x,y), for each a, x, ye G.

Proof. 1.<>2. (see 1.4). The relation 1.<>3. can be verified analogously.

+

I+ + |

1.6. Proposition. Let d be an I-metric compatible with group operation on an
I-group G and v be a corresponding Ip-valuation. Then there holds:

1. d(x, y)=v(|x - y|) - v(0),

2. d(x, y)=d(-x, —y),

3. v(x)—v(0)=d(x*,0)—d(x~,0), for all x,yeG.

Proof. 1. d(x,y)=d(x—(xAy),y — (xay)) = v[(x—(xAy)) v
(= (xay)l — v(0) = v[(xvy) = (xAy)] = v(0) = v(lx—y]) = v(0).

2. d(x,y)=d(x -y, 0)=d(-y, —x) = d(-x, —y).

3. v(x)=0(x)+v(0)=0(x*+x7)+v(0) = v(x)+o(x)+v(0) = v(x*)
+ v(x7) — v(0) = [d(x*,0)+v(0)] + [v(0) — d(x~,0)] — v(0) = d(x*,0)
— d(x7, 0) +v(0). )

§2. Topologies corresponding to I-metrics

Now, let us investigate topologies corresponding to 1-metrics on l-groups. We
shall use the following notation in this paragraph:
Let G be an l-group, G# {0}, H be a commutative I-group, v: G— H be an
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Ip-valuation on G, which defines an l-metric d on G compatible with group
operation and let ¥ be a group homomorphism corresponding to the Ip-valu-
ation v. Let us denote U.={geG: 0(|g|)<|h|}, for 0O#heH and QY=
{Uv+g: 0+ h e H}, for each g e G. Then we have Q} = Q¥ + ¢, for each g€ G
and U, ={geG:d(0, g)<|h|} (see 1.6). Then:

2.1. Proposition. [)Q%§ = {0} holds.

Proof. If xe( Q¥ =({U.: 0+ he H)} then v(|x|)<|h|, for each 0+ he H.
But #(]x|)#0 implies v(|x]|)<#(|x|), contradiction. Thus v(|x[)=0 and 0=
v(|x])=d(0, x) (see 1.6). Finally, x =0 (see 1.3).

Remark. Ker v is a normal subgroup in G in the case when d is an l-metric
compatible with group operation (see 1.4). Ker v is not an l-ideal in G and thus v
is no I-homomorphism in general. This fact follows from Proposition 2.2.

2.2. Proposition. If x, ye Ker v, x#y, then x|| y.
Proof. If «x,yeKerv,y<x, then x—y>0 and O0=0(0)<uv(x-y)
= 1(x)—v(y), a contradiction.

Definition. Let G be an l-group and ## M c G, 0e M. Then we say that M is
dense in G iff for each gi, g, € G such that g, > g: there exists an element me M
with the property g.<m <g.

If a subset in G exists which is dense in G, then we say that G is dense.

2.3. Theorem. Under the above denotations the following assertions are
equivalent:

1. QY is a complete system of neighbourhoods of g€ G of a nondiscrete
topology on G.

2. H is a linearly ordered group and Im v is dense in H.

Proof. 1. = 2.:If H is not linearly ordered, then elements h, k € H exists such
that hAk=0. Then x € U,n Uy implies o(|x|)<hak=0 and thus |x|e Ker v.
From this and from 2.2 x =0 follows, i.e., U,n Ui = {0}, a contradiction. Further,
for each h e H, h>0 we have U, # {0} and this implies the existence of g € G such
that 0<v(]g|)<h. It means that Im v is dense in H.

2. =.1.: If H is linearly ordered and U, Ui € 2%, then we can suppose that
|k|= |h| and thus Ui o U,. It means that (Q%, o) is a linearly ordered set. From
the density of Im v in H it follows that each U, € QF is a non zero set and thus
U.+g+#{g]}, for each ge G.

The system QY is a complete system of neighbourhoods of an element g, for
each g € G, in a nondiscrete topology.

Definition. This topology is called the topology corresponding to the I-metric on
G and denoted 7(2¥%).
Remark. 1. (G, 1(2%)) is a Kuratowski space (see 2.1).
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2. We can easily see that 7(Q4) = t(24"”) and then we shall denote 7(£2o) only.
For the investigation of the topology t(£2,) it is sufficient to consider an
epimorphism v: G— Im v.

Until the end of section 2 we assume that H is a linearly ordered group and Im v
is dense in H.

2.4. Lemma. Let H be a dense linearly ordered group. Then for each he H,
0 < h there exists x € H such that 0<2x <h.

Proof. From the density of H there follows the existence of x € H such that
O0<x<h. If 2x non<h, then we choose 0<x;< h—x. Thus 2x=h, i.e.,
x=h—x>x, and further h=h—x+x>2x:.

Definition. Let (G, X) be a topological group and let (G, =) be a partially
ordered group. A topology t(X), defined by a complete system X of neighbour-
hoods of zero, is called a weak locally convex topology, iff for each U € X there
exists V € X with the property:

v, eV, geG,vu=g=2v,>gel. (K)

2.5.Lemma. If (G, =) is an I-group and (G, X) is a topological group with
a weak locally convex topology, then (G, =, X) is a tl-group.

Proof. If Ue X and g € G, then there exist V, We X such that + Wc Vc U
and V has the property (K). It implies that for each element x € W there holds
0<|-g*v(x+g)| = [-g*'v(x+g)] v [g*A(-g"—x)] < (Ovx) v
[(g*+|xDA(=g~+|x])] = (Ovx) v [(g*A—g7 )+ |x|] = |x]|. From this we have
-x<-g*v(x+g7)<x and -x,xeV implies —g*v(x+g~)eU. Finally,
(G, X, =) is a tl-group (see [4,1.1]).

2.6. Theorem. Let G be an I-group and d be an I-metric on G. Then G is
a topological 1-group with the topology t(€,) corresponding to d.

Remark. Further, the tl-group described in Theorem 2.6 is denoted by
(G, Qo).

Proof of Theorem 2.6. First, we shall prove that (G, €,) is a topological
group: '

1. For each U, Ui € o there exists U, € Qo such that U, c U,n U, (see 2.3).

2. If Uk € Qo, then we shall prove that there exists U, € £, such that U, + U, c
Uk:

For | k| € H there exist element x, x, € H such that 0<2x <x;, 0<2x <|k| (see
Lemma 2.4) and from this we have 0<4x <2x,<|k|. Then for each a, b€ U,
there holds 9(Ja + b|)<v(|a|+ |b| + |a]) =v(|a]) + 0(|b]) + 9(|a])<3x<4dx<

k|, i.e., a+ b€ Us. It means that U, + U, c Ux; — U, = U, is clear.

3. If Ui € Qo and u € Ui, then we shall prove that there exists U, € Q, such that
U.+uc Uc: We have 6(|u])<|k| and there exists an element x € H such that
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0<2x < |kl —=9(|u|) (see 2.4). Then for each ge U, there holds o(|g +u|) <
o(lgl+lul+lg)) = o(lgh) + o(ul) + (g = 20(lgl) + v(ul)<
2x + o(Jul)<|k| and thus U, + u c U..

4. If Uc€ 8, and g € G then we shall prove that — g + U, + g = Us: For each
x € Uy there holds o(|—g+x+g|) = 0(—g+|x|+g) = —0(9) + v(x]|)
+ 0(g) = o(|x])<]|k|, i.e., =g+ U + g c U.

Summing up, (G, €,) is a topological group. The rest of this proof follows
from 2.5 when we prove that the topology 7(€o) is weak locally convex: Let
U, € Qoand U, ={ge G: v(|g|)<h) hold. Then an element x € H exists such that
0<2x<h (see 2.3 and 2.4). For each vi, v2€ U, and g € G such that v,;=g=v,
there holds: 0<v(g*)<v(vivO)<ov(Jvi])<x,0<v(—g ) < v(-v2v0) <
o(Jv2]) <x. We have ©(|]g|]) = 9(g*—g7) = 9(g9*) + 9(—-g)<2x<h, i.e.,
g € U,. We proved that for each U, € Q, there exists U, € Q, with the property
(K).

2.7. Proposition. The mapping o: G— H is a continuous mapping of the
topological space (G, t(£0)) into the topological space (H, ), where t is the
interval topology on H.

Proof. (G, 1(Lo)) and (H, () are topological groups (H is linearly ordered)
and it is sufficient to prove that for each h e H, h > 0 there exists a neighbourhood
U € Qo such that 5(U) < (—h, h). But for a neighbourhood U, € , there holds: If
x € Uy, then o(|x|])<h and |9(x)| < v(]x|)<h hold, i.e., —h <v(x)<h.

2.8. Theorem. If an Ip-valuation v on an I-group G is a lattice homomorphism,
then v is an I-isomorphism and G is a commutative I-group. If, moreover t(£2,) is
a nondiscrete topology corresponding to an I-metric on G, then G is a dense
linearly ordered group and t($£2,) is the interval topology on G.

Proof. It can be easily shown that v is a lattice homomorphism if and only if ¥ is
a lattice homomorphism. Then ¥ is an I-homomorphism according to 1.4 and thus
Ker ¢ is an l-ideal in G. From this and from 2.2 it follows that Ker v = {0} and it
implies that ¢ is an l-isomorphism and G is a commutative l-group.

Now, if 7(Lo) is a nondiscrete topology corresponding to an l-metric d on G,
then H is a linearly ordered group and Im vV is a dense set in H*. It implies that G is
a linearly ordered group also and we shall prove that G is dense: If 0< g € G, then
0<9(g) and thus an element x € G exists such that 0<u(x)<wv(g). Finally,
0<x<g holds. Further, if 0< g € G is an element, then for each x € U, there
holds v(|x|)<v(9), i.e., |[x|<g and Usq = (—g, g). If xe(—g, g), then |x|<g
and thus 0(|x|) <3(g). It means that x € Us,. Finally, we have (—¢, g) = U.»
and thus 7(€,) is the interval topology.

2.9. Theorem. Let (G, Qo) be a tl-group with a topology corresponding to an
I-metric, K be its (topological) component and K+ {0} hold. Then there holds:
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1. K is an I-ideal in G.
2. v(K) is I-isomorphic with the linearly ordered additive group R of real
numbers.

Proof. 1. A component K is a clopen set in G and thus there exists
a neighbourhood U € €, such that U c K. Further, neighbourhoods V, W e £,
exist such that Ve Wc U, Vv—Vc W and if w;,, w,eW, geG, wi=g=w,
hold, then g € U (see the proof of Theorem 2.6). Now, if k€ K, x € G exist such

l ]
that k=x=0, then k=Y, + v <Y |uv, for suitable elements vie V (i=1, 2, ...,
=1 =1
1), because K is a subgroup in G generated by V. We have |vi| = v;v —v; € W and
1
2 |vi| = x=0. With regard to [2, p. 105, Cor. 2] there exist elements xi, xz, ...,
i-1

1
x. € G such that v;=x,=0for i=1,2, ..., [ and x= x. The fact v; e W implies
i=1

1
xieUfori=1,2,..., nand together x=" x;€ (U) =K holds, where (U) is the
=1

subgroup in G generated by U. K is a convex normal subgroup and therefore an
lI-ideal in G.

2. First, we prove that (K) is an archimedean linearly ordered group: If
elements hi, h; € v(K) exist such that 0 <h,, 0< h, and nh, < hy, for each natural
number n, then there exists a neighbourhood U € Q,, U c U,, such that U c K. For

]
each x e (U) there holds x= 2 + u;, for suitable elements u,e U (i=1, 2, ..., 1).

=1
1 1
> tu ) < Y 9(|w|) <! ha<h,. Further we
i=1 i=1

have K = (U) c U,,. It means that ©(|a|) < h,, for each a € K. Now, there exists an
element te K such that o(t)=h,, i.e., v(|a|)<(t), for each a € K. It implies
a contradiction for a =¢. Finally, v(K) is an archimedean linearly ordered group
and 0(K) is l-isomorphic with a subgroup T of R. The mapping v is continuous
(see 2.7) and thus v(K) is a connected subgroup in (H, t), where ¢ is the interval
topology. v(K) is also a closed subset in (H, t) (see [5,1.4 and 1.3]). If we denote
this I-isomorphism by f: 9(K)— T, then f is a continuous mapping of the
topological space (v(K), t) onto the topological space (T, ). Further, (T, ¢) is
a connected space. It means that (T, +, () is a connected subgroup in (R, +, ),
which implies T =R.

From this we have o(|x|) = v(

§3. Another topology corresponding to an Ip-valuation

Let us investigate another topology corresponding to an Ip-valuation, namely:
Let G be an l-group, G# {0}, H be a commutative l-group, v: G— H be an
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Ip-valuation on G which defines an I-metric d compatible with a group operation
and v be a group homomorphsm corresponding to an lp-valuation v (see
Theorem 1.3). Let us denote U" ={g € G: v(|g|) non=|h|}, foreach he H, h+0
and Q°={U"+g: 0#he H) for each ge G. Then Q?=Q°+ g, for each ge G
and U"={g e G: d(0, g) non=|h|} (see 1.6).

3.1. Propesition. [)Q°={0}.

Proof. For xe[)Q°=(){U":0#heH} there holds v(|x|)<|h| or
o(|x|)|| k], for 0# he H. If 5(|x])#0, then o(|x])<u(|x|) or 5(|x])||5(|x]), a
contradiction in both cases. Thus ©(|x|)=0 and 0= (]x|)=d(0, x) — see 1.6.
Finally x =0 (see 1.3) and [ Q°={0}.

3.2. Theorem. The following assertions are equivalent on an I-group G:

1. Q°is a complete system of neighbourhoods of an element g € G of a topology
1(Q° on G.

2. For any two elements hy, h.e H*\ {0} with h;A h, =0 there exists an element
p e H, p>0 such that there holds:

hi<v(lg])=>pvh<i(g|), foreach ge G, ie{l,2}.

Proof. 1.2 2.: There exists pe H such that U?c U"nU" and we can
suppose that p >0 without loss of generality. If g € G exists such that h; <v(|g])
and pv h; non<v(|g|), for example, then p non<u(|g|) and thus ge U?\ U™, a
contradiction.

2.=> 1.: From the fact Q7= Q°+ g it follows that it is sufficient to prove, that
for UM, U™ e Q° there exists U” € Q° such that U? c U"nU": Let UM, Ure Q°
hold. Now, we can suppose that h; >0 and h,>0. If there exists an element p € H,
0<p <hiAh,, then UP c U"nU" and U” € Q°. If hiAh,=0, then let p be as in
the condition 2. For each g e U” we have o(|g|) non=p. If (|g|)=hi, for
example, then ©(|g|)= pvhi, a contradiction. It means that g € U™. Similarly
g € U™ holds, i.e., U? c UMnU".

3.3. Corollary. If 7(Q°) is a nondiscrete topology on G and v is an
I-homomorphism, then v is an l-isomorphism, G is a dense linearly ordered
commutative group and t(Q°) is the interval topology on G.

Proof. If ¥ is an I-homomorphism, then analogously to the proof of 2.8 we can
prove that v is an l-isomorphism. Now, if gi, g.€ G, g1 # 0# g2, g1A g.=0, then
with regard to 3.1 there exist hi, h,e H such that g, none U", g, none U".
Further, there exists he H such that U"<c U"nU", U"+# {0}. This implies
0(g1)=|h|, 9(g2) = |h| and (g1 A g2) = |h|, h =0, a contradiction. Finally, G and
H are linearly ordered groups, i.e., T(£2°)=t(£). The rest follows from 2.8.

Remark. If (G, X)is a tl-group and v is an identity on G, then for each g € G,
g+ 0 there exists a neighbourhood U e X such that U c U?, (see [4,2.2]).
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TOITIOJIOTUH, TPUHAIJIEXAIIUE METPUKAM HA JI-TPYIIITIAX
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Pe3iome

B 3TO# cTaThe MCCIEAYIOTCS OLEHKH Ha CTPYKTYPHO YMODSAOYEHHOH rpyine, KOTOpble MMEIOT
3HayeHHs B aGeneBOl CTPYKTYpPHO ymopsioueHHoH rpymnme. [lanee u3y4aeTcs TOMOJOrus, KOTOpas
omnpefeneHa NPH MOMOLIM MOJOXHTENLHOH OLIEHKH.

193



		webmaster@dml.cz
	2012-08-01T01:37:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




